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Abstract
Real-world decision-making often involves navigating large action spaces with state-
dependent action values, taxing the limited cognitive resources at our disposal. While
previous studies have explored cognitive constraints on generating action consideration
sets or refining state-action mappings (policy complexity), their interplay remains under-
explored. In this work, we present a resource-rational framework for policy compression
that integrates both constraints, offering a unified perspective on decision-making under
cognitive limitations. Through simulations, we characterize the suboptimality arising from
reduced action consideration sets and reveal the complex interaction between policy
complexity and action consideration set size in mitigating this suboptimality. We then use
such normative insight to explain empirically observed phenomena in option generation,
including the preferential sampling of generally valuable options and increased correla-
tion in responses across contexts under cognitive load. We further validate the frame-
work’s predictions through a contextual multi-armed bandit experiment, showing how
humans flexibly adapt their action consideration sets and policy complexity to maintain
near-optimality in a task-dependent manner. Our study demonstrates the importance of
accounting for fine-grained resource constraints in understanding human cognition, and
highlights the presence of adaptive metacognitive strategies even in simple tasks.

Author summary
This study provides insight into how humans navigate the dual problem of deciding
which actions to consider, and which actions to perform in particular contexts. It ratio-
nalizes previously observed tendencies of humans to sample generally valuable actions,
explores the implication of changing either component of the dual problem on the
reward yielded, and demonstrates the framework’s relevance through a human exper-
iment. The study suggests that even in simple tasks, humans may still spontaneously
simplify the original task to reduce their cognitive load.
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Introduction
Traditional laboratory paradigms for studying decision-making often present human partici-
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pants with a limited set of predefined alternatives—for instance, choosing between two lotter-
ies with varying risks [1], selecting between multiattribute goods [2], or deciding whether to
accept or reject a specific offer [3]. In contrast, real-world decision-making typically involves
a vast array of possible actions that are not explicitly presented to agents [4–6]. This complex-
ity is compounded by the fact that the value of different actions often depends on the current
environmental context, requiring agents to construct a policy that maps states to actions,
either by retrieving rewards from memory or simulating outcomes through forward planning
[7,8]. Given the inherent limitations of human cognitive resources [9,10], exhaustively identi-
fying all possible actions and crafting a comprehensive policy is neither practical nor feasible.
Understanding how humans navigate this challenge of large action spaces is therefore central
to explaining our adaptive success.

A potential solution to the large action space problem involves limiting the number of
actions considered (i.e., forming an action consideration set; [11–13]) and/or simplifying the
mapping between environmental states and policy-assigned actions (i.e., reducing the state-
dependency of the policy) to alleviate cognitive load. These two strategies have been stud-
ied separately in prior research. Regarding action consideration sets, evidence suggests that
humans tend to generate a small number of actions that have high general value across vari-
ous contexts (i.e., general-value-based action sampling; [7,14–18]), even when these actions
may be suboptimal or even detrimental in specific situations [7]. Additional time and effort
are then required to evaluate these actions within the particular context [7,8,19], and such
evaluation deteriorates under increased cognitive load. For example, participants’ responses
across different contexts become more correlated—contrary to what would be expected from
purely random noise [20]. These findings have inspired a descriptive two-stage model of
open-ended decision-making, which integrates state-independent action generation with
state-dependent action evaluation (Fig 1A). However, the optimality of relying on general-
value-based action generation remains poorly understood. While previous analyses have
explored its benefits from a sample-efficiency perspective, these studies primarily focus on
the explicit correlation between general and state-dependent action values in task reward
structures [7], without addressing the broader cognitive costs of maintaining state-dependent
policies.

Similarly, regarding the mapping between states and policy-assigned actions, prior research
has framed the problem using rate-distortion theory, a subfield of information theory [21–
23]. The resultant policy compression framework enables the identification of optimal policies
and their associated rewards under various levels of cognitive capacity constraints, providing
an optimal frontier that aligns with observed human behavior [24,25]. However, the norma-
tive foundation of policy compression assumes that the entire action space is known to the
agent. Consistent with this assumption, existing studies typically employ tasks with small,
well-defined action spaces and symmetric reward structures. This design simplifies the choice
of action consideration sets, rendering them trivial and excluding their role from subsequent
modeling efforts.

In this paper, we hope to better connect the aforementioned resource constraints native
to real-world problems—the number of actions considered and the compression of state-
action mappings. To achieve this, we extend the policy compression framework by incorpo-
rating action consideration sets. While we continue to assume the existence of a ground-truth
full action space from which the optimal rate-distortion frontier can be derived, we propose
that humans, through meta-reasoning under resource limitations, instead solve a simplified
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rate-distortion problem over a reduced action consideration subset. This new assumption
introduces a range of implications for suboptimality that we aim to explore.

By developing this computational-level framework, we seek to address several key ques-
tions: 1) Under what conditions is preferential sampling of generally valuable actions advan-
tageous? 2) How do constraints on both policy complexity and action consideration sets inter-
act to produce suboptimality? 3) How do humans empirically navigate such dual constraints,
and do they do so in a near-optimal fashion? Using a combination of numerical simulations
and human experiments, we investigate these questions in detail and demonstrate the rele-
vance of our normative framework for understanding human decision-making in tasks with
moderate to large action spaces.

Results
Modeling overview

The policy compression framework. The human mind must navigate numerous con-
straints stemming from the cognitive resources at its disposal [10,26], and these resources
have been conceptualized at both physiological [27] and computational levels [28–31]. Here,
we specifically focus on the influence of channel capacity, which is the maximum informa-
tion that can be transmitted across a noisy channel [32,33], on decision-making processes
(Fig 1B).

The framework we propose is an application of rate-distortion theory to action selec-
tion. Rate-distortion theory describes how to construct an optimal channel that minimizes
some notion of error (the distortion)—or, in our case, maximizes reward—subject to a con-
straint on the information transmission rate [34]. The utility of rate-distortion theory lies in
its generality: beyond action selection [23–25], it has been applied to various cognitive pro-
cesses, including visual working memory [35–37], perception [38], intertemporal decision-
making [22], economic behavior under imperfect information [39], cognitive abstraction for-
mation [40], and task-switching costs [41]. Another reason for using rate-distortion theory
comes from its information-theoretic nature, which has been classically applied to explain
the influence of the number of available actions on response times via the Hick-Hyman
Law [42,43]. Given this alignment, rate-distortion theory serves as a fitting framework for
our exploration of action consideration sets, offering both theoretical insight and empirical
grounding.

For a resource-rational agent, we formalize the cognitive cost as the mutual information
between states s∈ S and actions a∈A, which we call the policy complexity:

I𝜋(S;A) =∑
s
P(s)∑

a
𝜋(a|s) log 𝜋(a|s)

P(a)
(1)

where P(s) is the state distribution, 𝜋(a|s) is the policy, a probabilistic mapping from states to
actions, and P(a) =∑s P(s)𝜋(a|s) is the marginal probability of choosing action a. Intuitively,
high-complexity policies preserve state information (e.g., deterministic mappings from states
to actions) whereas low-complexity policies discard state information (e.g., random actions).

If the agent has infinite cognitive resources, it would be optimal to map each state to the
most rewarding action under it. However, we assume that policies are subject to a capacity
limit C, which acts as an upper bound on policy complexity. Consequently, for a given task
with state probability distribution P(s) and state-specific action rewards Q(s, a), agents would
maximize trial-averaged reward V𝜋 =∑s P(s)∑a 𝜋(a|s) Q(s, a) under their constraint
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Fig 1. Theories of action consideration set construction and policy compression. (A) The two-stage architecture of action
consideration set construction and choice [19]. When facing a set of possible actions {a1, ..., aN}, agents first sample an
action consideration set, where each action’s probability of being sampled is proportional to its general value V(ai) across
all contexts/states {s1, ..., sM}. Then, given the current context s, one action is chosen by comparing the context-specific
value of all actions retained in the consideration set, Q(s, ai). (B) The policy as a communication channel. A state distribu-
tion P(s) generates states s that are encoded into memory via an encoder, e(s), yielding a codeword c. The codeword is then
mapped onto an action a according to P(a|c). Together, encoding and action selection produce the policy 𝜋(a|s) that maps
states to actions. (C) The optimal policy includes a state-dependent term, Q(s, a), and a state-independent term, logP(a).
The logP(a) term biases choices towards actions that are frequently chosen across all states. The 𝛽 parameter determines
the relative contribution of Q(s, a) and logP(a), controlling the state-dependence of the policy. We highlight distributions
for an example state. (D) A limit on the channel capacity results in a trade-off between reward and compression. The 𝛽
parameter increases monotonically with policy complexity. We highlight two example optimal policies at different policy
complexity levels. The optimal policies trace out the reward-complexity frontier, which delimits achievable performance for
a given policy complexity. Panels B-D adapted from [24].

https://doi.org/10.1371/journal.pcbi.1013444.g001

I𝜋(S;A)≤ C. The above constrained optimization problem prescribes the following optimal
policy, which can be empirically found via the Blahut-Arimoto algorithm [44–46]:

𝜋∗(a|s)∝ exp[𝛽Q(s, a) + logP∗(a)] (2)

where P∗(a) =∑s 𝜋∗(a|s) P(s) is the optimal marginal action distribution, and 𝛽 is a
Lagrangian multiplier whose value depends on C. Intuitively, at high policy complexity
(corresponding to large C), the value of 𝛽 is large and the optimal policy is dominated by
Q-values, which renders it state-dependent. At low policy complexity (small C), the value
of 𝛽 is close to 0 and Q-values have minimal impact on the optimal policy. Moreover,
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low-complexity policies are dominated by the logP∗(a) term, a form of perseveration (state-
independent actions; Fig 1C). In general, high-complexity policies enable more trial-averaged
reward than low-complexity policies due to their state-dependence. By varying 𝛽 and calcu-
lating the optimal policy, we can trace out the reward-complexity frontier (also known as the
rate-distortion frontier; Fig 1D), which delimits the maximal trial-averaged reward obtainable
for a given policy complexity.

A noteworthy observation is the optimal policy’s dependence on the marginal action dis-
tribution P∗(a), which grows stronger as policy complexity decreases. In tasks where P∗(a)
is uniform over actions, the optimal policy reduces to the traditional softmax choice rule
𝜋(a|s)∝ exp[𝛽Q(s, a)] [47]. However, in tasks where P∗(a) is non-uniform and biased
towards specific actions, then the influence of perseveration is non-trivial. This prediction
differs from a traditional softmax model, where the policy approaches a uniform distri-
bution as 𝛽 approaches 0. In recent works, we identified behavioral signatures unique to
policy compression—and not predicted by the traditional softmax choice rule—in human
data [24,25], which we will replicate in this manuscript.

Incorporation of action consideration sets. The above formulation assumes that the
agent represents all task information: the marginal state distribution P(s) and the reward
structure Q(s, a). However, when the action space is either large or infinite, it becomes infea-
sible for an agent to consider all possible actions exhaustively and represent them in a policy.
Instead, agents may simplify the problem either deliberately or by necessity, considering only
a subset of all available actions. This simplification enables agents to address a more man-
ageable subproblem—optimizing and implementing a policy over this action consideration
set.

It is straightforward to operationalize action consideration sets in the policy compression
framework. Since Eq 2 depends only on the task’s P(s) and Q(s, a), one can simply remove the
excluded actions from the Q(s, a)matrix, and recompute the optimal policy via the Blahut-
Arimoto algorithm. The resultant reward-complexity frontier corresponds to the action
consideration set, and one can compare it with the true task’s reward-complexity frontier to
assess the extent of suboptimality caused by not considering all actions.

We illustrate the proposed analysis on an example task, in which P(s) assigned equal prob-
abilities to all 6 states and Q(s, a) assigns each state a unique optimal action (Fig 2A). We
can obtain the reward-complexity frontier, assuming access to the full action space. Given
the symmetric nature of P(s) and Q(s, a) in this example task, we can study the influence of
partial action consideration sets by removing any number of actions, and similarly deriving
reward-complexity frontiers for the remaining action consideration set without loss of gen-
erality (Fig 2B). We can hence evaluate the loss in reward associated with using each action
consideration set compared to the full-action-space reward-complexity frontier, by subtract-
ing the latter out at each policy complexity level (Fig 2C). This provides a notion of subop-
timality along the orthogonal dimensions of policy complexity and action consideration
set size.

Simulation-specific model components. In simple tasks—such as the one presented in
Fig 2 and our later human experiment—it is feasible to derive reward-complexity frontiers for
every possible action consideration set. However, this exhaustive approach quickly becomes
impractical in more realistic settings with asymmetric reward structures and large action
spaces. While an optimal action consideration set exists for any given task and policy com-
plexity level, systematically identifying it is computationally infeasible for agents and difficult
to generalize across tasks. This challenge highlights the need for heuristics that guide action
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Fig 2. The influence of partial action consideration sets on a symmetric reward structure task. (A) The reward matrix Q(s, a) of the example task. Each state has
a unique optimal action. We assume that the task has flat P(s) (all states being equiprobable). (B) Reward-complexity frontiers associated with different numbers
of actions (Na; colors) retained in the action consideration set. The frontier corresponding to the full action space is colored black. Note that the maximum policy
complexity allowed by Na is log2(Na) bits, such that different colored curves end at different policy complexity levels. (C) The deviation of partial-action-space
reward-complexity frontiers to the full-action-space reward-complexity frontier, at different policy complexity levels.

https://doi.org/10.1371/journal.pcbi.1013444.g002

consideration set formation and subsequent policy optimization—heuristics that agents could
learn over longer timescales, amortize in memory, and apply flexibly to new tasks [48].

Motivated by the challenge above, we explore the advantages of biased action sampling and
the interplay between policy complexity and action consideration sets by employing numeri-
cal simulations in more complex task setups. Such simulations require modeling action pro-
posal distributions and incorporating bias-correction algorithms, both of which serve as
tractable heuristics for constructing effective action consideration sets and approximating
optimal policies.

Action proposal distributions. Following the two-stage decision-making architecture
described earlier (Fig 1A) [19], we first consider the proposal distribution P0(a) through
which actions are sampled and enter the consideration set. The first two candidates are the flat
distribution and the general-value-based distribution, as specified in past works [7]. Given
the policy compression framework, a third proposal distribution of interest is the optimal
policy’s marginal distribution P∗(a) at whichever policy complexity level the agent commits
to, assuming the full action space. This proposal distribution is an oracle, because one needs
to know the optimal policy to find it. However, it serves as a benchmark for the perfor-
mance of the previous two candidates. To summarize, we consider three candidate proposal
distributions:

1. Flat distribution: P0(a) = const.
2. General-value-based distribution: P0(a)∝V(a) =∑s P(s)Q(s, a)
3. Oracle distribution: P∗(a) =∑s P(s) 𝜋∗(a|s)

Another model parameter worth exploring is whether actions are sampled with or with-
out replacement from these proposal distributions. This would impact the bias-correction
algorithms we introduce below.
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Bias-correction algorithms. After sampling actions from the proposal distribution P0(a),
the simplest solution is to perform the Blahut-Arimoto (BA) algorithm on the action sample.
The BA algorithm would enable us to find the optimal policy at multiple policy complexity
levels, assuming that the action consideration set equals all unique actions sampled. Notably,
BA is indifferent to how often each action is sampled—it considers only the number of dis-
tinct actions in the sample, without accounting for their frequencies. Furthermore, BA does
not correct for any bias in the P0(a) that may make some actions more likely to be sampled
than others.

In contrast to BA, a truly bias-correcting algorithm is self-normalized importance
sampling (SNIS), which assumes sampling actions with replacement and is informed by the
repetitive sampling of the same action [49,50]. We consider SNIS a compelling alternative
algorithm to examine for two main reasons. First, SNIS has previously been shown to account
for the human tendency to oversample extreme outcomes when estimating the expected
utilities of actions [51]. Second, similar importance sampling algorithms have successfully
explained a wide range of human behaviors under resource constraints, including multiple
object tracking [52], concept learning [53], reinforcement learning [54], and sentence parsing
[55]. While sampling outcomes and actions are technically different domains, we postulated
that SNIS may be an equally effective algorithm for action selection.

According to SNIS, we assume that independent action samples (𝛼1,𝛼2, ...𝛼n) are drawn
with replacement from the proposal distribution P0(a). We can then construct the following
estimator for 𝜋∗ under the full action space:

𝜋̂∗(a|s)∝
n
∑
j=1

exp (𝛽Q(s,𝛼j))
P∗(𝛼j)
P0(𝛼j)

𝕀(𝛼j = a), (3)

where 𝕀(𝛼j = a) is the indicator function comparing 𝛼j to a. Intuitively, any bias in the action
proposal distribution would reflect in both the counts 𝕀(𝛼j = a) and the denominator P0(a),
such that they would cancel out in the asymptotic limit of infinite samples and thus achieve
bias correction. Through SNIS, 𝜋̂∗(a|s) is an asymptotically unbiased estimator of 𝜋∗(a|s) at
the same 𝛽 value, and can be used for action selection.

The BA and SNIS algorithms differ in their underlying objectives. BA is designed to
maximize trial-averaged reward given a specific action consideration set and varying levels
of policy complexity [44,45]. In contrast, SNIS does not aim to optimize rewards within the
current consideration set but instead prioritizes unbiasedness—seeking to approximate the
full-action-space optimal policy at the same 𝛽 without introducing bias. Later in the paper, we
assess how SNIS’s objective influences reward attainment. Using an approach similar to BA in
Fig 2C, we evaluate the average deviation of 𝜋̂∗ (computed for each action sample (𝛼1, ...,𝛼n))
from the true task’s reward-complexity frontier, across different sample sizes n. This deviation
quantifies the potential loss in achievable reward.

Note that the SNIS assumption of sampling actions with replacement requires a differ-
ent resource formulation—not the action consideration set size (i.e. the number of distinct
actions considered, Na), but the number of action samples (n). There is limited evidence on
whether humans sample actions with or without replacement, and hence we will explore both
cases. Luckily, the simpler BA algorithm is compatible with both sampling methods—when
sampling actions with replacement, it simply does not make use of how often each action is
sampled, relying only on the set of unique actions. Hence, we can fairly compare BA and SNIS
in the regime of sampling with replacement. To summarize, we consider two bias-correcting
algorithms in the simulations:
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1. Running Blahut-Arimoto on the retained actions (BA): no bias correction, applicable to
sampling actions both with and without replacement.

2. Self-normalized importance sampling (SNIS): has bias correction, applicable only to
sampling actions with replacement.

Exploring conditions that favor general-value-based action sampling
To explore the normative basis of general-value-based action sampling, we need to under-
stand the cognitive constraints that likely define the underlying optimization problem.
First, humans frequently operate under low policy complexity. As demonstrated in previous
research, most human participants adopt lower policy complexity than what is maximally
possible or reward-maximizing under various tasks, as exerting high policy complexity incurs
both memory and time costs [24,25]. Second, humans frequently operate over small action
consideration sets. There is ample evidence in the option generation literature suggesting that
humans generate and consider very few options before committing to a decision [14–18],
implying that mechanisms for generating actions must respect this sample size constraint.
Based on these observations, we propose that general-value-based sampling serves as a task-
general heuristic for action selection, specifically in ecologically relevant regimes of low policy
complexity and small action consideration sets. By leveraging this heuristic across different
tasks, agents can achieve satisficing outcomes without fully optimizing action consideration
sets for each specific task [56].

The above hypothesis is also intuitive under reasoning. First, at low policy complexity, even
when given access to the full action space, the optimal policy should still place all its proba-
bility mass on the action that has the highest general value, as prescribed by rate-distortion
theory [57] given the P∗(a) term in Eq 2. In other words, optimality at near-zero policy com-
plexity depends solely on whether the action with highest general value is sampled, thus mak-
ing general-value-based action sampling beneficial. However, such promises no longer hold as
policy complexity increases, where the optimal policy becomes sensitive to the state-specific
reward of actions, which no longer perfectly correlates with their general value [7]. Second,
constraints on action consideration set size should exacerbate the above low-complexity
advantage, because smaller consideration sets further restrict the probability of sampling this
highest-general-value action under a uniform proposal distribution.

We first assess our hypotheses on a large action space task with 16 states under uniform
P(s) and 32 actions with random Q(s, a) entries (Fig 3A). Unlike the symmetric task in Fig 2,
the current task structure prevents humans from exhaustively enumerating all possible action
consideration subsets and determining the one that is closest to optimality (defined as being
close to the full-action-space reward-complexity frontier), thus necessitating action sampling
heuristics.

Assuming no bias correction (i.e., running BA on the action consideration set, as opposed
to SNIS), our predictions hold. The general-value-based proposal distribution provides a clear
advantage at low policy complexity and small action consideration set sizes. Compared to
the uniform proposal distribution, it yields trial-averaged rewards that are closer to those
obtained with the oracle proposal distribution (Fig 3B Row 1). Additionally, its proximity
to the y = 0 line suggests lower suboptimality, indicating that it achieves reward levels closer
to the theoretical maximum for the given policy complexity. However, the conclusion dif-
fered when SNIS is used coupled with sampling with replacement. The bias correction has
encouraged the resultant policy to deviate away from more frequently sampled actions, hence
eliminating the advantage of general-value-based proposal distributions even at low policy
complexity (Fig 3B Row 2). In fact, if one compares SNIS and BA, both assuming sampling
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Fig 3. Simulating the suboptimality of partial action consideration sets, in a random reward structure task. (A) Reward structure of the task. (B) Simulation
results. Colors denote proposal distributions: flat P0(a) = const., general-value based P0(a)∝ V(a), or oracle P0(a)∝ P∗(a) under the full action space at the
same 𝛽. Columns denote different action consideration set sizes for sampling without replacement, and different action sample sizes for sampling with replacement.
Row 1: Assuming running Blahut-Arimoto on the retained action consideration set (BA) and sampling without replacement, the loss in trial-averaged reward from
optimality under different proposal distributions (color) and different action sample sizes (subpanels). 2D errorbars denote mean±SEM of policy complexity and
reduction in trial-averaged reward over random simulations, aggregating over simulations that share the same 𝛽. Different columns correspond to different action
consideration set sizes (i.e., number of distinct actions considered; Na). Row 2: Assuming running self-normalized importance sampling (SNIS) and sampling with
replacement. Different columns correspond to different action sample sizes (n). Row 3: Assuming running BA and sampling with replacement.

https://doi.org/10.1371/journal.pcbi.1013444.g003

with replacement, the benefit of BA is evident: policy performance was much closer to opti-
mal at low policy complexity levels, whereas convergence to the optimal policy also occurred
under smaller action sample sizes (Fig 3B Row 3). These results suggest that apart from the
low policy complexity and small action consideration set regimes, the normative basis of
using general-value-based sampling is dependent on the downstream assumption of agents
using the best policy under their action consideration set (BA), without significant bias-
correction for their underlying proposal distribution (SNIS).

Knowing the limitations of using a single example task, we again performed identical sim-
ulations using two more tasks featuring different action general values: a large-action-space
task with scarce rewards Q(s, a) concentrated on very few actions (S2 and S3 Figs), and the
human experiment task to be described later (S4 and S5 Figs). Generally speaking, using BA
over the action consideration set outperformed SNIS in terms of achieving near-optimal poli-
cies at various policy complexity levels; and it was under this downstream BA algorithm—and
the corresponding assumption of maximizing reward under the retained action consideration
set—that general-value-based action sampling yielded advantage at low policy complexity and
fewer actions considered. In other words, the hypothesis of general-value-based sampling as
an adaptation is not generally true across all downstream algorithms, as shown through the
SNIS simulations.
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The interplay of policy complexity and action consideration set size
Observing the suboptimality curves in detail, it becomes evident that their shapes under BA
and general-value-based action sampling (either with and without replacement) conforms
to intuitions that motivated our hypothesis, as well as analytical results for the simpler task
(Fig 2). This allows us to extract general insight on the interaction between the two sources of
cognitive constraints—policy complexity and action consideration set size—based on the BA
simulation results.

First, larger action consideration sets enable higher maximum policy complexity (which
is equal to log2 (max({|S|,Na})) bits), until the action consideration set size/number of dis-
tinct actions considered Na exceeds the state set size |S|. Second, across all simulated tasks,
the suboptimality in trial-averaged reward increases with policy complexity, whereas enlarg-
ing the action consideration set size (or taking more action samples assuming sampling with
replacement) mitigates the slope of this suboptimality increment (making it more positive;
Figs 2, 3, and S1–S5). Overall, assuming optimal performance over the remaining action con-
sideration set, the interplay between policy complexity and action consideration sets can be
summarized as follows:

1. Larger action consideration sets enable higher policy complexity, which, under the
reward-complexity-frontier, enables higher trial-averaged reward.

2. Larger action consideration sets mitigate the increase in suboptimality following
increases in policy complexity, hence contributing to the reward-efficiency of policy
complexity increments.

How human agents utilize these two interplaying properties is subject to further investi-
gation. Depending on their strategies, the above two effects may fail to manifest behaviorally.
For example, if humans do not increase policy complexity along with their action consider-
ation set size, the first effect would be nullified. Similarly, if humans cannot efficiently learn,
memorize, or implement the optimal policy for larger action consideration sets (likely true
given set size effects observed in working memory studies; see [31,58]), the second effect
would be weakened. It hence becomes an interesting question to study how humans navigate
the policy complexity-action consideration set size landscape, as they deliberately simplify the
original task’s action space and bear the suboptimal consequences for doing so.

Human behavior reflects joint constraints on policy complexity and action
consideration set size
As much as we want to study human action subsampling in naturalistic, open-ended
problems, the challenge is that we, as experimenters, cannot easily determine the relative
frequency of states P(s), the full set of possible actionsA, and each individual’s subjective
reward for every state-action pair Q(s, a) for normative analysis. However, the cognitive pro-
cesses involved—the retention of certain subsets of actions, and the establishment of resource-
constrained policies that map states to actions—could be manifested in simpler controlled
experiments. We hence focused on a contextual multi-armed bandits task that preserved
crucial problem features of interest.

Experimental task. We manipulated response time (RT) deadlines consistent with previ-
ous works on policy compression and option generation [20,24], while leaving the state dis-
tribution P(s) and reward structure Q(s, a) fixed. Participants completed three blocks of trials
with RT deadlines 2s, 1s, and 0.5s respectively in random order. On each trial, participants
see one of six possible images (state) and must press one of seven keys (actions) within the
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RT deadline. Reward delivery was deterministic: each state corresponded to a unique reward-
maximizing (optimal) action, and the remaining action is a “safety” action that yielded a small
but positive reward regardless of the current state (Fig 4A and 4B). Failure to respond within

Fig 4. Human experiment task setup. (A) The six possible states (images) and the corresponding optimal actions (key
presses). The optimal mapping between images and keys was randomized across participants. The example stimuli images
visualized are adapted from [59] and differed slightly from those used in the actual experiment. (B) The reward structure
Q(s, a) of the task. There is a safety action that yields deterministically a low but positive reward for all states. Within each
block, we counterbalance the number of trials where each state is used, such that the empirical P(s) is flat. (C) On every
trial, the participant observes an image (state) and responds by pressing a key (action). Then, reward feedback is provided
as a border around the image where the border color denotes reward, and then as a numeric reward value, before the next
trial starts. Participants can track cumulative reward (number above image) for the block. After the block ends, partici-
pants receive feedback on the total reward gained in the block. Participants are informed of the block’s RT deadline before
starting. (D) Reward-complexity frontiers under different action consideration set sizes, where the safety action is retained
in the set. (E) Reward-complexity frontiers under different action consideration set sizes, where the safety action is not
retained in the set. (F) The theoretical reward-complexity frontier under different action consideration set sizes, constructed
by finding the maximum between (D) and (E) for each policy complexity level and action consideration set size.

https://doi.org/10.1371/journal.pcbi.1013444.g004
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the RT deadline resulted in a −1 reward penalty. After making a response, participants receive
feedback on their reward yielded, before being redirected to the next trial (Fig 4C). Due to the
simplicity of the task, we can exhaustively enumerate reward-complexity frontiers associated
with different action consideration sets, depending on their size (Na) and whether the safety
action is included (Fig 4D and 4E). We can then find the higher of the two frontiers associated
with the same consideration set size, and visualize it as the Na-specific reward-complexity
frontier (Fig 4F). Inspection of these frontiers reveal that the normative interplay between
policy compression and action consideration set size, as disclosed by previous simulations,
holds in this experimental task, thus enabling our predictions below.

Experiment predictions. We make the following predictions regarding policy compres-
sion alone, which help assess the behavioral relevance of this normative framework: shorter
RT deadlines should be associated with 1) lower policy complexity; 2) lower trial-averaged
reward; 3) higher probability of choosing the safety action. The first prediction arises from
previous works showing that policy complexity incurs time costs [24,25]; the latter two pre-
dictions arise from the task’s reward-complexity frontier, which takes into consideration the
safety action having higher general value than other actions, and that it should always be cho-
sen at policy complexity 0 bits. Given the time cost implication of policy complexity, we also
predict that 4) higher policy complexity incurs longer RTs.

Regarding the interplay of policy complexity and number of distinct actions chosen, we
make the following predictions: 5) shorter RT deadlines should be associated with fewer
numbers of distinct actions chosen, and 6) higher numbers of distinct actions chosen incur
longer RTs, because both predictions are consistent with previous accounts of set size effects
on RT as well as sampling costs [30,42,43]. Based on the simulation results, we also predict
that 7) In terms of achieving higher trial-averaged reward, policy complexity has a positive
effect, while increasing the number of actions chosen exacerbates the above positive effect;
8) In terms of achieving lower suboptimality (loss in trial-averaged reward compared to the
full-action-space reward-complexity frontier at the same policy complexity level), policy
complexity has a negative effect, while increasing the number of actions chosen mitigates
the above negative effect. A normative corollary of the predictions above is that 9) policy
complexity and the number of actions chosen should be positively correlated, to mitigate
any suboptimalties. Note that while the number of actions chosen places an upper bound
on policy complexity, participants still have freedom to empirically adjust one indepen-
dent from the other across task conditions (e.g., incorporate more actions while maintain-
ing low policy complexity), such that nonsignificant correlations are in principle possible.
Hence, any correlations identified in 9) may still be interpreted qualitatively with theoretical
significance.

Orthogonal to the policy compression-action consideration set framework, we also made
predictions regarding how a human participant decides on their policy complexity level and
action consideration set size. We postulate that higher training block accuracy rates (averaged
over training blocks) should be associated with 10) higher mean policy complexity and 11)
higher mean number of actions chosen across test blocks.

The predictions above are validated using a combination of linear mixed-effects (LME)
regression models and Pearson correlation coefficients. The statistical analysis details are
elaborated in Methods.

Experimental results. Consistent with previous studies [21,24,25], most participants
achieved trial-averaged reward levels that were not far from the full-action-space reward-
complexity frontier (Fig 5A). However, given the task’s large action space, visible suboptimali-
ties did exist. Most participants lay closer to the ranges of their Na-specific reward-complexity
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Fig 5. Human experiment behavioral results. (A) Trial-averaged reward and policy complexity of participants across RT deadline conditions (colored points), and
the full-action-space reward-complexity frontier (black line) at each policy complexity level. Semitransparent gray lines between points connect the same partici-
pant’s data points in different RT deadline conditions. (B) The same figure as (A), but visualizing the number of distinct actions taken (color) by each participant
in each condition, and the reward-complexity frontier associated with each number of distinct actions taken (colored lines). (C) The same figure as (B), but visual-
izing each data point’s deviation from the full-action-space reward-complexity frontier. (D-H) Mean±SEM of participant trial-averaged reward (D), probability of
choosing the safe action (E), policy complexity (F), number of distinct actions chosen (G), and mean RT (H) across RT deadline conditions. All SEM errorbars are
within-participant [60]. (I) Correlating policy complexity and number of distinct actions chosen. The color scheme is identical to (A).

https://doi.org/10.1371/journal.pcbi.1013444.g005

curves, indicating that the number of actions chosen could qualitatively explain some portion
of participant suboptimality. However, there also existed a cluster of extremely suboptimal
participants with low policy complexity and Na = 6 or 7, who were earning much lower trial-
averaged reward compared to that yielded by always choosing the safety action (y intercept
of all reward-complexity curves at y = 0.2; Fig 5B and 5C). In the Supporting Information, we
re-performed all analyses after removing this cluster of N = 13 participants (post-hoc; iden-
tified based on an empirical trial-averaged reward ≤ 0.15 cutoff to accommodate occasional
key-pressing errors), thus concluding that our results reported below were not solely the result
of significant participant suboptimality (Table A in S1 Appendix).

In line with typical predictions of policy compression, during long RT deadline blocks par-
ticipants used policies with higher complexity (fixed effects 0.762± 0.0778, t(223) = 9.78,
p < 10–18, random effects SD = 0.401; Fig 5D), earned higher trial-averaged reward (fixed
effects 0.249± 0.0265, t(223) = 9.37, p < 10–17, random effects SD = 0.144; Fig 5E), chose
the safety action less frequently (fixed effects –0.309± 0.0325, t(223) = –9.50, p < 10–17,
random effects SD = 0.0910; Fig 5F), and consequently incurred longer RTs (fixed effects
0.236± 0.0203, t(223) = 11.6, p < 10–23, random effects SD = 0.112; Fig 5G). More impor-
tantly, individual participant RT related positively to their policy complexity levels (fixed
effects 0.273± 0.0103, t(223) = 26.3, p < 10–69, random effects SD = 0.0468; S6B Fig). These
results suggest that the policy compression framework offers a good first-hand description of
human behavior in our task, thus motivating further analyses.
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We next tested predictions related to the number of actions chosen. As predicted, par-
ticipants increased their number of actions chosen for longer RT deadline conditions (fixed
effects 1.30± 0.159, t(223) = 8.19, p < 10–13, random effects SD = 0.0488; Fig 5H), featur-
ing adequate variability needed for condition-specific analyses. Also, Individual RT related
positively to their number of actions chosen (fixed effects 0.0861± 0.00671, t(223) = 12.8,
p < 10–27, random effects SD = 0.0282; S6C Fig). To assess whether the number of actions
chosen contributes to RT in a way independent from its influences on policy complexity, we
ran a post-hoc LME analysis and found significant positive effects for both policy complex-
ity (fixed effects 0.375± 0.0510, t(221) = 7.35, p < 10–11, random effects SD = 0.0568) and the
number of actions chosen (fixed effects 0.0146± 0.00625, t(221) = 2.34, p = 0.0200, random
effects SD = 0.0177). However, the statistical significance of the number of actions chosen was
lost when we changed the threshold for action counting, reducing it to a trend (see Tables B
and C in S1 Appendix). Given these ambivalent results, we postulate that classical empirical
results connecting the number of actions to RT may be largely explained by policy complexity,
a direction that warrants future testing [42,43].

We next tested the most important framework predictions regarding the interplay between
policy complexity and the number of actions chosen. As predicted, in terms of trial-averaged
reward, policy complexity contributed positively (fixed effects 0.248± 0.0209, t(221) = 11.8,
p < 10–24, random effects SD = 0.0768), while the interaction term supported our hypothesis
that increasing the number of actions chosen would exacerbate the above positive relation-
ship (fixed effects 0.0205± 0.00306, t(221) = 6.70, p < 10–10, random effects SD = 0.00659).
Similarly, in terms of reducing loss in trial-averaged reward compared to optimal, policy com-
plexity contributed negatively (i.e. enlarging the suboptimality; fixed effects –0.276± 0.0223,
t(221) = 12.4, p < 10–26, random effects SD = 0.0864), while the interaction term supported
our hypothesis that increasing the number of actions chosen would mitigate the above neg-
ative relationship (fixed effects 0.0571± 0.00341, t(221) = 16.7, p < 10–40, random effects
SD = 0.0103). These results suggest that the normative interaction between policy complexity
and the number of actions considered, as revealed by the simulations, reflects strongly in the
reward and suboptimality patterns of human behavior in our task.

We then assessed the correlation between policy complexity and the number of actions
chosen. As predicted, the Pearson correlation was positive and significant (R = 0.671,
p < 10–30; Fig 5I). This correlation, however, was not strong enough to introduce multi-
collinearity problems in previous LME regresions (variance inflation factor (VIF) = 1.82),
such that their coefficient estimates are still trustworthy. One potential concern is that the
number of actions chosen (Na) places an upper bound on policy complexity (log2(Na) bits),
which raises the alternative explanation that the observed correlation simply reflects a uni-
form sampling of policy complexity within its allowable range. To address this, we performed
post hoc Kolmogorov-Smirnov tests on the empirical distribution of policy complexity at each
Na. These tests revealed significant deviations from uniformity for Na = 2, 3, 6, 7 (p < 10–4).
Moreover, visual inspection of the policy complexity distributions revealed a shift from right-
skewness to left-skewness as Na increased from 2 to 6 (S7 Fig). This pattern may explain the
inability to reject uniformity for intermediate Na values (Na = 4, 5), and supports the predic-
tion that humans tend to increase both Na and policy complexity across RT deadline condi-
tions in an effort to reduce suboptimality.

We assessed our final hypothesis that participants set their policy complexity and num-
ber of actions chosen in a way related to their training block accuracy. As predicted, training
accuracy correlated positively with mean test block policy complexity (R = 0.792, p < 10–16;
S6E Fig) and mean test block number of actions chosen (R = 0.327, p = 0.00416; S6F Fig).
We wondered if the ability to adjust policy complexity and number of actions chosen based
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on training accuracy is related to suboptimality, and hence performed additional post-hoc
analyses on the N = 13 cluster of suboptimal subjects identified earlier in Fig 5A–5C. Sub-
group analyses revealed that these subjects did not significantly adjust their number of actions
chosen based on training accuracy (which is mostly low; R = 0.0740, p = 0.810), whereas the
remaining N = 62 subjects did (R = 0.907, p < 10–4; Table A in S1 Appendix).

Discussion
In this paper, we explored the relationship between two factors in action selection: policy
complexity—the compression of the mappings between states and actions, and the size of
action consideration sets—which and how many actions are considered. We investigated the
two aforementioned factors by running simulations and analyzing human action selection
in tasks with large action spaces. Unlike studies of open-ended problems, our experimen-
tal setup ensured that the ground-truth action space and reward structure remain accessible
for the computation of optimal policies. This allowed us to develop a framework that jointly
considers policy complexity and action consideration sets, and assess its relevance to human
behavior.

Our framework provides normative insight on previous findings in the domain of human
action/option generation. First, we clarified the empirical observation that humans preferen-
tially generate actions with high general value over environmental states [7,8,19,20], by iden-
tifying conditions in which such biased action sampling is beneficial. Across simulations over
multiple tasks, the benefit depended on multiple factors: the task structure, policy complex-
ity, the action consideration set size, and how agents derive an approximately optimal policy
given their retained action consideration set. However, we found that preferential sampling
of generally-valuable actions conferred a robust advantage under low policy complexity, and
became increasingly beneficial when the number of actions considered is small. Low policy
complexity and small action consideration sets are reasonable resource constraints that
humans operate over [24,25,30]. This justifies the usage of general-value-based action sam-
pling as a fast and frugal heuristic readily applicable across tasks [56]. Second, through intro-
ducing well-substantiated assumptions relating policy complexity to cognitive load and RT
[24,25], we also provided normative justification for the neighboring phenomenon that peo-
ple’s answers become more correlated across question contexts under shorter RT deadlines,
instead of being subject to greater independent noise [20]. The framework concludes that this
behavior is rational if the answers for all contexts converge to answers with the highest gen-
eral value, which constitutes the optimal policy at near-zero complexity. The insights yielded
from our framework contribute to the study of resource-rationality, which analyzes human
cognition in terms of solutions to constrained optimization problems [10,61].

A separate intriguing point is the poor performance of SNIS as a downstream algorithm
for policy approximation, despite its guarantee of asymptotic unbiasedness. By correcting
biases in a general-value-based action proposal distribution, SNIS inadvertently removed
the latter’s advantage at low policy complexity, and prolonged convergence to the full action
space’s optimal policy in multiple task setups. The above finding provides a cautionary
example of applying statistical approximation algorithms to understanding human behav-
ior [51,62,63]. Given the resource constraints that humans face, asymptotic optimality may
not be enough to motivate the usage of a particular algorithm in naturalistic settings, and
a case-by-case assessment of their performance in low sample-complexity regimes may be
necessary [30].

Through both simulations and exhaustive enumeration of action consideration sets over
simpler tasks, our framework formalizes the relationship between policy complexity and
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action consideration set size. The two resource constraints manifest differently in norma-
tive analysis: assuming near-optimal behavior under the action consideration set, increasing
policy complexity manifests as movements along the reward-complexity frontier, whereas
incomplete action consideration sets manifest as deviations from the frontier. Increasing
either would incur opportunity costs in terms of RT. The more important implication is the
interplay between the two resource constraints. First, under partial action consideration
sets, increasing policy complexity still confers greater trial-averaged reward, but also results
in greater suboptimality compared to what could have been achieved under the full action
space; this suboptimality can be mitigated by increasing the number of actions considered.
Second, the number of actions considered provides an upper bound on policy complexity,
which necessitates the increasing of both if the agent hopes to achieve greater reward. The
identified relationships provide a nuanced perspective on how action consideration set size
and policy complexity may interact synergistically to help agents maintain near-optimal
performance.

After identifying the relationships above, we also demonstrate their empirical relevance
in explaining human behavior patterns through a contextual multiarmed bandit experi-
ment, varying RT deadline constraints as studied in previous works [20,23]. We found that
the framework has its identified relationships reflected strongly in human behavior. Human
data supported the framework’s predictions on the influence of RT deadlines on policy com-
plexity and the number of actions chosen, the interplay between both constraints that either
enlarge or mitigate suboptimality patterns, as well as human efforts to increase both at the
same time to reduce such suboptimality. The inclusion of action consideration sets pushes
our framework towards a more algorithmic account of human behavior, which is a small step
towards addressing criticisms of using vague, abstract concepts such as “information” com-
mon to normative frameworks [64], and achieving more authentic characterizations of human
decision making. Future works could develop process-level accounts of how humans decide
to incorporate more actions (discrete) or to instead refine preexisting state-action mappings
(increasing policy complexity alone; continuous), as well as how both quantities are dynami-
cally determined during learning. It would also be valuable to investigate whether action con-
sideration set size and policy complexity compete for a shared pool of cognitive resources, or
operate under separate capacity constraints analogous to the slot-continuous dichotomy in
working memory [31,65].

Continuing the logic of describing human data, it is also clear that policy complexity and
partial action subsets do not fully explain the suboptimality of human participants, because
not all of them lie on some Na-specific reward-complexity frontier. This is especially promi-
nent when policy complexity is low and the number of actions chosen is high, forming a clus-
ter of highly suboptimal participants. A potential additional source of suboptimality is the
veracity of the agent’s Q(s, a) representations. Given the trial-limited nature of our train-
ing blocks, an agent who hopes to learn the Q-values of more actions must inevitably see
each state-action pair less, resulting in noisier learned Q-values. This process-level learning
problem cannot be captured by the current framework. To assess the influence of noisy Q-
values on suboptimal behavior, we ran additional simulations that apply Gaussian noise with
increasing magnitudes on the true task’s Q(s, a) entries. As noise magnitude increases, we
indeed see large deviations from optimality at low policy complexity, and in extreme cases,
increasing the action consideration set size could enlarge the suboptimality even more (S9
Fig). Given these results, it is plausible that the suboptimal cluster arises as a result of noisy
Q-values, which is not captured by the normative policy compression framework. Supporting
this interpretation, we also find that even among the near-optimal participant cluster, devia-
tions from Na-specific frontiers tend to increase as Na grows. This pattern suggests potential
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difficulties in maintaining accurate representations of additional Q(s, a) entries in working
memory [65]. Such representational noise could diminish the theoretical benefits of con-
sidering more actions as prescribed by our normative framework, providing another prac-
tical reason why agents might prefer smaller action consideration sets. How to behaviorally
separate the influence of such reward noise and policy complexity constraints merits future
investigation—a deeper understanding of this distinction could help identify more realistic
cognitive resource formulations.

From a broader perspective, our framework and the accompanying behavioral evidence
have highlighted the complexity of human thinking and meta-reasoning even in very simple
tasks, which do not contain exploitable regularities that would motivate hierarchical think-
ing or abstractions [66,67]. Across our human participants, a significant portion of them did
not make use of the full action space. This suggests that they employed some form of meta-
reasoning in reducing the original task to a simpler, more manageable task at the cost of lower
trial-averaged reward and greater suboptimalities, while simultaneously learning and imple-
menting their low-level policies. Also, participants have determined their policy complexity
level and number of actions chosen in a flexible manner, subject to constraints on RT dead-
lines and their training performance. Failure to navigate these adjustments correlates with
greater suboptimality, as conveyed through the identified cluster of suboptimal participants.
Importantly, all the above occurs without any explicit instruction on our behalf to change
policy complexity or the number of actions chosen, suggesting the spontaneity of such meta-
reasoning. It would be informative to assess whether in other typical reinforcement learn-
ing tasks, humans exert similar meta-reasoning and spontaneous problem simplification in
a way that could not be captured by conventional cognitive models, hence contributing to
unexplained sources of variance that is clearly not random noise [68].

Methods
Ethical statement
All experiment participants gave informed written consent, and the Harvard University
Committee on the Use of Human Subjects approved the experiment (Protocol number
IRB15-2048).

The policy compression framework
Throughout the paper, we restrict our attention to contextual multi-armed bandit tasks for
simplicity. In this setup, the environment contains multiple possible states s∈ S with relative
frequencies P(s), and actions a∈A. The trial-averaged reward yielded by taking action a in
state s is Q(s, a). The agent’s goal is to find the policy 𝜋(a|s)—a probabilistic mapping from
states to actions—that maximizes trial-averaged reward across all states:

V𝜋 =∑
s
P(s)∑

a
𝜋(a|s) Q(s, a). (4)

For a resource-rational agent, we formalize their cognitive cost as the mutual information
I𝜋(S;A) between states s∈ S and the policy-assigned actions a∈A:

I𝜋(S;A) =∑
s
P(s)∑

a
𝜋(a|s) log 𝜋(a|s)

P(a)
, (5)

where P(a) =∑s P(s)𝜋(a|s) is the marginal probability of choosing action a.
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We assume that agents are subject to a capacity limit, C, which bounds their policy com-
plexity from above. Shannon’s noisy channel theorem states that the minimum expected num-
ber of bits to transmit a signal across a noisy information channel without error is equal to the
mutual information. Therefore, if mapping each state to its best action requires more infor-
mation that what the agent could afford, the agent must compress its policy, or render it less
state-dependent. We can therefore define the optimal policy, 𝜋∗, as:

𝜋∗ = argmax
𝜋

V𝜋 , subject to I𝜋(S;A)≤ C. (6)

We can express the above constrained optimization problem in the following Lagrange
form:

𝜋∗ = argmax
𝜋

𝛽V𝜋 – I𝜋(S;A) +∑
s
𝜆(s)(∑

a
𝜋(a|s) – 1) (7)

where 𝛽 ≥ 0, 𝜆(s)≥ 0 ∀s∈ S are Lagrange multipliers, in which the 𝜆(s) terms ensure proper
policy normalization. Solving this equation yields the following optimal policy:

𝜋∗(a|s)∝ exp[𝛽Q(s, a) + logP∗(a)] (8)

P∗(a) =∑
s
𝜋∗(a|s) P(s), (9)

Where the value of the Lagrangian multiplier 𝛽 depends on the capacity limit C. Notably,
its inverse is the slope of the reward-complexity frontier at its corresponding policy complex-
ity level I𝜋(S;A) = C.

𝛽–1 = dV𝜋

dI𝜋(S;A)
. (10)

Since the reward-complexity frontier depends on P(s) and Q(s, a), the precise mapping
between 𝛽 and C is also task-dependent with no general analytical form [24]. Empirically,
the optimal policies at various C can be found by iteratively updating a randomly initialized
policy 𝜋(a|s) using Eq 8 and its marginal P(a) =∑s 𝜋(a|s) P(s) until convergence, using a
grid of corresponding 𝛽 values. This numerical optimization process is known as the Blahut-
Arimoto (BA) algorithm [44,45]. BA-like processes have also been proposed as process-level
models of policy compression in humans [24,25].

While the BA algorithm is formally defined for discrete state and action spaces, it can be
naturally extended to continuous spaces through appropriate discretization. However, since
our study focuses on sampling actions into consideration sets, the resulting action considera-
tion set remains discrete by definition, avoiding the need for discretization. Future work could
extend the framework to continuous action spaces through adaptive discretization techniques
and investigate corresponding patterns in human behavior.

Connections to other frameworks. The optimal policy derived from policy compression
shares similarities with the policy prescribed by Kullback-Leibler (KL) regularized control
[69], but there are key differences in how each framework handles action distributions and
optimization constraints.

In KL-regularized control, a predefined default action distribution—typically uniform
over actions—is assumed. Deviations from this distribution are penalized as a cost (negative
reward), with 𝛽 in Eq 2 interpreted as a cost sensitivity parameter. In contrast, our frame-
work replaces this fixed distribution with a flexible marginal action distribution, P∗(a), and
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formulates the problem as a constrained optimization with I𝜋(S;A)≤ C, where 𝛽 acts as a
Lagrange multiplier.

A distinguishing feature of policy compression is the dependence of P∗(a) on the pol-
icy 𝜋∗(a|s). This property is central to its normative implications and behavioral predictions.
Specifically, it predicts a tendency toward perseveration, where agents favor actions they have
frequently chosen in the past—especially when policy complexity is low (𝛽 is small), making
P∗(a) the dominant term in Eq 2. In contrast, KL-regularized control enforces policy reg-
ularization toward a fixed default distribution that is independent of the policy, not opti-
mized for individual tasks, and unable to account for perseverative behavior that exploits task
regularities.

Self-normalized importance sampling (SNIS)
Importance sampling is a Monte Carlo method for evaluating properties of a target distri-
bution, using independent samples drawn from a potentially different proposal distribution
sharing the same support. Self-normalized importance sampling (SNIS) is a variant of impor-
tance sampling that works when the target distribution’s density function p(x) is only known
up to a normalization constant [49,50].

In SNIS, we assume that independent samples (x1, x2, ...xn) are drawn with replacement
from a proposal distribution q(x). We also know the probability distribution p(x) up to a nor-
malization constant (with its unnormalized density function denoted as 𝜌(x)). Our goal is
to estimate the mean 𝔼p[f(X)] of some transformation f (X) under X∼ p(x). To do so, we
construct importance weights wi = 𝜌(xi)/q(xi) for each sample xi, and use the estimator 𝜇̂:

𝔼p[f(X)]≈ 𝜇̂ =
∑n

j=1 wj f(xj)
∑n

j=1 wj
=
∑n

j=1
𝜌(xj)
q(xj)

f(xj)

∑n
j=1

𝜌(xj)
q(xj)

. (11)

The estimator 𝜇̂ is biased under finite sample size n, due to the quotient operation involv-
ing random variables wj. However, it is asymptotically unbiased in the limit of infinite sample
size [49,50].

To see how SNIS applies to policy compression, we rewrite Eq 8 using the unnormalized
optimal policy 𝜂∗ for some 𝛽 value (corresponding to some capacity limit C):

𝜂∗(a|s) = exp (𝛽Q(s, a))P∗(a). (12)

Next, we draw independent action samples (𝛼1, ...𝛼n)∈An from the proposal distribution
P0(a). We can estimate the unnormalized policy’s assigned unnormalized probability value
for every (s, a) pair:

𝜂∗(a|s)≈
n
∑
j=1

exp (𝛽Q(s,𝛼j))
P∗(𝛼j)
P0(𝛼j)

𝕀(𝛼j = a), (13)

where 𝕀(𝛼j = a) is the indicator function comparing 𝛼j to a. Hence, the optimal policy’s
assigned probability to this (s, a) pair can be estimated as:
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𝜋∗(a|s) ∶= 𝜂∗(a|s)
∑ai∈A 𝜂∗(ai|s)

(14a)

≈
∑n

j=1 exp (𝛽Q(s,𝛼j))
P∗(𝛼j)
P0(𝛼j) 𝕀(𝛼j = a)

∑ai∈A∑
n
j=1 exp (𝛽Q(s,𝛼j))

P∗(𝛼j)
P0(𝛼j) 𝕀(𝛼j = ai)

(14b)

=
∑n

j=1 exp (𝛽Q(s,𝛼j))
P∗(𝛼j)
P0(𝛼j) 𝕀(𝛼j = a)

∑n
j=1 exp (𝛽Q(s,𝛼j))

P∗(𝛼j)
P0(𝛼j)

=∶ 𝜋̂∗(a|s) (14c)

with Eq 14c stemming from the fact that each 𝛼j must take on some value inA.
Notice that Eq 14c takes the form of the SNIS expression in Eq 11—with f(X) ∶= 𝕀(𝛼j = a),

q(x) ∶= P0(a), and 𝜌(x) ∶= exp (𝛽Q(s,𝛼j))P∗(𝛼j). Hence, 𝜋̂∗(a|s) is an asymptotically unbi-
ased estimator of the optimal policy 𝜋∗(a|s) at the same 𝛽 value under the full action space.
We can hence use 𝜋̂∗(a|s) for action selection.

The Blahut-Arimoto algorithm can be used to obtain the estimator 𝜋̂∗ by iteratively apply-
ing Eq 14 and P(a) =∑s P(s) 𝜋(a|s) on a randomly initialized policy 𝜋 until convergence.
Now across different sample sizes n, we can assess the average deviation of 𝜋̂∗ (computed for
each action sample (𝛼1, ...,𝛼n)) from the true task’s reward-complexity frontier.

Simulation details
We ran 200 random simulations for each Langrange multiplier 𝛽 value within a grid, where
randomness is introduced by the underlying action proposal distribution P0(a). The process
is repeated for each action proposal distribution, action consideration set size (for sampling
without replacement; Na) or action sample size (for sampling with replacement; n), as well as
the three valid combinations of sampling methods (with or without replacement) and bias-
correcting algorithms. In Figs 3 and S1–S5, we visualize 2D errorbars showing mean±SEM
of policy complexity and reduction in trial-averaged reward, aggregated over the 200 simula-
tions for the same 𝛽.

Human experiment details
Participants. One-hundred-and-one participants (75 women, 25 men, 1 prefer not to say)

were recruited. We selected the sample size based on the reaching of statistical significance in
all planned analyses in a separate group of N = 30 pilot participants (data excluded from final
analysis). All analyses were preregistered at https://aspredicted.org/s44z-xf4p.pdf unless oth-
erwise noted. We excluded 26 participants for not responding within the response time (RT)
deadline for more than or equal to 20 trials across all test blocks, leaving data from 75 partic-
ipants (52 women, 23 men) for subsequent analyses. Participants were paid a base pay of $6
and a performance bonus of up to $2 for completing the task. Participants took, on average,
27 minutes to complete the entire experiment, and their average payout was $7.43.

Procedures. Each participant completed three test blocks containing 96 trials each. On
each trial, participants see an image and must press a key (action) before the RT deadline.
There were six possible images (states) and seven available actions, which are shared across
blocks. Each state was assigned a unique optimal action (one of the six number keys; the map-
ping is randomized across participants), while the remaining action (the letter key “E”) was
a “safety” action that guaranteed a smaller reward across all stimuli (Fig 4A–4B). The three
blocks featured RT deadlines of 0.5s, 1s, and 2s in randomized order, which are revealed to
participants before starting each block. Participants were informed that the mapping from
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state to action was held fixed across all blocks, and that they would receive a bonus propor-
tional to their summed performance across blocks.

Reward delivery was deterministic. The safety action that always yields +0.2 reward regard-
less of the state. The remaining six “unsafe” actions are uniquely optimal for each of the six
states, yielding +1 or −0.18 reward according to the state identity. Failure to respond within
the RT deadline resulted in a −1 reward penalty and automatic progression to the next trial.
After making a response (or when the RT deadline arrived), participants were given imme-
diate feedback for 0.5 s—a border around the image whose color matched the reward value
(dark green +1, light green +0.2, pink −0.18, red −1). Then, the numeric reward value was dis-
played for another 0.5 s, before the next trial’s stimulus appeared. Participants could track the
total reward earned during the block, displayed as a number above the image. At the end of
each block, they were provided with feedback on the total reward they earned in that block
(Fig 4C).

Before the three test blocks mentioned above, participants completed four training blocks,
with each block lasting 60 trials. These training blocks are not analyzed. The first shared
training block had RT deadline 2 s. In this shared training block, participants were provided
feedback regarding the optimal action for the preceding stimulus, after their response and
before the next trial began. The next three condition-specific training blocks had RT dead-
lines 2 s, 1 s, and 0.5 s, and no longer contained feedback on optimal actions just like the test
blocks. These condition-specific training blocks help participants prepare themselves for the
test blocks and develop their key-pressing strategy for each RT deadline. The optimal state-
to-action mappings were revealed to participants before the shared training block, the first
condition-specific training block, and the first test block.

Reward-complexity frontiers for different numbers of actions chosen. The simplicity
of the task structure allows us to exhaustively enumerate reward-complexity frontiers of dif-
ferent action consideration sets Na, depending on their size and whether the safety action is
included (Fig 4D–4E). The frontiers may end before the maximum policy complexity allowed
by the action consideration set size at log2 (max(|S| = 6,Na)) bits, as under the frontier’s cor-
responding action consideration set, further increasing policy complexity towards the maxi-
mum bound would only confer less trial-averaged reward. We consider the higher of the two
reward-complexity frontiers associated with either including or excluding the safety action
at each policy complexity level, and visualize it as the Na-specific reward-complexity frontier
(Fig 4F). The downward kink for Na = 4, 5 reflects the fact that the reward-complexity fron-
tier associated with including the safety action extends farther towards higher policy com-
plexity, but yields lower trial-averaged reward compared to excluding the safety action. In
other words, the frontier after the downward kink reflects a suboptimal action consideration
set choice at the same Na level, but it still has a normative basis in being optimal under that
suboptimal consideration set choice.

Estimating policy complexity and number of actions considered. We defined policy
complexity as the mutual information between the observed states and chosen actions. Fol-
lowing prior work [21,24,25], we estimated the policy complexity of each participant in each
ITI condition using the Hutter estimator [70]. Specifically for each state, we assume a sym-
metric Dirichlet prior with 𝛼 = 0.01 for all actions chosen, and use the empirical action counts
to reach a posterior Dirichlet distribution over action probabilities. We then estimate policy
complexity as the mutual information of the posterior mean policy. The above procedure is
informed by previous literature, reporting that the resulting estimates exhibit reasonably good
performance when the joint distribution is sparse [71]. The choice of 𝛼 = 0.01 is informed by
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rate-distortion theory, stating that empirical trial-averaged reward values cannot be above the
reward-complexity frontier. We have chosen 𝛼 = 0.01 empirically to obey this property.

To estimate the number of actions considered in a test block by a participant, we use the
number of distinct actions chosen by that participant in that block (Na). The estimator was
chosen to best compare participant performance to the reward-complexity frontiers of cor-
responding action consideration set size—if a participant has chosen Na = 4 distinct actions
within a block, their performance is upper-bounded by the reward-complexity frontier corre-
sponding to Na = 4. However, to accommodate the possibility that participants brushed over
unintended keys, we re-performed all analyses based on stricter thresholds, counting a cho-
sen action into the action consideration set size Na if and only if the participant has chosen
the action for at least two or three times within the block (see Tables B and C in S1 Appendix).
None of the conclusions change as a result of thresholding, which highlights the robustness of
our findings.

Statistical analysis. We fit linear mixed-effects (LME) models to study the relationship
among behavioral variables of interest: policy complexity, the number of actions chosen, RT,
trial-averaged reward, and loss in trial-averaged reward. We obtained parameter estimates
using maximum likelihood estimation with the “fitlme” function in MATLAB R2023a. In the
main text, we report the fitted coefficients and p-values for fixed effects of interest, as well as
the standard deviation of their corresponding random effects.

We also computed Pearson correlation coefficients between pairs of behavioral variables:
policy complexity, number of actions chosen, and training block accuracy rate. In the main
text, we report the coefficients and their p-values.

Based on all our predictions, we have performed the following analyses:

1) PolicyComplexity ~ RTDeadlineCond + (RTDeadlineCond|Participant);
2*) Reward ~ RTDeadlineCond + (RTDeadlineCond|Participant);
3) P(a_safety) ~ RTDeadlineCond + (RTDeadlineCond|Participant);
4) RT ~ PolicyComplexity + (PolicyComplexity|Participant);
5) Na ~ RTDeadlineCond + (RTDeadlineCond|Participant);
6) RT ~ Na + (Na|Participant);
7) Reward ~ PolicyComplexity*Na + (PolicyComplexity*Na|Participant);
8) RewardLoss ~ PolicyComplexity*Na + (PolicyComplexity*Na|Participant);
9) Correlation: PolicyComplexity and Na;
10) Correlation: TrainAccuracy and PolicyComplexity;
11) Correlation: TrainAccuracy and Na;
12*) RT ~ PolicyComplexity*Na +(PolicyComplexity*Na|Participant);

where the asterik (∗) denotes post-hoc analyses. The above numeric indexing of statistical
analyses is also used in S1 Appendix.

Supporting information
S1 Appendix. Tables of human behavioral results under different action counting thresh-
olds.
(PDF)

S1 Fig. Simulating the trial-averaged reward of partial action consideration sets, in a
random reward structure task. Rows structure is identical to Fig 3. Columns denote trial-
averaged reward instead of loss in trial-averaged reward.
(TIFF)
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S2 Fig. Simulating the trial-averaged reward of partial action consideration sets, in a task
where reward is centered on few actions. Row structure is identical to S1 Fig.
(TIFF)

S3 Fig. Simulating the suboptimality of partial action consideration sets, in a task where
reward is centered on few actions. Row and column structure are identical to Fig 3.
(TIFF)

S4 Fig. Simulating the trial-averaged reward of partial action consideration sets, in the
human experiment task. Rows and column structures are identical to S1 Fig.
(TIFF)

S5 Fig. Simulating the suboptimality of partial action consideration sets, in the human
experiment task. Rows and column structures are identical to Fig 3.
(TIFF)

S6 Fig. Relationships between pairs of human behavioral variables. Relationships between
(A) number of actions chosen and policy complexity (black solid line denotes maximum pol-
icy complexity enabled by each number of actions chosen), (B) policy complexity and RT,
(C) number of actions chosen and RT, (D) policy complexity and probability of choosing
the safety action. Color denotes the RT deadline condition, and semitransparent gray lines
connect the same participant’s data. Training and test block relationships include (E) train-
ing block mean accuracy and test block mean policy complexity, and (F) training block mean
accuracy and test block mean number of actions chosen. Color denotes the participants we
have included or excluded based on the reward > 0.15 cutoff.
(TIFF)

S7 Fig. Policy complexity distributions for each number of actions chosen. Each panel cor-
responds to the distribution of empirical policy complexity for a particular number of actions
chosen (Na), across all corresponding participants and RT deadline conditions. The x–axis is
scaled to reflect the allowable range of policy complexity( between0 and log2(Na) bits). Na = 1
was excluded because it only allowed a fixed policy complexity of 0 bits.
(TIFF)

S8 Fig. Action distributions for each participant. Row 1: Each participant’s empirical action
distribution P(a) over all action keys (semitransparent lines; color denotes RT deadline con-
dition), as well as their mean ± SEM (black errorbars). Row 2: Same as Row 1, but the actions
are reordered for each participant based on their relative frequency. The black horizontal
dotted line denotes chance probability of 1/7.
(TIFF)

S9 Fig. Simulating the influence of noisy Q-values. The human experiment task’s Q(s, a)
values are smeared with Gaussian noise with increasing standard deviation (stratified into
columns). Row 1: Assuming that the safety action is retained in the consideration set, the
influence of policy complexity (x-axis) and action consideration set size (color) on trial-
averaged reward (y-axis). The full-action-space reward-complexity frontier is depicted as a
black line. 2D errorbars denote mean±SEM of policy complexity and trial-averaged reward
over 200 random simulations, aggregating over simulations that share the same 𝛽. Row 2:
Same as Row 1, but Assuming that the safety action is not retained in the consideration set.
(TIFF)
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