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Making context-dependent decisions incurs cognitive costs. Cognitive control studies have investigated the nature of such costs from 
both computational and neural perspectives. In this paper, we offer an information-theoretic account of the costs associated with 
context-dependent decisions. According to this account, the brain’s limited capacity to store context-dependent policies necessitates 
“compression” of policies into internal representations with an upper bound on codelength, quantified by an information-theoretic 
measure (policy complexity). These representations are decoded into actions by sequentially inspecting each bit, such that longer codes 
take more time to decode. When a response deadline is imposed, the account predicts that policy complexity should increase with the 
deadline. Higher policy complexity is associated with several behavioral signatures: (i) higher accuracy; (ii) lower variability; and (iii) 
lower perseveration. Analyzing electroencephalograpy data from a rule-based action selection task, w e found evidence supporting all 
of these predictions. We further hypothesized that complex policies require higher neural dimensionality (which constrains the code 
space). Consistent with this hypothesis, we found that policy complexity correlates with a measure of neural dimensionality in a rule-
based decision task. This finding brings us a step closer to understanding the neural implementation of policy compression and its
implications for cognitive control.

Keywords: action selection; cognitive control; policy compression; rate-distortion theory; r epresentational dimensionality .

Introduction 
A prominent hallmark of human cognition is our ability to 
select actions appropriate for the current context. The study of 
cognitive control seeks to understand this core capability (Fan 
2014; Shenhav 2017; Badre 2024). A growing body of research has 
highlighted the cognitive costs incurred by such control processes. 
These costs are evident in human tendencies to a void tasks that 
demand greater cognitive control (Kool et al. 2010; Shenhav 2017; 
Sayali et al. 2023), and increase control under greater rewa rd 
incentives (Umemoto and Holroyd 2015; Krebs and Woldorff 2017; 
Shenhav 2017). 

The ubiquity of cognitive costs has prompted researchers 
to probe their underlying mechanisms. Computational models 
have proposed a range of explanations, from metaphorical force 
fi elds to theories of limited mental resources and rewar d-based
accounts of effort allocation (Kruglanski 2012; Botvinick and 
Braver 2015; Shenhav 2017). In parallel to the computational 
perspectives above, neuroimaging studies have localized control-
related signals in the brain, including but not limited t o the 
anterior cingulate cortex and lateral prefrontal cortex (Koechlin 
and Summerfield 2007; Badre 2008; McGuire and Botvinick 2010). 
While these perspectives are in principle reconcilable (Botvinick 
and Cohen 2014), their integration has been limited by the 

absence of a unifying computational resource formulation—one 
that can both reconcile these diverse theories and b e empirically
tested.

In this paper, we take a step toward such a unifying perspec-
tive by refining an information-theoretic framework of cognitive 
control. Building on previous theoretical and empirical work, we 
explore how this perspective can bridge behavioral and neural 
accounts of cognitive effort. The idea of connecting information 
theory to cognitive control is not new: early cognitive control 
studies on the PFC proposed a hierarchical architecture along 
a rostro-caudal axis, with anterior r egions supporting higher-
order, more abstract-level control. These ideas were formalized 
using information-theoretic measures including mutual informa-
tion and conditional entropy, interpreted as measures of remain-
ing uncertainty within the hierarchy (Koechlin and Summerf ield 
2007; Badre 2008). While these information-theoretic measures 
have the benefit of being domain-general and thus generalizable 
across tasks, the above line of work did not specify how such 
information-theoretic constructs may reconcile the various cog-
nitive cost formulations at the computational level, or b e tested
using behavioral data.

More recently, the importation of rate-distortion theory (Cover 
1999) into cognitive science has filled this gap. By leveraging
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its formalism of constrained optimization—balancing reward 
against channel information ra te (Tishby and Polani 2010; Sims 
2016; Zenon et al. 2019; Lai and Gershman 2021)—this line of 
work has offered normative models of human decision-making 
that naturally connect the resource a nd reward-based views 
of cognitive control (Lai and Gershman 2021). Additionally, 
the identified solution bears similarities with Kullback–Leibler 
regularized control and the w ay it penalizes deviations from 
a default policy (Todorov 2009), enabling closer connections 
to the force field perspective. The resulting policy compression 
frame work has been empirically supported i n contextual bandit
tasks (Gershman 2020; Lai and Gershman 2024; Liu et al. 2024; 
Liu and Gershman 2025), and has begun to find tr action in 
neuroscience (Gershman and Lak 2025). While some connections 
to cognitive control—such as task switching and the overriding of 
habits—have been established (Zenon et al. 2019), few empirical 
studies have quantitatively assessed the framework’s pr edictions 
for cognitive c ontrol.

In this paper, we introduce the policy compression framework 
as a normative theory of context-dependent decision-making, 
articulating its implications for three major issues in cognitive 
control: the formulation of cognitive cost as the mutual informa-
tion between context and action (policy complexity), the emer-
gence of perseverative behavior toward default actions, and the 
link between control and response times. W e also propose an 
algorithmic-level implementation of the framework based on 
entropy coding, connecting the framework to recent findings on 
neural representational dimensionality and their role in cognitive
control (Rigotti 2013; Bernardi 2020; Kikumoto et al. 2024a). In 
particular, the framework predicts that representational dimen-
sionality should scale with policy complexity, under the assump-
tion that more complex policies consume more representational 
resources. To evaluate these predictions, we analyze the behavior 
and neural a ctivity of human participants performing a rule-
based action selection task under varying response deadlines. 
Similar to prior work in contextual multi-armed bandit tasks
(Gershman 2020; Lai and Gershman 2024; Liu and Gershman 
2025), the current dataset features within-participant manipula-
tions of response deadlines—specifically, variations in stimulus-
onset asynchrony (SOA). This design allows us to examine spon-
taneous, within-subject fluctuations in policy complexity as well 
as their behavior al and neural consequences.

The policy compression fr amework 
Here we describe the proposed policy compression framework in 
detail. We first outline its foundation in rate-distortion theory, 
which formalizes context-dependent action selection as a reward 
optimization problem under information-theoretic constraints. 
We then elaborate on the framework’s implications for cognitive 
control, highlighting how it accounts for perseverative behavior 
during action selection and elucidates the links between state-
dependent policies , response times, and representational dimen-
sionality.

The nervous system operates under n umerous constraints 
(Shenhav 2017). These constraints have been formalized at 
multiple levels of analysis, ranging from computational-le vel 
accounts of sampling costs and computational complexity (Ma 
et al. 2014; Vul et al. 2014; Bossaerts et al. 2019; Zhou et a l. 
2024), to physiological-level costs of interference a nd neural 
metabolism (Gailliot and Baumeister 2007; Musslick 2016). Here, 
we specifically focus on the influence of channel capacity, the 
maximum information that can be transmitted across a noisy
channel (Shannon 1948), on decision-making pr ocesses. 

The framework we propose is an application of rate-distortion 
theory to action selection. Rate-distortion theory prescribes how 
to construct an optimal channel that minimizes some notion of 
error (the distortion), or maximizes reward, subject to a constraint 
on the information transmission r ate (ie an information bottle-
neck) (Cover 1999). The utility of rate-distortion theory lies in its 
task-general formulation of cognitive constraints. Beyond action 
selection (Lai and Gershman 2021, 2024; Liu et al. 2024; Liu and 
Gershman 2025), it has been successfully applied to various cogni-
tive processes including visual working memory (Sims et al. 2012; 
Sims 2015; Jakob and Gershman 2023), perception (Gershman and 
Burke 2023), intertemporal decision-making (Gershman and Bhui 
2020), and cognitive abstraction formation (Genewein et al. 2015). 
Previous works have linked information theory to various facets 
of cognitive control, from task-switching costs (Zenon et al. 2019) 
to the hierarchical organization of executive function (Koechlin 
and Summerfield 2007; Badre 2008). These studies support a mod-
ulatory view of control, in which top-down processing of higher-
level contextual cues enhances or inhibits lower-level stimulus-
response associations to guide behavior (Aron 2007; Goghari and 
MacDonald 2009; Badre et al. 2021). Such connections enable us to 
apply rate-distortion theory to cognitive control through the lens 
of policy compr ession, which we will elaborate on below.

We assume a contextual decision-making setup, in which the 
agent selects actions based on some environmental state to max-
imize reward (Koechlin and Summerfield 2007; Badre 2008; Zenon 
et al. 2019; Kikumoto et al. 2022, 2024a). In this paper we will use 
“context” and “state” interchangeably. The agent’s policy π(a|s) is a 
probabilistic mapping from states s ∈ S  to actions a ∈ A.  Here  we  
make the simplifying assumption that all contextual information 
is encapsulated into a (potentially high-dimensional) state s that 
informs action selection (Fig. 1A). 

It is well known that context-dependent action selection incurs 
cognitive costs that affect human behavior (Shenhav 2017; Zenon 
et al. 2019; Sayali et al. 2023). For a resource-rational agent, we 
formalize the cognitive cost as the mutual information between 
states and actions, which we call the policy complexity:

Iπ (S; A) =
∑

s 
P(s)

∑
a 

π(a|s) log 
π(a|s) 
P(a) 

(1)

where P(s) is the state probability distribution and P(a) =∑
s P(s)π(a| s) is the marginal probability of choosing action a under 

the agent’s polic y π(a|s). Intuitively, high-complexity policies 
preserve state information (eg deterministic mappings from 
states to actions) whereas low-complexity policies discard state 
information (eg random actions). One can additionally d ecompose 
policy complexity into individual policy cost terms f or each state-
action pair, log π(a|s) 

P( a) , whose trial-wise average defines the policy 
complexity .

If the agent has infinite cognitive resources, it would be opti-
mal to map each state to the most rewarding action. Ho wever, 
we assume that policies are subject to a capacity constraint C 
(a concept frequently invoked in the cognitive control literature; 
see (Botvinick and Cohen 2014)), which, in our formulation, acts 
as an upper bound on policy complexity. The value of C can be 
voluntarily set by the agent (Liu et al. 2024), or, under cognitive 
load or response deadlines, limited by the cognitive resources 
available (Lai and Gershman 2024; Liu and Gershman 2025). In this 
formulation, for a given task with state pr obability distribution
P(s) and state-specific action rewards Q(s, a), agents would max-
imize trial-averaged reward Vπ = ∑

s P(s)
∑

a π(a|s) Q(s, a) subject 
to their constraint Iπ (S; A) ≤ C. We can express this constrained
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Fig. 1. The policy compression framework and optimal entropy codes. A) Context-dependent action selection as an information channel. The 
context/state is encoded as a codeword and subsequently decoded to reveal its policy-assigned action. The information channel is capacity-limited, 
which upper bounds the policy complexity, defined as the mutual information between states and actions. This is equivalent to a bound on the average 
codeword length. B) The optimal solution prescribed by rate-distortion theory, featuring state-dependent Q(s, a) and state-independent P(a) components. 
The parameter β adjusts the relative contributions of the two components. C) The reward-complexity Frontier for an example task, derived b y varying 
the β parameter in B) and finding the corresponding optimal policies. The optimal policy at high complexity is strongly influenced by state-dependent 
rewards Q(s, a) (dark green distribution shared with B)). In contrast, the optimal policy at low complexity is further compressed (less state-dependent) 
and more strongly influenced by its own marginal action distribution P(a). A–C) are adapted from (Lai and Gershman 2024). D) An example Huffman code 
with optimal codeword assignments that minimizes average codelength. The codelengths are assigned based on the probability of decoding different 
symbols (leaf nodes). In policy compression, the codetree would be tailored to decode actions. E) The same Huffman code visualized as a codetree. On the 
process level, we hypothesize that each bifurcation in the codetree manifests as an increase in neural representation dimensionality, which is required 
to separate the t wo possible branches downstream. Under trial-by-trial response deadlines, codetree traversal would be cut off at earlier bifurcations 
(colored dotted lines), thus capping the number of representation separations and do wnstream policy complexity .

optimization problem in Lagrange form: 

π∗ = argmax 
π 

βVπ − Iπ (S; A) +
∑

s 
λ(s)

(∑
a 

π(a|s) − 1 
)

(2) 

where β ≥ 0, λ(s) ≥ 0 ∀s ∈ S are Lagrange multipliers to ensure 
Iπ (S; A) ≤ C and proper policy normalization:

∑
a π(a|s) = 1. 

Solving the Lagrange form yields the follo wing optimal policy: 

π∗(a|s) ∝ exp
(
βQ(s, a) + log P∗(a )

)
(3) 

where P∗(a) = ∑
s P(s)  π∗(a|s) is the optimal marginal a ction 

distribution, and β is a Lagrange multiplier whose v alue depends 
on C in a task-specific manner. Despite the recursive nature of 
Equation (3), one can numerically find the optimal polic y π∗(a|s) 
by iterating updates of Equation (3) and the def ining equation of
P∗(a) for different β values. This numerical process is known as 
the Blahut-Arimoto algorithm, which is guaranteed to conv erge
(Arimoto 1972; Blahut 1972; Tishby and Polani 2010). 

Intuitively, at high policy complexity (corre sponding to lar ge
C), the value of β is large and the optimal polic y is dominated 
by Q-values, which renders it state-dependent. At lo w policy 

complexity (small C), the value of β is  close  to  0  a  nd Q-values have 
minimal impact on the optimal policy. Moreover, lo w-complexity 
policies are dominated by the log P∗(a) term, which manifests 
as perseveration toward more frequently chosen actions in a 
state-independent manner (Fig. 1B). In general, high-complexity 
policies enable more trial-averaged reward than low-complexity 
policies due to their state-dependence. By varying β and 
calculating the optimal policy, we can trace out the reward-
complexity Frontier, which delimits the maximal trial-averaged 
reward obtainable for a given policy complexity (Fig. 1C). 

Connections to habits and p erseveration 
The formation of default actions or habits—and the cognitive cost 
required to override them—has been a central topic in cogni-
tive control (Miller and Cohen 2001; Koechlin and Summerf ield 
2007; Shenhav 2017; Zenon et al. 2019). The policy compression 
framework offers a resource-rational account of such habitual 
behavior: when cognitive resources are limited, biasing action 
selection toward frequently chosen actions is p art of the optimal 
strategy. This arises because the optimal policy depends on the
marginal action distribution P∗(a).  Wh  en  P∗(a) is uniform, the 
optimal policy simplifies to the standard softmax choice rule,
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π(a|s) ∝ exp[βQ(s, a )] (Sutton and Barto 2018). However, when 
P∗(a) is biased—reflecting that some actions have been chosen 
more frequently than others—the optimal policy will favor these 
actions , making them appear as default choices contr olling for
differences in Q(s, a). As cognitive resources become more lim-
ited (low policy complexity and small β), this bias is amplified: 
P∗(a) increasingly dominates Equation 2, leading to stronger per-
severation toward default actions. Furthermor e, assuming that 
participants build and update their P(a) on a trial-by-trial basis (eg 
via an iterative update process, as modeled in Lai and Gershman 
(2021); Bari et al. (2024); Lai and Gershman (2024); Liu et al. (2024)), 
they should demonstrate a greater tendency to repeat actions 
at low complexity. Such perseverative tendencies—either toward 
more frequently-taken actions or manifested in the process-level 
implementation of action repetition—are not predicted by tra-
ditional softmax models with variable noise levels, where the 
policy converges to randomness as noise increases. In recent work, 
we have identified perseverative signatures in human decision-
making that are consistent with policy compr ession but not pre-
dicted by the softmax model (Lai and Gershman 2024; Liu et a l. 
2024; Liu and Gershman 2025), supporting the framework’s rele-
vance. Unlike previous accounts that attribute habits to model-
free learning (Krueger and Griffiths 2018; Pauli et al. 2018), policy 
compression explains habits as value-independent tendencies 
shaped purely by past action frequencies. This perspective aligns 
with and provides a normative justification for recent f indings 
suggesting that habits can form and exert influence indepen-
dently of value representations (Miller et al. 2019; Nebe et al. 2024; 
Zhang et al. 2024). 

Connections to representational dimensionality 
Recent studies of cognitive control have proposed a novel 
account of action selection, informed by the representational 
dimensionality of neural population codes. Representational 
dimensionality is defined as the minimum n umber of dimensions 
required to capture the variability of neural activity across task
states (Fusi et al. 2016; Ahlheim and Love 2018; Badre et al. 2021; 
Jazayeri and Ostojic 2021). In this view, high dimensionality allows 
separating representations of different states, which enables 
state-dependent action selection. Conversely, low-dimensional 
representations reduce suc h separability, limiting the ability to 
tailor action selection to the current state (Badre et al. 2021; Badre 
2024). Specific to rule-based decision-making, the benefit of high 
dimensionality manifests as the formation of conjunctive state 
representations integrating stimuli and rules. Consistent with this 
view, empirical work in cognitive contr ol has observed transient 
increases in neural representational dimensionality during action
selection, coinciding with higher-quality rule-based decisions
(Kikumoto et al. 2022, 2024a). 

The above representational account has rarely been linked 
to the information-theoretic view of cognitive control, whic h 
typically emphasizes top-down modulatory ar chitectures instead
(Koechlin and Summerfield 2007; Fan 2014; Badre et al. 2021). 
However, a theoretical bridge emerges when we consider 
algorithmic-level entropy codes inspired by information theory. 
To illustrate the connection, let us consider representing states 
as binary codewords generated through entropy coding, with the
Huffman code (Huffman 1952) as a canonical example (Fig. 1D). 
In this scheme, each state codeword maps to a specific action 
by traversing a binary tree structure. State-dependent action 
selection requires that codewords corresponding to different 
states be sufficiently distinct to reach different leaf nodes . This 
necessitates longer codewords for readout, which in turn requires 

traversing more bifurcations in the codetree (Fig. 1E). In the 
regime of errorless transmission, the policy’s complexity (in bits) 
corresponds to the average codelength, under an optimal entropy 
coding (eg Huffman coding) that minimizes this quantity (Cover 
1999). By adopting this entropy coding view of policy compression, 
we hypothesize that the codetree bifurcations during readout map 
onto transient increases in neural representational dimensional-
ity. Consequently, behavioral policy complexity should reflect the 
representational dimensionality required to support the policy.

Optimal entropy codes, such as Huffman codetrees, apply pri-
marily to errorless transmission. However, when placed under 
time or memory constraints (as in the cognitive control dataset 
analyzed), agents may be unable to fully traverse the (optimal) 
codetree and thus operate in a lossy compression regime (Lai and 
Gershman 2021). In our dataset, where response deadlines vary 
across trials, participants would be forcefully cut off at earlier 
bifurcations. Consequently, action selection would become less 
sensitive to the specific state, leading to reduced policy complex-
ity and possible suboptimality (compared to a policy optimized for 
such resource constraints along the re ward-complexity Frontier).

Connections to r esponse times 
It is well established that exerting cognitive control leads to longer 
RTs (Matsumoto and Tanaka 2004; Kool et al. 2017). Through the 
lens of optimal entropy codes, policy compression rationalizes 
longer RTs under high-complexity policies. Specifically, executing 
a high-complexity policy entails reading longer state codewords 
on average, which requires additional time to trav erse the
codetree (Lai and Gershman 2021). This viewpoint closely 
mirrors neuroscience studies showing that transient increases in 
representational dimensionality are temporally extended during 
decision tasks, and that forceful cutoffs at an earlier timepoint
diminishes rule-based performance (Kikumoto et al. 2024a). 
Similar information-theoretic explanations for RTs have long 
been applied to decision tasks that vary the number of available 
actions, encapsulated in the Hick–Hyman Law. This law formal-
izes the empirical observation that R T increases logarithmically 
with the number of possible actions, or equivalently, linearly with
the amount of information transmitted (Hick 1952; Hyman 1953). 
Whether policy complexity similarly predicts RTs in cognitive 
contr ol tasks remains an open empirical question.

Materials and methods 
To directly test the predictions of policy compression for cognitive 
control tasks, we reanalyzed data from a previous electroen-
cephalography (EEG) study (Kikumoto et al. 2024a). We briefly 
summarize the study methods here, and refer readers to the 
original paper for more details.

Participants 
Forty-two participants (27 female, mean age 22 yr) were recruited. 
The recruitment followed procedures approved by the Human 
Subjects Committee at the RIKEN (approval number: RIKEN-W1-
2022-030), and all participants gave informed consent. The sex 
and gender of participants were determined based on self-report. 
They all had normal or corrected-to-normal vision and had no his-
tory of neurological or psychiatric disorders. No statistical method 
was used to predetermine the sample size. After preprocessing the 
EEG data, one participant was removed due to excessive amounts 
of artifacts (ie more than 25% of trials; see EEG recordings and
preprocessing for details).
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Fig. 2. Behavioral task and EEG shattering dimensionality estimation. A) Task pipeline and SOA conditions. On every trial, participants observe one 
randomly sampled rule and stimulus, and respond by choosing an action on the number pad. In the variable and sampled SOA phase, participants 
receive an auditory SOA signal some time interval after trial onset, and they must respond within 0 to 350 ms after the signal’s presentation. In the 
variable SOA phase, the SOA intervals are determined for each subject separately to achieve three predefined accuracy levels. The SOA condition for each 
trial is sampled randomly, without block-level regularity that allows participants to adjust their strategy beforehand. B) The stimulus-action mappings 
are determined by high-level rules. There are 3 possible rules, 4 possible stimuli (hence 3 × 4 = 12 rule-stimulus combinations, randomly sampled for 
each trial), and 4 possible actions. C) Shattering dimensionality estimation. EEG signals (31 electrodes × 5 frequency bands = 155 dimensions) are fed 
into a linear decoder, to decode each of the (212 − 2) = 4, 096 binary partitions of true rule-stimulus identity for each trial. The resulting trained decoder 
accuracy rates are used to estimate dimensionality of the underlying EEG representation. Adapted from Kikumoto et al. (2024a). 

Behavioral task 
Participants completed a rule-based action selection task. On 
each trial, the participant simultaneously sees one of three rules 
(“horizontal,” “vertical,” and “diagonal”) and one of four stim-
uli (situated in a 2-by-2 matrix), randomly sampled with equal 
probability for eac h trial, yielding a total of 12 rule-stimulus 
combinations (ie “states”). Participants must choose one of four
actions, arranged in a 2-by-2 matrix on a number pad (Fig. 2A). 
The rule determines the correct stimulus-action mappings. For 
example, if the current rule is “horizontal” and the stimulus is on 
the top-left, the correct action is to press the top-right action key 
on the number pad, as this position is horizontally adjacent to the
stimulus (Fig. 2B). 

Trials were organized into experimental blocks, each lasting 
18 s. For each block, participants were instructed to complete as 
many trials as possible. Trials that were initiated within the 18 s 
block duration but extended beyond it w ere allowed to finish.

Blocks were further organized into task phases. Participants 
completed three task phases in order: the no-deadline phase, the 
variable SOA phase, and the sampled SOA phase. The no-deadline 
phase contained 25 blocks, where participant RTs are used to 
adjust the SOA interval for later phases.

In the variable SOA phase containing 35 blocks, for every trial, 
participants received an auditory signal some time after the trial 
onset. Upon this SOA onset, they were required to select an action 
within 350 ms after hearing the auditory signal. If participants 
made a response before SOA onset or after 350 ms after SOA 
onset, the trial response is considered invalid, and participants 
r eceive no reward. The time from trial onset to auditory signal 
presentation is called the SOA interval, which could take on 12 
v alues determined for each participant. In each trial, the SOA
interval was randomly sampled.

In the sampled SOA phase containing 185 blocks, SOAs were 
still present after trial onset, but each participant only received 
three unique SOA intervals, determined in a participant-specific 
fashion to induce accuracy rates of 50%, 70%, and 90% across 
trials (both invalid and incorrect responses are counted as inac-
curate). The SOA interval was randomly sampled for every trial 
and thus interleaved. These three SOA intervals constitute task 
conditions and are labeled “short,” “medium,” and “long SOA” 
respectively. EEG data were collected in this phase.

Estimation of SO A functions 
To separately analyze the three accuracy levels during the sam-
pled SOA phase, we preprocessed each participant’s RTs during 
the no-deadline and variable SOA phases. For the no-deadline 
phase, we computed each participant’s RT distribution, excluding 
trials with RTs slower than 5 SDs. We model the RT distribution 
using the ex-Gaussian distribution using the exgauss toolbox in
Matlab 2019B.

In the variable SOA phase, each participant receives 12 possible 
SOA interval values. The values were determined based on devia-
tions from the participant’s mean RT in the no-deadline phase 
(estimated as the mean of the fitted ex-Gaussion distribution). 
The deviations range from −450 ms to +200 ms with 50 ms 
increments. Negative RTs were dropped during estimation. This 
allowed us to construct SOA functions that map S OA interval 
values to accuracy ra tes.

We modeled SOA functions using an exponential function:
p(correct) = λ(1 − exp (−β(t − �)) if t > �,  a  nd  p(correct) = 0 
otherwise. The parameters (λ, β, �) were estimated by a nonlinear 
least square solver via the lsqcurvefit function in Matlab. The 
fitted SOA functions allowed us to identify SOA interval values
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that would produce particular accuracy levels (see (Kikumoto 
et al. 2024a) for visualizations of fitted SOA functions). 

EEG recordings and wav elet anal ysis
EEG recordings were collected during the variable SOA phase. 
The EEG signals were recorded using a Brain Products actiCHamp 
recording system (Brain Products GmbH), featuring 31 electrodes 
from a broad set of scalp sites. The scalp EEG and EOG were 
amplified with a n SA Instrumentation amplifier with a band-
pass of 0.01 to 45 Hz, and signals were downsampled at 250 Hz
using EEGLab93. We aligned trial-wise EEG recordings, spanning
−800 ms to +200 ms relative to action onset (0 ms).

After obtaining trial-wise EEG recordings, we decomposed 
them into 5 frequency bands via complex wavelet analysis 
(2 to 3 Hz for the delta-band, 4 to 7 Hz for the theta-band, 
8 to 12 Hz for the alpha-band, 13 to 30 Hz for the beta-band, and 31 
to 35 Hz for the gamma-band), yielding a power measure for each 
timestep and frequency band. T his produced 155 EEG features
(31 electrodes × 5 frequency bands) for every participant, trial, 
and timestep (each lasting 1 s/250 Hz = 4 ms). For more details on 
EEG recordings and wavelet analysis, please see Kikumoto et al. 
(2024a). 

Estimation of EEG representa tional 
dimensionality 
To characterize neural representational dimensionality, we com-
puted a shattering dimensionality estimate informed by the num-
ber of binary partitions of rule-stimulus combinations that a re 
linearly separable based on the underlying neur al representation
(Rigotti 2013; Bernardi 2020; Courellis 2024; Kikumoto et al. 2024a). 

The EEG instantaneous power vectors (31 electr odes × 5  fre-
quency bands) were further processed before decoder training. 
First, trials where responses occurred before SOA onset and trials 
where responses were completely omitted were excluded. Further, 
all trials in the first block (of the sampled SOA phase) were 
excluded. The remaining instantaneous power data was further 
averaged into 20 ms time bins . For each participant and frequency 
band, the input vector entries were z-transformed across elec-
trodes to remove effects that scaled all electrodes uniformly.

Based on how shattering dimensionality is typically estimated, 
we trained linear decoders on the EEG instantaneous power vec-
tors to recover information on the trial’s presented rule-stimulus 
combination. Specifically, for each participant and 20 ms time bin, 
we label each underlying trial’s presented rule-stimuli combina-
tion. W e then bi-partition the 12 possible combinations, leading
to (212 − 2 = 4, 096 ) possible binary partitions (each of the 12 
combinations may be included in or excluded from Group 0; 
minus the two binary partitions leading to all 0-labels or 1-labels). 
Thus, for each binary partition, we obtain a dataset over trials 
where the input consists of the EEG instantaneous power vector
(5 frequency-bands × 31 electrodes = 155 dimensions), and the 
output are 0/1 trial-specific binary labels (Fig. 2C left). For each 
of the 4096 binary partitions, we train a linear decoder to r ecover 
the binary labels from the input vector (Fig. 2C center). This leads 
to a decoding accuracy value for the specific participant, time 
bin, and binary partition. The above process is repeated under 
repeated five-fold cross-validation, where the folds themselves 
were re peatedly partitioned 5 times through a random process. 
The resulting decoding accur acies are averaged.

After obtaining repeated, cross-validated decoding accuracies 
for each of the 4,096 binary partitions, we further averaged over 
the decoding accuracies over binary partitions. This partition-
averaged decoding accuracy measures the linear separability of 

neural representations across all possible binary partitions .
Consistent with past work (Bernardi 2020; Courellis 2024), we 
use these partition-averaged decoding accuracies to construct a 
proxy of the EEG signals’ neural re presentational dimensionality
(Fig. 2C right). Specifically, the above partition-averaging process 
was done separately for each SOA task condition, leading to 
condition-specific representational dimensionalities for each 
participant and timepoint. We then aggregated the partition-
averaged decoding accuracies over timepoints to compute the 
mean decoding accuracy across time bins for a trial, and 
additionall y the trial-averaged mean of the maximum decoding 
accuracy over each trial’s time bins. The latter measur e is our
proxy for representational dimensionality.

Note that unlike some previous studies (Bernardi 2020; 
Courellis 2024), the rule-stimulus combinations used in this task 
did not feature strict dichotomies. Consequently, we decided 
to use a slightl y different procedure in computing decoding 
accuracies, incorporating all (212 − 2 ) possible binary partitions. 
While many of these binary partitions induce classification 
imbalance (eg all but one rule-stimulus combination being 
assigned the label 0), they do not pose a significant problem for 
our subsequent analysis. This is because the imbalance is present 
for all participants, SOA conditions, trials, and timesteps, and we 
only focus on comparing relative differences acr oss partition-
averaged decoding accuracies.

Estimation of policy complexity 
We defined policy complexity as the mutual information between 
the observed states and chosen actions. Following prior work
(Gershman 2020; Lai and Gershman 2024; Liu et al. 2024), we 
estimated the policy complexity of each participant in eac h SOA 
condition using the Hutter estimator (Hutter 2001). Specifically, 
for each of the 12 states (rule-stimulus combinations), w e assume 
a symmetric Dirichlet prior with α = 0.01 for all actions chosen, 
and use the empirical action counts to reach a posterior Dirichlet 
distribution over action probabilities. We then estimate policy 
complexity as the mutual information of the posterior mean 
policy. The above pro cedure is informed by previous literature, 
reporting that the resulting estimates exhibit r easonably good
performance when the joint distribution is sparse (Archer et al. 
2014). The choice o f α = 0.01 is informed by rate-distortion theory, 
stating that empirical trial-averaged reward values cannot be 
above the reward-complexity Frontier. We have chosen α = 0.01 
empirically to obey this property. 

We also computed policy cost values log π(a|s) 
P( a) for individual 

trials. Given the blocked structure of the experiment, as well a s 
the dynamically evolving nature of P(a), we decided to track π(a|s) 
and P(a) in an online manner for each bloc k separately .

Statistical analysis and modeling 
We assessed the behavioral predictions of policy compression 
using two-sided paired t-tests across the two most extreme SOA 
conditions (low versus high). Regarding trial-averaged RT, we 
quantitatively connect it to policy compression through the fitting 
of linear mixed-effects models (LME), using each participant-
condition’s policy complexity (both fixed and participant-specific 
random effects) to predict corr esponding trial-averaged RTs. The 
resulting LME model was compared to null models with onl y
intercepts via the Bayesian Information Criterion (BIC).

For the EEG data, we connected policy compression to the shat-
tering representational dimensionality measures derived accord-
ing to previous sections. We only analyze responsive trials with 
available EEG data, focusing on the decoding accuracies of time
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bins fr om −800 ms to 0 ms aligned to action onset (ie discarding 
post-action decoding accuracies from 0 ms to +200 ms). The 
dimensionality measure—trial-averaged mean of the maximum 
decoding accuracy over each trial’s time bins—was of particular 
interest, due to its connection with policy complexity—the aver-
age readout codelength of the policy’s optimal entropy coding. 
On the single-trial level, we studied the time-averaged decod-
ing accuracy and policy costs. The mean is taken over time 
bins instead of the maximum, due to the noisiness of trial-wise 
EEG data. We again fitted LME models that used behavioral pol-
icy compression or policy cost measures (fixed and participant-
specific random effects) to predict dimensionality or trial-wise 
mean decoding accuracy. The f itted LMEs were compared against
null models with only intercepts or order effects (eg trial number)
using BIC.

Perseveration anal ysis 
Given the policy compression framework’s rationalization of per-
severation behavior, we computed probabilities of repeating the 
previous trial’s action, reapplying the previous trial’s rule to the 
current trial’s stimulus, and choosing actions based on the previ-
ous trial’s stimulus and the current trial’s rule. The perseveration 
analyses is done in a block-wise manner, so as to filter out 
the influence of resting time between blocks. Before computing 
the above probabilities, we excluded all omitted trials (in which 
participants did not respond), all trials preceded by an omitted 
trial, and the first trials of every block. Given the rule application 
analysis, we also excluded trials in which the participant had cho-
sen an action incorrect under every possible rule (ie choosing the 
action that has the same number-key location as the stimulus).
The application of these criteria excluded 9,113 (8.33%) responsive
trials across participants.

Results 
Experimental predictions 
The policy compression framework makes the following predic-
tions: longer SOA conditions should be associated with 1) higher 
policy complexity; 2) higher trial-averaged RT; 3) higher accuracy. 
Furthermore, 4) the change in RT should be largely explained 
by changes in policy complexity, such that an LME model using 
participant-specific policy complexity levels to pr edict RT should 
identify positive fixed effects and win model comparison against 
a null LME model. Predictions 1, 2, and 4 a rise due to the RT
implications of policy complexity as discussed in the framework’s
introduction.

Prediction 3 derives from the reward-complexity Frontier 
associated with the task, coupled with the normative assumption 
that participants should achieve maximally attainable trial-
averaged rewards at their chosen polic y complexity levels. 
Policy compression also predicts that 5) the action entropy
H(A|S)—capturing choice variability under the same state— 
would increase, as informed by the optimal policies at different β 
levels. Regarding perseveration patterns, the framework predicts 
that 6) the probability of repeating the previous trial’s action, 
should increase. Given the hierarchical rule-stimulus structure 
of the task, we further postulate 7) increases in the probability of 
applying the previous trial’s rule on the current trial’s stimulus .
These predictions arise from the P∗(a) term in Equation (3), 
and the fact that this marginal probability distribution must be 
dynamically updated across trials.

Regarding representational dimensionality, the policy 
compression framework makes the following predictions: on the 

single trial level, 8) an LME model using policy costs to predict 
single-trial mean decoding accuracy should perform better than 
a null model, which either features only fixed and random 
intercepts, or additionally non-policy-compression predictors 
including block-order effects, trial-order effects, and SOA con-
dition. On the trial-aggregate level, we should see 9) higher trial-
averaged maximum decoding accuracy over timesteps (proxy 
for representational dimensionality) for longer SOA conditions , 
and 10) an LME using participant-condition-specific policy 
complexity values should predict representational dimensionality 
better than a null model with only intercept effects. These 
predictions derive from the connection of optimal entr opy
codelengths to representational dimensionality necessary for
policy execution, as discussed in the earlier policy compression
section.

Behavioral results 
Participants completed an average of 2, 518 ± 24.28 trials each 
(mean ± SEM), resulting in a total of 103,256 responsiv e trials for 
subsequent analysis.

Participant behavior was closely aligned with the task’s reward-
complexity Frontier (Fig. 3A). This suggests that participants have 
achieved near maximal trial-averaged reward as allowed by their 
policy complexity level, supporting the relevance of the policy 
compression framework for cognitive control tasks. However, we 
also observed systematic deviations from the Frontier at low levels 
of policy complexity. These deviations suggest an inefficient use 
of cognitive resources, caused by suboptimal behavioral p atterns
that we will elaborate on below.

The behavioral predictions of policy compression were 
predominately supported. In longer SO A conditions, participants 
adopted higher policy complexity (t(40) =  −18.7, p < 10− 20; 
Fig. 3B) while incurring longer RTs (t(40) =  −15.1, p < 10− 17; 
Fig. 3C), higher accuracy rates (t(40) =  −15.2, p < 10− 17; 
Fig. 3D), and lower action entropy (t(40) = 19.1, p < 10− 20; 
Fig. 3E). To determine whether the increase in RTs was indeed 
associated with increased policy complexity, we fitted an LME 
model with fixed and random effects for both the intercept and 
policy complexity pr edictors to predict trial-averaged RTs. As 
expected, the fitted LME identified positi ve fixed effects for policy
complexity (0.236±0.0188, t(121) = 12.5, p < 10 −22, random effects 
SD = 0.0875; Fig. 3F), and outperforms a null LME model with only 
fixed and random effects for the intercept (�BIC = −122). 

We next examined perseveration patterns as predicted by the 
framework. At the level of low-level actions, there was no evi-
dence of increased perseveration: the probability of repeating the 
previous trial’s action did not significantly change across SOA
conditions (t(40) = 0.289, P = 0.774; Fig. 4A). In contrast, we 
observed prominent perseveration tendencies at the higher level. 
Under shorter SOAs, participants were more likely to reapply the 
rule they behaviorally followed on the previous trial to the cur-
rent trial’s stimulus, suggesting rule-based perseveration (t(40) = 
4.77, p < 10− 4; Fig. 4B). Additionally, they were also more likely to 
apply the current trial’s rule to the previous trial’s stimulus, which 
could be summarized as stimulus-based perseveration (t(40) = 
2.75, P = 0.00889; Fig. 4C). 

To better understand the empirical suboptimalities observed 
in Fig. 3A and the lack of significant differences in Fig. 4A,  we  
conducted follow-up analyses stratified by action identities. The 
observed suboptimality at low policy complexity likely resulted 
from a biased marginal action distributions P(a). Specifically, in 
the short SOA condition, participants disproportionately fa vored 
two specific actions—a1 and a2, corresponding to the top two keys
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Fig. 3. Behavioral results. Color denotes SOA condition. A) Reward-complexity Frontier and human data, where each of the 3 × 4 = 12 rule-stimulus 
combinations is treated as a separate state. Trial-averaged reward is binarized according to correct/incorrect responses provided, regardless of whether 
the response is valid (ie provided after the SOA onset but before another 350 ms passed by). B) Policy complexity, C) RT, D) Accura cy, E) Action entr opy 
H(A|S), F) Partial residual plot for the fixed effects of the RT LME model, visualizing the effect of policy complexity on trial-averaged RT . Observations 
were binned into quantiles for visualization. For A–E), error bars denote mean ± standard error of the mean (SEM) across participants (Cousineau 2005); 
for F), error bars denote mean ± SEM across binned observ ations. 

Fig. 4. Perseveration. Color denotes different actions/rules. A) Probability of repeating the previous trial’s action; B) Probability of reapplying “the rule 
used by the agent on the previous trial” to the current trial’s stim ulus. C) Probability of choosing the previous trial’s stimulus’s correct action un der the 
current trial’s rule. D ) P(a) across SOA conditions. E) A) stratified by action identity. B) stratified by rule identity. The dotted lines in each panel denote 
chance levels of action selection or rule application. Error bars denote mean ± SEM across participants . 

on the number p ad (mean P(a) for a1 and a2 versus that for a3 and 
a4: t(40) = 5.78, p < 10− 6; Fig. 4D). This preference deviates from 
the framework’s normative predictions, which pr escribe optimal 
policies with equiprobable marginal distributions P(a) across β 
values. 

We conducted similar follow-up analyses of perseveration 
patterns, stratifying by either action or rule identity . We again 
observed the empirical preference for a1 and a2 in the short SO A 
condition (Fig. 4E). Additionally, participants increasingly favored 
the diagonal rule under shorter SOAs (Fig. 4F).
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Fig. 5. Neural dimensionality. A) Partial residual plot for the fixed effects of the trial-by-trial LME, visualizing the effect of policy cost on decoding accuracy. 
Error bars reflect mean ± SEM across LME observations. B) Mean ± SEM of participant maximum dimensionality across SOA conditions. For each 
participant, the maximum decoding accuracy for each trial is computed over time, and then averaged across trials to reach the dimensionality measure. 
C) Partial residual plot for the f ixed effects of the trial-aggregated LME, visualizing the effect of policy complexity on the maximum dimensionality as
computed in (B). Error bars denote mean ± SEM across LME observations. For A) and C), LME observations were binned into quantiles for visualization.

EEG dimensionality results 
On the single-trial level, we assessed whether policy cost— 
whose average across trials defines the policy complexity— 
predicts trial-wise mean EEG decoding accur acy. The corre-
sponding LME yielded positive fixed effects for policy cost
(0.000887 ± 0.000177, t(96630) = 5.01, p < 10 −6, random 
effects SD = 0.000500; Fig. 5A), while also outperforming a 
null model containing only fixed and random effects on the 
intercept (�BIC =  −16.5874). To rule out potential confounds, 
we constructed alternative null models that included block order, 
trial order, and SOA condition as predictors, either individually or 
in combination. Model comparison consistently preferred the
policy cost LME (�BIC ∈ [−138.1, −42.03] across all pairwise 
comparisons). 

At the trial-aggregated level, we examined whether policy com-
plexity predicts representational dimensionality, measured by the 
trial-averaged maximum decoding accuracy across timesteps. As 
predicted, representational dimensionality was higher for longer
SOA conditions (t(40) =  −3.31, P = 0.00198; Fig. 5B). Addition-
ally, an LME model predicting representational dimensionality 
from policy complexity revealed positive fixed effects for the
latter (0.00168 ± 0.000567, t(121) = 2.97, P < 0.00362, random 
effects SD = 0.000327; Fig. 5C). However, in contrast to the single-
trial results, the above model lost model comparison against a 
null model with only fixed and random effects for the intercept
(�BIC = 5.71), indicating ambiguous evidence for the relationship 
at the trial-aggregate le vel.

Discussion 
In this paper, we introduced policy compression as a normative 
framework for understanding cognitive control. Extending its 
previous applications to multiarmed bandit tasks, we concep-
tualized the core challenge of cognitive control—dynamically 
selecting actions based on context-specific goals (Fan 2014; 
Badre 2024)—as a constrained optimization problem: agents must 
maximize external rewards under cognitive resource constraints. 
We formalized these resource constraints using policy complexity, 
defined as the mutual information between environmental 
states and the policy-assigned actions . This formulation captures 
the informational cost of context-sensitive decision-making, 
as postulated by previous accounts (Fan 2014; Shenhav 2017; 
Zenon et al. 2019). 

We demonstrated the theoretical utility of policy compression 
by linking it to several phenomena central to cognitive control. 
This includes the emergence of default actions and habits, 
the effortful overriding of habitual responses, the neural 
representational dimensionality required to support control, and 
the prolonged response times associated with increased context-
sensitivity. In doing so, policy compression offers a unifying 
explanation for these diverse observations. Notably, our approach 
advances traditional information-theoretic views of cognitive
control (Koechlin and Summerfield 2007; Fan 2014) by adopting 
a resource-rational perspective that explicitly incor porates 
cognitive costs (Shenhav 2017), and by grounding the theory 
in recent neuroscientific findings o n representational geometry 
and dimensionality (Rigotti 2013; Bernardi 2020; Kikumoto et al. 
2024a). 

To evaluate the behavioral and neural predictions of policy 
compression for cognitive control tasks, we analyzed a previously 
collected dataset featuring rule-dependent action selection and 
EEG recordings. Our behavioral results support the framework’s 
core predictions: across SOA conditions, behavior was close to the 
optimal reward-complexity Frontier, exhibiting varying levels of 
policy complexity that explain corresponding changes in response 
times and action stochasticity. In contrast, the framework’s pre-
dictions on perseveration are partially supported. While action-
level perseveration did not significantly c hange across conditions 
(which could result from a suboptimal over-reliance on two of the 
four actions), participants demonstrated a marked tendency to 
repeat previousl y applied rules or stimuli, suggesting compression
at higher levels of abstraction.

Combined with previous studies on multiarmed bandits, 
the above behavioral findings contribute to a growing body of 
work suggesting that policy compression provides a domain-
general account of context-sensitive behavior. A limitation of 
this prior work is the requirement that participants learn their 
policy from feedback; the policy compression framework is 
fundamentally about limitations on action selection, not learning, 
and thus learning dynamics obscure the framework’s predictions. 
Cognitive control tasks—where learning is deliberately minimized 
by the task design—offer a cleaner test of the theoretical 
predictions. Our results suggest that human behavior, in the 
absence of reward learning, aligns even more closely with the 
framework’s optimality predictions. These promising findings 
encourage future work connecting policy compression to neigh-
boring topics in cognitive control, such as task-switching costs
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(Zenon et al. 2019) and aversion to hierarchical task abstraction 
(Sayali et al. 2023), both of which can be interpreted as 
consequences of limited information-processing ca pacity.

More behavioral work is needed to further assess policy 
compression’s predictions for cognitive control tasks . First, the
P∗(a) term in Equation (3) could be operationalized as repeating 
previous actions as we hypothesized, but it is fundamentally a 
bias toward more frequently taken actions. T he current dataset 
did not feature manipulations over the reward structure Q(s, a), 
which, when present, could induce changes in the optimal 
marginal action distribution P∗(a) by biasing it toward certain 
low-level actions or high-level rules (Lai and Gershman 2024; Liu 
et al. 2024; Liu and Gershman 2025). Consequently, we were only 
able to test the framework’s predictions of (optimal) flat marginal 
distributions and heightened repetition in rule/action application 
under low policy complexity, but not the normative bias toward 
actions that ought to be more frequently taken. Novel task designs
that incorporate such P∗(a) manipulations would allow us to test 
whether and how human adaptively compress their policies in 
response to envir onmental regularities.

Second, our current policy formulation is limited in that it 
groups both rules and stimuli into a joint state representation. 
However, participants demonstrate different perseveration 
patterns at action and rule levels, featuring significant inter-
conditional differences in one but not the other. One possible 
explanation is that different levels of the control hierarc hy are
subject to distinct information-processing bottlenecks (Sayali 
et al. 2023)—an idea that merits further investigation. To address 
this limitation, we plan to develop a hierarchical extension of the 
policy compression framework that models rule application and 
action selection as a two-stage process with separate information
bottlenecks.

Third, the usage of SOA conditions may delay matured 
responses, as participants are discouraged from responding before 
SOA onset. However, it is unlikely that the current RT results stem 
solely from this delaying effect, as we have observed significant 
changes in policy complexity, accuracy, and action entropy across 
SOA conditions. The above phenomenon could not be explained 
by the delaying account, which would predict similar behavioral 
statistics despite differences in RT. To further mitigate delay 
effects, we ha ve repeated the RT regression analysis for the 
short SOA condition only, which is least prone to relevant issues. 
As predicted by the framework, the regression model featuring
policy complexity again yielded positive effects (0.149±0.0353, 
t(39) = 4.20, P < 0.001), and won against a null model containing 
only the intercept (�BIC =  −11.0). Future empirical studies 
could remove this confound by replacing SOA deadlines with 
RT deadlines common to policy compression studies (Lai and 
Gershman 2024; Liu and Gershman 2025), which would similarly 
compel responses but ne ver delay them.

While previous studies have already identified neural corre-
lates of policy cost in striatal dopamine (Gershman and Lak 2025) 
and hypothalamic hypocretin/orexin (Tesmer 2025), the initial site 
of policy cost computation, and how it is used by downstream 
areas, remains unclear. In addition, previous studies have focused 
on assessing the existence of policy cost representations in the 
brain, without providing a process-level account of how such costs 
were derived in the first place.

Our contribution here is introducing neural representational 
dimensionality as a cortical correlate of policy compression, 
thereby connecting it to the information-theoretic view of 
cognitive control. We found that greater decoding accuracy over 

binary state label partitions—a trial-level proxy for increased 
neural dimensionality—was correlated with higher policy cost. 
This finding aligns with the entropy coding perspective, where 
high-dimensional, fine-grained representations are required 
for supporting highly state-dependent policies. Beyond single-
trial correlations, we a lso observed significant differences in 
neural representational dimensionality across SOA conditions. 
Although the relationship was relatively weak, the observed 
trends encourage future experiments specifically designed to test
the neural-level predictions of policy compression.

The neural correlates of policy complexity remains a large topic 
that warrants additional investigation. One prominent future 
direction entails developing biologically plausible neural circuits 
for implementing near-optimal entropy codes. Combined with 
causal intervention studies, such models could further inform 
how the brain may implement policy compression. Another 
potential direction involves examining the development and plas-
ticity of these high-dimensional neur al representations. While 
policy compression itself does not prescribe a specific learning 
algorithm, studying how neural re presentations gradually attain
optimality through practice (Kikumoto et al. 2024b)  may  help  
explain human deviations from the normative predictions of 
policy compression. Lastly, recent studies have highlighted the 
role of oscillations within EEG frequency bands in supporting goal-
directed action (Beste et al. 2023; Ericson et al. 2025). Although 
our study focused on the representational dimensionality of EEG 
signals, future work could explore potential links between our 
cross-frequency dimensionality measures and oscillatory activity 
within individual bands.
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