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Abstract

Reinforcement learning is the problem of predicting and maximizing long-term reward.
Computer scientists recognized that this problem could be solved by updating predictions and
action policies based on prediction errors (discrepancies between observed and expected re-
ward). Remarkably, a similar strategy appears to be used by the basal ganglia, where dopamine
provides the prediction errors for updating predictions and action policies in the striatum.
We review how this convergence of natural and artificial intelligence has been elaborated and
challenged, focusing on recent developments that connect cutting-edge machine learning algo-
rithms to experimental observations. A recurring theme, both theoretically and empirically, is
the surprising power of simple error-driven learning algorithms when equipped with suitably
rich (and potentially distributed) state representations. These representations are in turn mod-
ified by dopaminergic prediction errors, creating a virtuous cycle whereby learning algorithms
can amplify their ability to solve more complex tasks.

1 Introduction

Reinforcement learning (RL)—the study of how agents (both natural and artificial) can learn to
predict and control future reward—emerged from a multidisciplinary synthesis of ideas from en-
gineering, psychology, and neuroscience. The original inspiration for RL algorithms came from
animal studies of learning by trial and error (Thorndike, 1898; Pavlov, 1927; Skinner, 1938). Early
computational models formalized how this kind of learning might work, using simple scalar er-
rors to update reward expectations (Widrow et al., 1973; Klopf, 1972; Sutton and Barto, 1981).
The apotheosis of these ideas was the temporal difference (TD) learning algorithm, which could
provably solve a broad class of sequential decision problems (described further below). Variants
of this algorithm have since been used to achieve human-level performance on challenging tasks
such as arcade games (Mnih et al., 2015), computer chip design (Mirhoseini et al., 2021), language
modeling (Ouyang et al., 2022), and many more.

The TD algorithm has also been used to explain many aspects of animal learning and its neu-
rophysiological basis. Most notably, the hypothesis that dopamine reports the error signal used by
TD for updating reward expectations (Montague et al., 1996; Schultz et al., 1997) has had a huge
impact in neuroscience. The fact that the same algorithms appear to be useful for engineering and
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implemented by the brain is unlikely to be a coincidence—it is an example of convergence, where
intelligent systems are destined to hit upon certain algorithms because they solve a broad class of
problems (Gershman, 2024). Biology is filled with examples of convergent evolution (e.g., echolo-
cation, eyes, flight, opposable thumbs), where species independently attain similar phenotypes.
This phenomenon may be at work in the emergence of intelligence across natural and artificial
systems.

In this chapter, we will introduce the mathematical concepts necessary to understand the key
ideas behind RL, with a focus on the TD learning algorithm.1 We will then look at the neurobiology
of RL through the lens of TD learning, summarizing and evaluating the available evidence. Finally,
we will describe how recent extensions developed in the machine learning literature can help us
understand some of the currently perplexing aspects of dopamine and its interactions with other
parts of the brain.

2 The reinforcement learning problem

The goal of RL is to predict and maximize long term reward. Formally, an agent collects immediate
reward rt at time t, accumulating a return R over a horizon of H time steps:

R = r1 + r2 + · · · rH . (1)

If the horizon is infinite (H = ∞), as commonly assumed, this return may diverge. One way to
deal with this problem is to assume that later rewards are discounted exponentially, which ensures
that the sum converges:

Rγ = r1 + γr2 + · · · γH−1rH , (2)

where γ ∈ [0, 1) is known as the discount factor. Psychologically, we can interpret γ in terms of
an intertemporal preference for sooner rewards.2 The discount factor can also be interpreted as
a fixed survival probability: if the agent terminates the task with a fixed probability of 1 − γ at
each time step, then on average its undiscounted return (truncated by the random termination)
will equal the discounted return (Sozou, 1998).

In addition to randomness induced by termination, the rewards themselves may be random
variables (e.g., how much food a foraging animal harvests may depend on randomness in patch
yields, which patch it visits, etc.). The agent therefore needs to consider its expected return, E[Rγ ],
averaging over all these sources of randomness. This is the quantity that most RL models assume
animals are trying to estimate and maximize.3

The RL problem is easy to state but not easy to solve. How are agents supposed to estimate a
quantity that involves averaging a possibly infinite sequence of random events? Rendering this

1In the interest of broad accessibility, we will avoid extensive formalism. For a more complete introduction and
formal mathematical treatment of reinforcement learning, we refer the reader to excellent books on the topic (Sutton
and Barto, 2018; Bertsekas, 2019; Szepesvári, 2022).

2Evidence suggests that intertemporal choice behavior is better described by hyperbolic, rather than exponential,
discounting (Berns et al., 2007; Vanderveldt et al., 2016). We will return to this discrepancy below.

3Some models formalize the RL problem in terms of other objective functions, such as average reward. These models
have been important for understanding some aspects of dopamine (Daw and Touretzky, 2002; Niv et al., 2007; Mikhael
and Gershman, 2022), though for brevity we do not address them here.
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Figure 1: The reinforcement learning problem. An agent interacts with its environment by gen-
erating actions from a policy. The environment then produces state transitions and rewards, from
which the agent updates its value estimates (e.g., using TD learning) and possibly also a world
model.

problem tractable requires some additional assumptions (Figure 1). In particular, most models as-
sume that the rewards are conditionally independent given the time-varying state of the environment,
denoted s. Conditional independence means that the probability of reward at time t depends only
on the state at time t—all other past and future rewards can be ignored. If we additionally as-
sume that the states themselves are conditionally independent (i.e., the probability of the next
state depends only on the current state), we have what is known as a Markov decision process. The
key advantage of making these assumptions is that the expected return can be decomposed into a
recursive form known as the Bellman equation:

V (s) = E[Rγ |s] = E[r + γV (s′)], (3)

where V (s) is the expected return starting at state s, also known as the value function, and s′ is the
state at the next time step.4 The Bellman equation is the basis of most RL algorithms studied in
both AI and neuroscience, as we discuss in the next section.

4In the interest of notational compactness, we will omit time subscripts where possible.
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3 The temporal difference learning algorithm

The Bellman equation enables an elegant and simple algorithmic solution to the RL problem, the
TD learning algorithm (Sutton and Barto, 2018), which we mentioned in the Introduction. The
key idea is to start with some initial estimate of the value function, V̂ , and progressively improve
this estimate by interacting with the environment. The Bellman equation defines a consistency
condition between consecutive values; violations of this consistency instruct the agent how to
improve its estimate. To see this, let’s define a new random variable, the TD error:

δ = r + γV̂ (s′)− V̂ (s). (4)

Using the Bellman equation, we can see that E[δ] = 0 when V̂ (s) = V (s). In other words, the
TD error measures (on average) the discrepancy between the true and estimated value function.
Furthermore, the sign of the TD error is informative about the direction of the discrepancy: if
δ < 0, this indicates that the agent is overestimating the value of the current state and should
therefore decrease V̂ (s), whereas if δ > 0, then the agent is underestimating the value and should
therefore increase V̂ (s). These prescriptions are the essence of the TD algorithm. In its simplest
form, it says that the estimate for the current state should be updated in proportion to the TD
error:

∆V̂ (s) ∝ δ. (5)

In practice, this only works when states are discrete and their value estimates are stored in a look-
up table (the “tabular” setting). Most natural environments include continuous and/or high-
dimensional states, which make look-up tables impractical. It is therefore more common to define
the value estimates in terms of a parametrized function approximator, V̂w, and then update the
parameters w based on the TD error:

∆w ∝ δ∇wV̂w(s), (6)

where ∇wV̂w(s) is the gradient of the function approximator, which determines how credit (for
positive errors) and blame (for negative errors) should be assigned to the parameters.

To make this more concrete, consider a linear function approximator (widely used in the com-
putational neuroscience literature):

V̂w(s) =
∑
i

wiϕi(s), (7)

where {ϕi} is a set of basis functions defining a feature space for value function approximation.
Henceforth we will use the abbreviation ϕi(s) = ϕi. The parameters w correspond to weights on
the basis functions. Eq. 6 then becomes:

∆wi ∝ δϕi. (8)

Intuitively, credit or blame is assigned to each weight in proportion to the activation of its corre-
sponding feature. We will defer a discussion of what these features are and where they come from
to a later section.

So far, we have focused on the problem of value estimation, but this is only half of the RL
problem; the other half is the problem of value maximization. The brain can interact with the
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environment by selecting actions, which affect the state transitions and rewards. We can formalize
this as a state-dependent action policy πθ(a|s), parametrized by θ. In the tabular setting, the policy
parameters are often modeled as action “preferences” which are mapped into action probabilities
via a softmax function:

πθ(a = j|s) ∝ exp[θsj ]. (9)

In the linear function approximation setting, the policy parameters typically correspond to action
weights:

πθ(a = j|s) ∝ exp

[∑
i

θijϕi

]
. (10)

The action weights can be updated to improve the expected return. We can derive an update rule
by following the gradient of the value with respect to the policy parameters:

∆θij ∝ δϕifj , (11)

where

fj = I[a = j]− π(j|s), (12)

what we will refer to as the action trace; I[·] is the indicator function (equaling 1 when its argu-
ment is true, 0 otherwise), and a is the chosen action. This update uses the TD error for policy
improvement. Intuitively, the TD error is positive when the agent tries an action which improves
the expected return; the update then shifts the weights to make this action more likely. The op-
posite happens when the TD error is negative. The TD error thus acts as a “critic” of the “actor”
(the policy), which is why this is known as an actor-critic architecture (Barto et al., 1983). One
reason to focus on the actor-critic architecture here is that it has become one of the workhorses of
modern deep RL, responsible for some of its most spectacular successes (e.g., Lillicrap et al., 2015;
Haarnoja et al., 2018; Andrychowicz et al., 2020).

Our brief synopsis of RL concepts does not exhaust the space of value estimation and policy
improvement algorithms (see Sutton and Barto, 2018), focusing on those concepts which have
been most influential in computational neuroscience. We next turn to a discussion of how these
have been mapped onto brain circuitry.

4 The neurobiology of temporal difference learning

The TD learning algorithm has played an important role in the contemporary understanding of
dopamine and the basal ganglia, starting with the observation that phasic dopamine activity ap-
pears to track the TD error (Eq. 4; see Chapter 22). As noted by Schultz et al. (1997), dopamine
neurons produce a burst of activity following delivery of an unexpected reward, and pause fir-
ing when an expected reward is omitted. When reward is reliably predicted by a cue, the burst
of activity moves backward toward the cue (see also Amo et al., 2022), consistent with the hy-
pothesis that stimulus features are temporally distributed and thus structure the progression of
credit assignment. Importantly, studies have shown that dopamine activity conforms to detailed
quantitative properties of TD errors (Bayer and Glimcher, 2005; Eshel et al., 2015, 2016; Kim et al.,
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2020), and that causal manipulations of dopamine produce behaviorally measurable effects con-
sistent with the TD learning algorithm (Tsai et al., 2009; Steinberg et al., 2013; Chang et al., 2016;
Salinas-Hernández et al., 2018; Xie et al., 2023).

What is the site of plasticity induced by dopamine? A common assumption is that cortex
conveys sensory information (feature vectors), which are then mapped into values via a function
approximation architecture in the medium spiny neurons (MSNs) of the striatum (Doya, 2008).
Using the linear function approximator as the simplest form of such an architecture, the param-
eters w correspond to corticostriatal synaptic strengths. This implies that the value update (Eq.
8) is a synaptic plasticity rule in which dopamine (signaling δ) interacts multiplicatively with the
presynaptic firing rate (signaling ϕi). Similarly, the policy update (Eq. 11) is a three-factor rule
which depends also on the postsynaptic firing rate (signaling fj). This plasticity rule is broadly
consistent with studies of corticostriatal plasticity (Reynolds and Wickens, 2002), although the lit-
erature discloses many complexities (Perrin and Venance, 2019; Sippy and Tritsch, 2023, see also
Chapter 18).

One important complexity is the physiology of different cell types. Most MSNs in the stria-
tum express either D1 or D2 receptors, which respond to dopamine in different ways and have
different downstream consequences. Briefly, dopamine excites D1-expressing MSNs and inhibits
D2-expressing MSNs (Surmeier et al., 2007). D1-expressing MSNs in the dorsal striatum project
primarily to the “direct” (striatonigral) pathway, which ultimately facilitates motor commands,
thereby facilitating action. These cells are therefore commmonly referred to as direct spiny projection
neurons (dSPNs). In contrast, D2-expressing MSNs project primarily to the “indirect” (striatopal-
lidal) pathway, which ultimately suppresses motor commands. These cells are therefore comm-
monly referred to as indirect spiny projection neurons (iSPNs). The differential activation of these
two cell types influences action selection (Kravitz et al., 2012; Freeze et al., 2013; Lee and Sabatini,
2021). They also exhibit different patterns of corticostriatal plasticity, with dopamine promoting
synaptic potentiation in dSPNs and depression in iSPNs (Shen et al., 2008; Sippy and Tritsch, 2023).
Computational models (e.g., Frank, 2005; Collins and Frank, 2014; Möller and Bogacz, 2019; Pinto
and Uchida, 2023; Lindsey et al., 2024) have incorporated these ideas into biologically plausible
policy parametrizations.

To illustrate, let us assume that each cell type’s activation is a linear function of the cortical
state features:

yD1
j =

∑
i

θD1
ij ϕi (13)

yD2
j =

∑
i

θD2
ij ϕi, (14)

where we have assumed separate cells selective to each action j. We can then parametrize a ver-
sion of the softmax policy in which the probability of selecting action j depends on the difference
between these two activations (the action preferences):

π(a = j|s) ∝ exp
[
yD1
j − yD2

j

]
. (15)

The policy improvement update then becomes:

∆θD1
ij ∝ δϕifj (16)

∆θD2
ij ∝ −δϕifj . (17)
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The updates are identical except for the sign, consistent with the opposite effects of dopamine on
plasticity in dSPNs and iSPNs. In order for the updates to be interpreted as Hebbian (i.e., based
on the co-occurrence of presynaptic and postsynaptic activity), we would need to interpret fj (the
action trace) as the activity of both cell types. This implies that activity of the two cell types become
correlated after action selection, with co-activation of cells tuned to the chosen action. Evidence
for this hypothesis has been reported by Lindsey et al. (2024).

Although we have been referring to fj as the action trace, it might be more appropriately
termed an action prediction error, because it reflects the difference between the chosen and pre-
dicted action (see also Lindsey and Litwin-Kumar, 2022). If we follow the hypothesis that this is
signaled by post-choice activity of SPNs, then we expect these cells to be maximally excited when
their preferred action is chosen and low probability, whereas they will be maximally suppressed
when their preferred action is unchosen and high probability. In partial support of this hypothe-
sis, Markowitz et al. (2018) showed that SPN activity is lower following high probability actions
compared to low probability actions.

The actor-critic architecture requires a segregation of circuits computing the value estimate
(V̂ ) and the action preferences (parametrized by the dSPNs and iSPNs). A venerable hypothesis
(Houk et al., 1995; Joel et al., 2002) asserts that the value estimate is computed in the ventral
striatum and the action preferences are computed in the dorsal striatum. This division of labor is
consistent with the observation that action preference signals are typically prevalent in the dorsal
striatum but relatively weak or absent in ventral striatum (Samejima et al., 2005; Pasquereau et al.,
2007; Lau and Glimcher, 2008; Kim et al., 2009; Ito and Doya, 2015). The hypothesis also asserts
that the TD error is computed with respect to the ventral striatal value estimate, and that the same
error signal is projected to both the ventral and dorsal striatum, driving plasticity in both regions
(though the plasticity rules are different, as summarized above). Recordings of activity in different
dopamine projections confirm that ventral and dorsal striatum receive essentially the same TD
error signal (Tsutsui-Kimura et al., 2020), though other data suggest more regional heterogeneity
(van Elzelingen et al., 2022).

5 A dialogue between artificial intelligence and neuroscience

So far, we have been discussing a fairly classical computational picture of the brain’s RL system.
In the rest of the chapter, we broaden this picture to consider how recent developments in AI
(particularly deep learning) have changed this picture (see also Botvinick et al., 2020; Gershman
and Ölveczky, 2020). These developments have influenced modern thinking about every aspect
of the RL framework, including how we define values, rewards, states, features, and policies. Our
goal is to show how some of these developments also shed light on the neuroscience of RL, and in
particular on some aspects of dopamine function that at first glance does not seem to fit with the
canonical TD error hypothesis. We explore how some of these non-canonical responses could be
signatures of more complex RL algorithms.

5.1 What is the state?

The concept of state has a technical definition in RL: it is the variable which renders the condi-
tional independence assumptions of a Markov decision process true. In other words, the state
summarizes all the information about the past that is needed to predict the future. As discussed
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Figure 2: Increasingly complex reinforcement learning architectures. a. In the complete serial
compound (CSC) model, states correspond to a discretized axis of the time spent in the episode.
A value is learned for each time bin. Most models using the CSC as the state representation have
been used to simulate Pavlovian tasks, so the policy is to simply choose the next state. b. Belief
states and linear function approximation. A more advanced implementation of RL would build a
model of the world based on a Markov decision process (MDP) or a partially observable Markov
process (POMDP) that captures the transition probabilities across states. In the POMDP setting,
there is the additional uncertainty that states are not directly observed and there is therefore un-
certainty about the current state of the environment. Value is also not directly represented through
a 1-to-1 mapping with state but instead is approximated using linear function approximation (eq
8. In a more modern RL architecture, the state representations could be learned via a recurrent
neural network (RNN), allowing it to learn the dynamics of state transitions. The system could
potentially learn from several reward streams with separate value networks, allowing the imple-
mentation of distributional RL or general value functions (see Section 5). The policy network
would allow the system to learn how to combine the value networks to achieve optimal perfor-
mance.
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in Section 2, this is critical to the validity of efficient algorithms like TD learning. Thus, if the brain
uses these algorithms, we should expect it to extract states from its sensory inputs.

Understanding how states in the environment are represented is crucial to estimate the form
the TD error will take when an agent experiences or explores an environment. In the canonical
reward prediction error model of Schultz et al. (1997), states are represented using the complete
serial compound (CSC) representation in which the time within a trial is discretized and each
timestep corresponds to a state (Figure 2a). This representation is useful in tasks where a few
potential cues predict the timing and size of rewards and punishments, as is often the case in
neuroscience experiments, but it might be very inefficient in more complex environments. In this
section, we will discuss several examples in which different state representations can affect the
form of the TD error as it would be measured experimentally though dopamine signaling. A key
takeaway is that in order to make strong claims about the link between dopamine signaling and
TD error, it is necessary to have a good handle on the structure of state representations and of the
internal state of an agent at any given time.

Implicit in the models described earlier is the assumption that the state is directly observable—
it can be extracted unambiguously from sensory inputs. This assumption is unrealistic, since
sensory inputs often do not perfectly disambiguate the state. This “partial observability” arises
in two common scenarios. One is where sensory data are noisy or incomplete (e.g., observing
the silhouette of a person in the distance). Another is where predicting the future depends on
something that happened in the past which is not recorded in current sensory inputs.

It is possible to address partial observability by mapping sensory inputs to a probability distri-
bution over the hidden state, known as the belief state (Kaelbling et al., 1998). This is truly a state in
the sense that it satisfies the conditional independence assumptions, and hence is compatible with
algorithms like TD learning. More formally, let x denote the vector of sensory inputs, and let b de-
note the belief state, where each dimension corresponds to a single state such that bs = P (s|x), the
posterior distribution over states conditional on x. The posterior can be computed using Bayes’
rule:

bs ∝ P (x|s)P (s), (18)

where P (x|s) is the likelihood of the sensory inputs given a hypothetical state s, and P (s) is the
prior probability of s. The likelihood expresses the consistency between the sensory inputs and the
hypothetical state. The prior is the agent’s belief state before observing x. Because the belief state
is a sufficient statistic for prediction, it can substitute for the hidden state (which the agent doesn’t
have access to) in RL algorithms.

From a neuroscience perspective, the general picture is that the cortical inputs to striatum
signal belief states, and corticostriatal plasticity learns the mapping from belief states to values and
policy parameters (Daw et al., 2006; Rao, 2010). This picture is consistent with the idea that cortex
(or at least parts of it) computes posterior probabilities via some form of approximate Bayesian
inference (Lee and Mumford, 2003; Knill and Pouget, 2004; Friston, 2012; Sohn and Narain, 2021).
Here we will focus on the implications for dopamine. If TD learning is operating on belief states,
and dopamine is reporting a TD error, then we should be able to identify signatures of belief-
dependence in dopamine.

In a standard Pavlovian conditioning experiment, an initially neutral cue (such as an odor) is
followed by a reward (such as water, juice, or food). The structure of the task is defined by the joint
probability of the interstimulus interval (ISI), the intertrial interval (ITI), and the US delivery. We
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can think of the ISI and ITI as “macro-states” that can be broken down into more temporally fine-
grained “micro-states” (see subsection 5.2.4 for further discussion of time representation). If the
US is always delivered following the cue, and the agent can perfectly keep track of time, then the
agent has no state uncertainty—the environment is fully observable. Real animals, on the other
hand, are imperfect time-keepers, as evidenced by the fact that behavioral responses to the antici-
pated time of US delivery become progressively more spread out in time for longer ISIs (Holland,
2000; Kirkpatrick and Church, 2000; Tsao et al., 2022). This implies that the micro-states are par-
tially observable. If reward delivery is stochastic (i.e., it is omitted on some proportion of trials),
then the macro-states also become partially observable. Both forms of partial observability affect
dopamine responses. Using fixed ISIs that were fully predictable based on distinct visual cues,
Fiorillo et al. (2008) found that dopamine neuron responses to reward were larger after longer ISIs
(see also Starkweather et al., 2017). This is consistent with the view that rewards are more sur-
prising after longer ISIs because temporal precision is lower—the animal has greater uncertainty
about what micro-state it is in.

A quite different pattern of results is observed when the same cue is followed by randomly
distributed ISIs. Fiorillo et al. (2008) reported that responses of dopamine neurons to reward de-
livery were lower following longer ISIs, consistent with an increase in reward expectation which
suppressed the TD error at the time of reward. Starkweather et al. (2017) reported the same find-
ing, showing that it could be explained by a belief state TD model without any timing noise.
Importantly, Starkweather et al. also showed that another condition, in which rewards were omit-
ted on 10% of trials, reversed this pattern: reward responses were higher following longer ISIs.
This pattern could be explained by a belief state TD model with macro-state uncertainty. Intu-
itively, if the animal has not yet received reward, it’s uncertain whether the reward is forthcoming
or the trial has silently transitioned into the ITI. The more time that has elapsed without reward,
the higher the probability that the animal is in the ITI state, and thus the greater its surprise when
reward is actually delivered.

The uncertainty about the state of the environment can also arise from uncertainty about the
physical state of the environment. In perceptual decision making tasks, subjects are asked to make
decisions based on ambiguous sensory stimuli. In the well-known random-dot kinematogram
task, animals have to identify the direction of coherent motion of a subset of dots in a background
of randomly moving dots. Dopamine neurons recorded in this task were shown to exhibit the
patterns expected if their activity was driven by the confidence that the decision was correct given
the sensory evidence and the choice on a given trial (Lak et al., 2017).

This presence of model-based prediction errors raises an intriguing possibility. Can we flip
the problem and infer the internal state of the agent and its model of the task from the dopamine
activity? When inferring subjective state signals from other brain areas, the state is usually de-
coded from a high-dimensional neural population. Here, the state can be read out from a scalar
(or low-dimensional) signal. The graded responses at sharp transitions in the value can be used
to infer the state structure governing prediction error computation. For example, in the work of
Starkweather et al. (2017) mentioned above, from analyzing the RPE as a function of reward delay
(decreasing or increasing with reward delay), we could potentially infer the internal subjective
model of the task used by the animal (100% or 90% reward probability). In recent work, Blanco-
Pozo et al. (2024) use this approach to disambiguate two competing models. In most behavioral
tasks, the behavioral readout is relatively low dimensional and multiple competing models could
explain the observed behavioral patterns. By analyzing the dopamine responses during the task,

10



Blanco-Pozo and colleagues were able to distinguish the two models, supporting a model in which
dopamine contributes to model-based learning without directly affecting choices.

Our brief survey covers only a subset of the empirical evidence supporting the belief state
hypothesis (see also Daw et al., 2006; Babayan et al., 2018; Nour et al., 2018; Gershman and Uchida,
2019; Mikhael et al., 2022). In the remainder of this section, we want to interrogate some of our
assumptions about computational architecture, in particular the division into belief computation
and value approximation stages. While this division is conceptually convenient, and consistent
with a wealth of data, it suffers from the curse of dimensionality that arises when the number of
states grows large: for discrete hidden states, representing a belief state require a dimensionality
that is exponential in the number of hidden states. For high-dimensional continuous states, belief
state representation may be similarly intractable. Fortunately, it has long been recognized within
AI that it is not necessary to represent all possible belief states, since only a small fraction of
them are likely to be visited (Roy et al., 2005). While classical solution methods tried to find
low-dimensional approximations of belief states, modern methods (e.g., Ni et al., 2022, 2024) try
to avoid them entirely by learning a mapping (usually a neural network) directly from sensory
inputs to value estimates. This does not, however, mean that belief states have entirely left the
scene; we can often think of the learned mapping as implicitly computing a form of compressed
belief state.

Hennig et al. (2023) examined this idea in detail, showing that belief states could be decoded
from the internal representations of a recurrent neural network (RNN) trained end-to-end using
TD learning to estimate value. The same RNN was able to recapitulate the aforementioned empir-
ical results from the study of Starkweather et al. (2017). This suggests a different kind of compu-
tational architecture, where striatum represents the final stage of a complex value approximation
architecture, which may include recurrent cortical dynamics. A similar line of argument has been
made about other forms of model-based RL (Wang et al., 2018; Botvinick et al., 2019; Hattori et al.,
2023). The key idea is that cortical networks can be trained to meta-learn cheap approximations of
algorithms like Bayesian updating, planning, etc. which can be employed for sample-efficient RL.
Striatum may act as a relatively “shallow” readout of these computations, translating them into
values and action preferences.

To conclude, RL algorithms have moved from simple representations of states as time elapsed
in a trial (CSC representations, Figure 2a) to more complex representations for example through
POMDPs (Figure 2b) or a trained RNN (Figure 2c). In a neuroscience setting, understanding
the structure of these state representations is essential to interpret dopamine signaling within the
framework of RL.

5.2 What is value?

So far, all the models we’ve discussed share the assumption that value corresponds to expected
discounted return. Modern work in AI has explored the consequences of broadening the defini-
tion of value. This line of work was motivated the observation that agents operating in complex
worlds benefit from being trained on auxiliary tasks—intrinsic reward functions which encourage
the agents to acquire more general skills and richer representations, which in turn facilitate attain-
ment of extrinsic reward (Sutton et al., 2011; Jaderberg et al., 2016; Mirowski et al., 2016; Veeriah
et al., 2019; Lyle et al., 2021). Recent evidence suggests that the brain may also learn and utilize
such generalized values.
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5.2.1 Distributional reinforcement learning

One way to generalize the expected return definition of value is to move from a single summary
statistic (the mean) to a set of summary statistics that captures the distribution of return. A return
distribution definition can distinguish between states that lead to the same expected return but
with different distributions. For example, if from state A the return is always 1 while from state B
the return is 102 with probability p = 0.5 or −100 with probability p = 0.5, both states will have the
same expected return, but intuitively state B is riskier. A risk-averse agent would therefore avoid
this state, but of course they would have to represent the return distribution in order to express
such a preference. The fact that animals express both risk-aversion and risk-seeking in different
circumstances suggests that they understand something about the return distribution.

This idea can be applied to distributional RL (Bellemare et al., 2017, 2023), where the goal is to
learn in parallel the distributional statistics—typically quantiles (generalizations of the median)
or expectiles (generalizations of the mean). Distributional RL algorithms have reached state-of-
the-art performance on Atari games and other challenging benchmarks. Here we illustrate how
the distributional statistics can be learned using generalizations of TD. By using an asymmetric
learning rate depending on the sign of the TD error (α+ and α− for positive and negative pre-
diction errors, respectively), the TD update will learn different quantiles (if TD error is binarized)
or expectiles (if TD error is untransformed) depending on the ratio of the learning rates (Lowet
et al., 2020). A spectrum of asymmetric learning rates spread across separate learning channels is
sufficient to collectively approximate the full return distribution.

Evidence for distributional RL in dopamine neurons comes from analyzing responses to re-
wards whose size is randomly sampled from a distribution. The reversal point (the reward value
for which the TD error switches from negative to positive) varies across neurons and scales with
the ratio of the inferred learning rates for positive and negative prediction errors (Dabney et al.,
2020; Lowet et al., 2020). Striatum and prefrontal cortex, where the value functions are thought
to be represented, also carry representations consistent with distributional RL (Muller et al., 2024;
Lowet et al., 2024).

Theoretical work has proposed different implementations of distributional RL in dopamine
neurons and their projections (Tano et al., 2020; Louie, 2022), but they converge on some similar
ideas. Differences in sensitivity to reward across dopamine neurons allow them to convey at the
population level a learning signal that would support distributional RL in the striatum. However,
many questions remain both at the algorithmic level and its possible neural implementation. A
key hurdle is to understand how the dopaminergic signal, which is diffuse, can be used in specific
ways by different neurons (see Liu et al., 2021, and Chapter 13). Machine learning implementa-
tions of distributional RL have strictly separated loops that compute the value functions and their
associated TD error in parallel, but share a feature network. In the mammalian brain, it is hard
to conceive an implementation where the loops are similarly separated (though some parallelism
has been proposed; see Alexander et al., 1986; Lau et al., 2017). Instead, theoretical work suggests
that the dimensionality of the learning signal might allow for the learning to take place despite
overlap. Although the distributional TD error is vectorized, it is still relatively low-dimensional
in comparison to the space of possible states and to the number of neurons in the target area (e.g.,
striatum). Similarly, although dopamine release is not constrained to a synapse, it is still relatively
local. This locality, coupled with the relative dimensionality and the dendritic structure of MSNs,
can support learning from a vectorized signal (Wärnberg and Kumar, 2023). Experimental evi-
dence for this proposal is still needed, but it removes a key hurdle to the possibility that the basal
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ganglia implement distributional RL.

5.2.2 Learning at multiple timescales

Another way to generalize the expected return definition is through a spectrum of discount fac-
tors. This allows agents to learn at a mixture of timescales. As mentioned in Section 2, the stan-
dard definition assumes exponential discounting, but intertemporal choice behavior appears more
consistent with hyperbolic discounting, where the value of a reward t steps in the future is down-
weighted by d(t) = 1

1+kt , where k is a discount parameter. Mixing a spectrum of exponentially
discounted value functions can create non-exponential discounting (Sozou, 1998; Kurth-Nelson
and Redish, 2009).5 Similarly to distributional RL, several value functions with different discount
factors can be learned in parallel and then combined to obtain a deep RL architecture that dis-
counts hyperbolically (Fedus et al., 2019).

The discount factor of a single dopamine neuron can be inferred by measuring the TD error
response to cues predicting delay at different horizons. Experiments have discovered dopamine
neurons that exhibit a diversity of discount factors (Kobayashi and Schultz, 2008; Masset et al.,
2023; Sousa et al., 2023), which implies that the circuits of the basal ganglia should in principle
be able to implement multi-timescale RL (Tano et al., 2020; Fedus et al., 2019). This learning at
multiple timescales could be used either to adapt discounting to the statistics of the environment
or to implement scale-invariance in the learning process (Howard et al., 2023; Momennejad, 2024).
In addition to this diversity of timescales at the single neuron level, there appears to be a gradient
in the average timescale represented across striatal areas (Tanaka et al., 2004; Enomoto et al., 2020;
Mohebi et al., 2024).

5.2.3 Generalized value functions and the successor representation

The previous subsections have retained the underlying “cumulant” of the return (reward) while
generalizing what kinds of predictions are made about this cumulant and how its value is repre-
sented. Another point of departure is to generalize the cumulant itself, yielding different kinds of
generalized value functions (Sutton et al., 2011; Schlegel et al., 2021). One influential version of this
idea is to replace rewards with a set of state indicator functions, ϕi(s) = I[s = i]. Notice that we
have deliberately overloaded the basis function notation from Section 3; this invites us to think
about other kinds of features as candidate cumulants (see below). The expected discounted state
visitation defines a generalized value function known as the successor representation (SR; Dayan,
1993; Gershman, 2018):

M(s, i) = E

[ ∞∑
t=0

γtϕi(st)

∣∣∣∣s0 = s

]
. (19)

We can think of the SR as a kind of “predictive map” that represents each state in terms of its
successor states. A useful property of the SR is that state values are linear functions of M :

V (s) =
∑
i

M(s, i)E[r|i], (20)

5This turns out to be closely related to the real-valued Laplace transform commonly used in signal processing (Fedus
et al., 2019; Tano et al., 2020).
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where E[r|i] is the expected reward in state i. Intuitively, calculating value boils down to taking
a sum of immediate rewards in each state weighted by how often the agent expects to visit those
states in the near future. Another important property of the SR is that it obeys a Bellman equation
similar to Eq. 3, which means that an agent can use TD learning to estimate it, with a separate
learning channel for each successor state.

The SR can be generalized to arbitrary basis functions (not just state indicators); the columns
of M are then referred to as successor features. This feature representation turns out to have a
wide variety of applications in AI, including multi-task RL, efficient exploration, and multi-agent
cooperation (see Carvalho et al., 2024, for a review). As with the SR, successor features can be
estimated using TD learning. If we extend the TD error hypothesis of dopamine to this setting,
then we again arrive at a vectorized conceptualization of dopamine, where (in the most straight-
forward implementation) each component of the error vector corresponds to a successor feature
(Gardner et al., 2018).6

Evidence for this “generalized prediction error” hypothesis comes from studies showing acti-
vation of dopamine neurons in response to unexpected changes in sensory features. For example,
Takahashi et al. (2017) showed that abrupt changes in reward identity (holding reward magnitude
fixed) induced a dopamine transient. Also consistent with the hypothesis are studies showing that
optogenetic manipulations of dopamine affect stimulus-stimulus learning in the absence of overt
reward (Sharpe et al., 2017; Chang et al., 2017).

More broadly, the generalized prediction error hypothesis provides one way of understand-
ing why there is so much heterogeneity in the tuning of dopamine neurons. Several proposals
have been made that decompose the learning signal across dopamine neurons in terms of differ-
ent targets (Figure 2b). Different TD errors signaled by dopamine neurons may be components of
a multidimensional error signal (Fiorillo et al., 2013; Watabe-Uchida and Uchida, 2018; Engelhard
et al., 2019; Cox and Witten, 2019). For example, there are dopamine neurons that encode predic-
tion errors for threat (Menegas et al., 2018), action (Greenstreet et al., 2022), and social information
(Solié et al., 2022). These models also lead to decision, reward and action modulated responses
in dopamine neurons through distinct dopamine neurons contributing to learning either the indi-
vidual features of the value approximation or decomposing the reward into subcomponents (Lee
et al., 2022; Greenstreet et al., 2022; Millidge et al., 2023). Additionally, in a model-based frame-
work, a reward-like signal can also be internally generated by the world model and information
about the structure of the environment can have intrinsic value (Bromberg-Martin and Hikosaka,
2009; Bromberg-Martin and Monosov, 2020). For example, the appearance or disappearance of a
barrier in a maze can lead to prediction error signal depending on how it changed the length of
the path to reward (Krausz et al., 2023).

An architecture that learns several predictions in parallel (Figure 2c) will have to arbitrate be-
tween them as eventually the agent has to take one action (Doya et al., 2002). A version of this
challenge is studied in multi-agent RL algorithms (MARL) in which several agents act together
to achieve a common goal. In this setting, each agent has access to a partial view of the environ-
ment and algorithms differ in the amount of coordination and information available across agents
(Zhang et al., 2021). This would correspond to different dopamine neurons contributing to learn-
ing through competing sub-agents evaluating different aspects of reward (or of cumulants) based

6Based on decoding analyses applied to populations of dopamine neurons, Stalnaker et al. (2019) have argued that
sensory feature information is available at the population level but not at the single cell level. This suggests that errors
might be signaled by a population code.
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on different state inputs (e.g. task state, motor action, etc). This class of models has been used to
explain action modulation of dopamine responses, where evaluation of reward and production of
action can interfere through a contribution to the action of other sub-agents with which they do
not fully share information (Lindsey and Litwin-Kumar, 2022; Cruz et al., 2022).

5.2.4 What are the features?

Within AI, most models have moved away from bespoke feature representations towards deep
learning architectures which learn the feature representations end-to-end. Theoretical work has
shown that the structure of the feature representations is key in controlling the dynamics of value
and policy learning (Patel et al., 2023; Bordelon et al., 2024). An intriguing open question is
whether these distributed TD errors are being used to drive representation learning in upstream
regions, comparable to the way that auxiliary tasks are used in deep RL to guide representation
learning.

Taking the example of the representation of time, the usual assumption in neuroscience is
that each stimulus is decomposed into a set of temporally distributed features. For example, the
aforementioned complete serial compound (Figure 2a) representation assigns each feature to a
post-stimulus time bin. The stimulus can thus be thought of as activating a cascade of “time cells”
(neurons tuned to particular time intervals relative to stimulus onset), as observed experimentally
in a number of brain areas (Paton and Buonomano, 2018). Variations of this idea have been studied
extensively, including models in which the basis functions are heterogeneous across post-stimulus
time (Ludvig et al., 2008; Gershman et al., 2014) and adaptive (Mikhael and Gershman, 2019). In
these models, the structure of time representations affects the predicted TD error, which in turn
can alter the structure of the representations. Jakob et al. (2022) showed that trial-by-trial changes
in dopamine affect time representation on subsequent trials, consistent with the representation
learning hypothesis.

A similar observation is likely to govern the representations of the value (or generalized value)
functions thought to be encoded in striatum (Doya, 2008). Value appears to be robustly encoded
at the population level in the striatum but is distributed across single neurons (Samejima et al.,
2005; Yamada et al., 2021; Shin et al., 2021; Lowet et al., 2024). Furthermore, dopamine also con-
trols plasticity in the hippocampus (Tsetsenis et al., 2023) and many cortical areas (Macedo-Lima
and Remage-Healey, 2021) whose representations also change with reward experience, hinting
at the plausibility of dopamine-mediated changes in representations. Understanding how the
distributed single neuron feature representations affect and are affected by diverse error signals
conveyed by dopamine neurons will be an important avenue for future work.

6 Looking ahead

In this chapter, we have briefly summarized some of the key ideas behind RL, focusing on con-
nections between recent AI algorithms and dopamine physiology. These connections aid us in
understanding some of the complexities in the empirical data, while still retaining some of the
core explanatory principles introduced in the original TD theory of dopamine. Our attention was
still relatively narrow: we mainly discussed data from studies of dopamine projections to stria-
tum, neglecting the rich work on dopamine signaling in prefrontal cortex (see Ott and Nieder,
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2019, for a review) and its role in motor control (see Coddington and Dudman, 2019, and chapter
29).

Even within the circuits we have discussed, many challenges remain. The majority of the
experimental work has either studied dopamine neurons in the midbrain, or neurons in target
areas, but the lack of work integrating both leaves many question open, given the tight theoretical
links between the TD error and value/policy representations. As the experimental tools progress
and these experiments become more accessible, we hope to be able to start developing a more
complete view of dopamine-mediated RL, including lingering questions about credit assignment
(Jeong et al., 2022), motivation (Wise, 2004; Hamid et al., 2016), and attention (Kutlu et al., 2021,
2022). We expect that insights from AI will continue to be pivotal in addressing these questions.
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