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Policies, the mappings from states to actions, require memory. The amount of memory is dictated by the
mutual information between states and actions or the policy complexity. High-complexity policies preserve
state information and generally lead to greater rewards compared to low-complexity policies, which require
less memory by discarding state information and exploiting environmental regularities. Under this theory,
high-complexity policies incur a time cost: They take longer to decode than low-complexity policies. This
naturally gives rise to a speed–accuracy trade-off, in which acting quickly necessitates inaccuracy (via low-
complexity policies) and acting accurately necessitates acting slowly (via high-complexity policies).
Furthermore, the relationship between policy complexity and decoding speed accounts for set-size effects:
Response times grow as a function of the number of possible states because larger state sets encourage
higher policy complexity. Across three experiments, we tested these predictions by manipulating intertrial
intervals, environmental regularities, and state set sizes. In all cases, we found that humans are sensitive to
both time and memory costs when modulating policy complexity. Altogether, our theory suggests that
policy complexity constraints may underlie some speed–accuracy trade-offs and set-size effects.
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This study suggests that people make decisions to balance rewards and cognitive costs. Understanding
this trade-off helps explain why complex decisions take more time or cognitive effort and why we
sometimes make mistakes when under time and memory pressure.
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All computational systems—the human brain included—are
subject to physical constraints that limit the ability to store and
transmit information. Decision making taxes these limited cognitive
resources, bounding achievable performance. The framework of

resource rationality formalizes this idea, treating decisionmaking as
a constrained optimization problem that considers not only per-
formance but also the costs associated with making decisions (Bhui
et al., 2021; Lieder & Griffiths, 2020). In biological systems, these
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costs are often formalized as time costs and memory costs, thought
to be key factors underlying cognitive resource limitations (Bhui et
al., 2021; Callaway et al., 2024; Lieder & Griffiths, 2020; Vul et al.,
2014). Importantly, time and memory costs are typically studied in
isolation, although it seems plausible that both should interact to
influence behavior.
Time costs are typically studied in tasks where speed and accuracy

trade off against one another (Garrett, 1922; Woodworth, 1899). In
the domain of decision making, speed–accuracy trade-offs have been
widely observed across numerous perceptual and memory-based
decision tasks (Balci et al., 2011; Bogacz et al., 2010; Heitz, 2014;
Hick, 1952). People can be made to trace out a speed–accuracy
function through explicit instruction or with task designs that sharply
favor particular strategies (Heitz, 2014; Wickelgren, 1977; Wu
et al., 2023).
Early attempts at conceptualizing the computational logic

underlying speed–accuracy trade-offs suggested that they arise from
the increased information processing required for accurate re-
sponses, resulting in longer response times (RTs; Wickelgren,
1977). More recent work has argued that speed–accuracy trade-offs
may arise from an imperative to maximize time-averaged reward
(i.e., reward per unit time; Simen et al., 2009). Evidence in favor of
this normative principle has been observed in both perceptual
decision making and cognitive control domains (Balci et al., 2011;
Bogacz et al., 2010; Drugowitsch et al., 2015; Otto & Daw, 2019).
Despite this rich literature, gaps remain in our understanding of

speed–accuracy trade-offs. There is limited work on how humans
navigate this trade-off in multialternative, value-based task settings,
a domain commonly studied in the reinforcement learning literature.
This setting has relevance for more ecologically meaningful beha-
viors (Pirrone et al., 2014). While there have been efforts to extend
sequential sampling—a commonly used perceptual modeling
framework—to characterize the maximization of time-averaged
reward in value-based decisions (Tajima et al., 2016, 2019), the
resulting models primarily address tasks in which the decision maker
deliberates between stimuli, such that each stimulus elicits noisy
evidence for one unique action. These models do not naturally
extend to naturalistic value-based settings, in which humans must
choose one of sometimes many actions in response to an environ-
ment state.
None of the models discussed above address the additional

influence of memory on decision making. A separate literature has
demonstrated that decision making degrades as memory require-
ments (i.e., the amount of information needed to implement the
optimal policy) increase (Collins, 2018; Collins & Frank, 2012; Lai
& Gershman, 2024). Models with limited memory capacity have
been developed to explain this and related findings, but these models
do not typically address the speed–accuracy trade-off.
Central to the present article is the idea that time and memory

costs are deeply intertwined: Information stored in memory must be
“decoded” into action, and this decoding process takes longer when
more information is stored (Lai & Gershman, 2021). Memory incurs
a time cost, and therefore, decision makers actually face a speed–
accuracy–memory trade-off. Our goal is to understand this trade-off
theoretically and explore it empirically.
In this article, we develop a normative framework that jointly

considers how time costs and memory constraints influence deci-
sions and test its predictions in three instrumental learning ex-
periments. We will show that across experimental conditions,

human participants flexibly adjust their choice and RT profiles as
predicted by the framework.

The Policy Compression Framework

This section describes our theoretical framework formally. We
first define how to optimize decision making under memory con-
straints. We then introduce time costs and link them to the memory
constraints.

Memory-Constrained Policy Optimization

The nervous system must contend with numerous constraints,
including computational costs (Bossaerts et al., 2019), interference
costs (Musslick et al., 2016), and metabolic costs (Gailliot &
Baumeister, 2007), among other costs (Shenhav et al., 2017). Here,
we will focus on how channel capacity, an upper bound on the
amount of information that can be transmitted across a noisy channel
(Miller, 1956; Shannon, 1948), affects decision making—both in
terms of decisions and how quickly those decisions are made
(Figure 1A and 1B).

The framework we propose in this article is an application of rate-
distortion theory to action selection. Rate-distortion theory describes
how to construct an optimal channel that minimizes some notion of
error (the distortion)—or, in our case, maximizes reward—subject
to a constraint on the information transmission rate (Sims, 2016).
The utility of rate-distortion theory lies in its generality: In addition
to action selection (Lai & Gershman, 2021, 2024), it has been
applied to visual working memory (Jakob &Gershman, 2023; Sims,
2015; Sims et al., 2012), perception (Gershman & Burke, 2023),
intertemporal decision making (Bhui et al., 2021), economic
behavior under imperfect information (Maćkowiak et al., 2023), the
formation of cognitive abstractions (Genewein et al., 2015), and
task-switching costs (Zenon et al., 2019).

For a resource-rational agent, we formalize memory usage as the
mutual information between states s ∈ S and actions a ∈ A, which
we call the policy complexity:

IπðS;AÞ =
X

s

PðsÞ
X

a

πðajsÞ log πðajsÞ
PðaÞ

, (1)

where πðajsÞ is the policy, a probabilistic mapping from states to
actions, and PðaÞ =

P
s PðsÞπðajsÞ is the marginal probability of

choosing action a. High-complexity policies are ones that preserve
state information (e.g., deterministic mappings from states to ac-
tions), whereas low-complexity policies discard state information
(e.g., random actions).

In general, we assume that policies are subject to a capacity
constraint, C, an upper bound on policy complexity. As we will
elaborate on below, we allow agents to flexibly adjust C (up to an
agent-specific upper bound) to maximize reward. Shannon’s noisy
channel theorem states that the minimum expected number of bits to
transmit a signal across a noisy information channel without error is
equal to the mutual information. Therefore, if the optimal policy
requires more memory than the agent possesses, then the agent must
compress its policy by rendering it less state-dependent. We define
the optimal policy, π*, as:

π* = argmax
π

Vπ, subject to IπðS;AÞ ≤ C, (2)
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where Vπ =
P

s PðsÞ
P

a πðajsÞQðs, aÞ is the trial-averaged reward
(i.e., reward per trial) under policy πðajsÞ, and Qðs, aÞ is the trial-
averaged reward for taking action a in state s.
We can express the above constrained optimization problem in

the following unconstrained Lagrange form:

π* = argmax
π

βVπ − IπðS;AÞ +
X

s

λðsÞ
!X

a

πðajsÞ − 1
"
, (3)

where β ≥ 0, λðsÞ ≥ 0 ∀s ∈ S are Lagrange multipliers.1 Solving
this equation yields the following optimal policy:

π*ðajsÞ ∝ exp½βQðs, aÞ + logP*ðaÞ$, (4)

where P*ðaÞ =
P

s π*ðajsÞPðsÞ is the optimal marginal action
distribution.

The optimal policy takes the form of the familiar softmax dis-
tribution, common in the reinforcement learning literature. Here, the
Lagrange multiplier, β, plays the role of the inverse temperature
parameter. Note that although β typically takes on the role of
balancing exploration/exploitation in reinforcement learning, we
made no such appeals in deriving this policy. Moreover, β is a
function of the policy complexity, with its value equal to the inverse
slope of the derived reward-complexity frontier at the corresponding
policy complexity level:
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Figure 1
Interplay of Time and Memory Resources Under Policy Compression
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Note. (A) The policy as a communication channel. A state distribution PðsÞ generates states s that are encoded into memory via an encoder, eðsÞ , yielding a
codeword c. The codeword is then mapped onto an action a according to PðajcÞ . Together, encoding and action selection produce the policy πðajsÞ that maps
states to actions. (B) The optimal policy includes a state-dependent term, Qðs, aÞ , and a state-independent term, logPðaÞ . The logPðaÞ term biases choices
toward actions that are frequently chosen across all states. The β parameter determines the relative contribution of Qðs, aÞ and logPðaÞ , controlling the state-
dependence of the policy. We highlight distributions for an example state. (C) A limit on the channel capacity results in a trade-off between reward and
compression. The β parameter increases monotonically with policy complexity. We highlight two example optimal policies at different policy complexity
levels. The optimal policies trace out the reward-complexity frontier, which delimits achievable performance for a given policy complexity. (D) Reward-
complexity frontier for Experiment 1. (E) Proposed linear relationship between RT and policy complexity. (F) For Experiment 1, time-averaged reward as a
function of policy complexity for each ITI under the linear RT-to-policy complexity relationship in (E); the policy complexity that maximizes time-averaged
reward for each condition is highlighted (vertical lines). (G) Reward-complexity frontiers for Experiment 3. (H) For Experiment 3, time-averaged reward as a
function of policy complexity for each set-size condition under the linear RT-to-policy complexity relationship in (E). Panels A–C are adapted from
“Human Decision Making Balances Reward Maximization and Policy Compression,” by L. Lai and S. J. Gershman, 2024, PLOS Computational Biology,
20(4), p. 3 (https://doi.org/10.1371/journal.pcbi.1012057). CCBY 4.0. ITI= intertrial intervals; RT= response time. See the online article for the color version
of this figure.

1 λðsÞ terms ensure proper normalization:
P

a πðajsÞ = 1.
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β− 1 =
dVπ

dIπðS;AÞ
: (5)

At high policy complexity, when dVπ

dIπðS;AÞ is shallow, the optimal β is
large and the policy is dominated by Q values, which renders it state-
dependent. At low policy complexity, the optimal β is close to 0, andQ
values have minimal impact on the policy. Moreover, low-complexity
policies are dominated by the logP*ðaÞ term, a form of perseveration
(state-independent actions). In general, high-complexity policies yield
more reward per trial than low-complexity policies. By varying β and
calculating the optimal policy, we can trace out the reward-complexity
frontier, which delimits the maximal trial-averaged reward obtainable
for a given policy complexity (Figure 1C).
The optimal policy derived here differs from the traditional softmax

choice rule in reinforcement learning (Sutton & Barto, 2018) since it
includes the additional contribution of P*ðaÞ. In tasks where P*ðaÞ is
uniform over actions, the optimal policy reduces to the traditional
softmax choice rule (πðajsÞ ∝ exp½βQðs, aÞ$). However, in tasks
whereP*ðaÞ is nonuniform and biased toward specific actions, then the
influence of perseveration is nontrivial. We test this unique prediction
of the theory in Experiments 2 and 3. Moreover, as stated above, the
influence of perseveration is magnified at low policy complexity when
β approaches 0. This prediction differs from a traditional softmax
model, where the policy approaches a uniform distribution as β ap-
proaches 0. In recent work, we identified behavioral signatures unique
to policy compression—and not predicted by the traditional softmax
choice rule—in human data (Lai & Gershman, 2024).

Time Costs

Our formulation up to this point has ignored time costs. To
understand why an agent would choose a low-complexity policy, let
us assume states are represented as codewords through entropy
coding and are decoded as actions, with the Huffman code as a
canonical example (Huffman, 1952). The Huffman code corre-
sponds to a binary tree in which leaf nodes correspond to decoded
actions, where more complex state descriptions necessitate more leaf
nodes and, therefore, more bits. If we assume bits are inspected at a
constant rate, then more complex state descriptions take longer to
read out to reveal the decoded action. This information-theoretic
explanation for RTs has long been applied to tasks that vary the
number of available actions, encapsulated in the Hick–Hyman Law.
This law formalizes the empirical observation that RT increases
logarithmically with the number of possible actions or, equivalently,
linearly with the amount of information transmitted (Hick, 1952;
Hyman, 1953). Under policy compression, policies of higher
complexity require more complex state descriptions, which in turn
necessitate more bits. Applying the same constant inspection rate
assumption as the Hick–Hyman Law, reading out these policies
should take longer, resulting in longer RTs. We have previously
observed a significant correlation between RT and policy complexity
(Bari & Gershman, 2023; Lai & Gershman, 2021, 2024). More
specifically, given that bits are inspected at a constant rate, RTs
should be a linear function of policy complexity/description length,
with some offset to reflect motor delay (Figure 1D and 1E).
To see how the above theory predicts a speed–accuracy trade-off,

let us assume agents attempt to maximize time-averaged reward
under different intertrial intervals (ITIs). We chose this setup
because ITI manipulations are a classic focus in the study of speed–

accuracy trade-offs (Heitz, 2014), and the relationship between ITIs
and time-averaged reward maximization has been of long-standing
interest in the related field of perception (Balci et al., 2011; Bogacz
et al., 2010; Drugowitsch et al., 2015). To make this concrete, let us
take a simple premise where the agent perceives a state, selects an
action after a RT, tRT, and waits through an ITI for tITI seconds
before the next trial. The time-averaged reward under these con-
ditions takes the following form:

Vπ
timeðIðS;AÞÞ =

VπðIðS;AÞÞ
tRTðIðS;AÞÞ + tITI

, (6)

where Vπ
timeðIðS;AÞÞ is the time-averaged reward. VπðIðS;AÞÞ is a

function of policy complexity through the derivation of the optimal
policy2 (Figure 1D), and tRTðIðS;AÞÞ is a function of policy
complexity through the assumption of a linear relationship between
RT and policy complexity (Figure 1E).

To see how the theory predicts a speed–accuracy trade-off, we can
visualize the relationship between time-averaged reward and policy
complexity in Figure 1F, where we varied the ITI. To maximize
time-averaged reward, humans should decrease policy complexity
when ITIs are short; although these policies result in less trial-
averaged reward, they increase time-averaged reward because they
allow agents to perform more actions due to smaller decoding time
cost. Put in a more intuitive way, shorter ITIs enable agents to
complete more trials within the same time frame. As a result, it is not
worth spending too much time figuring out the best action for any
single trial, because the agent could complete many more trials and
earn much more reward in that time. Moreover, because the optimal
policy includes a perseverative term (logP*ðaÞ), the contribution of
perseveration should be magnified at low policy complexity (low
ITIs) because of the smaller β term. This is an interpretation of the
speed–accuracy trade-off founded in the notion of resource ratio-
nality. Regarding set-size effects, in which “set size” refers to the
number of possible states/stimuli, the theory predicts that RTs
should grow as a function of set size because larger sets require
higher policy complexity (i.e., the policy must encode more states)
to maximize time-averaged reward, which in turn demands longer
decoding time (Figure 1G and 1H).

Acting faster can yield greater time-averaged reward under some
task conditions (short ITIs or small stimulus set sizes), but ne-
cessitates a commitment to greater errors through lower policy
complexity. Under other conditions (long ITIs or large stimulus set
sizes), one can have the guarantee of fewer errors through higher
policy complexity, though with the requirement of acting slower. A
host of other predictions falls out of this single relationship, which
we will elaborate on in the Experiment sections below.

Memory Costs

In deriving the optimal policy, we treat memory as a point
constraint on policy complexity and allow the constraint to be
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2 In Figure 1D and 1G, the optimal policy at policy complexity zero
obtains more reward than the apparent chance level (one over the number of
actions). Chance level of reward is higher because reward is delivered with
probability 0.25 for incorrect actions. In addition, for the Set Size 2 and 4
conditions in Figure 1G, the optimal policy is to only choose among the
subset of two (or four) actions that are optimal for at least one state, and to
ignore the other actions.
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flexibly adjusted as a function of time costs. However, information
transmission may also incur a memory cost (i.e., subjective mental
effort) that increases monotonically with policy complexity. The
idea that information complexity incurs a memory cost is consistent
with prior work in perceptual decision and reinforcement learning
paradigms (Fang, 2021; Gershman & Burke, 2023). Moreover,
systematic deviations from reward-rate maximization have been
interpreted as evidence that information transmission incurs a cost
(Drugowitsch et al., 2015). We therefore hypothesize that policy
complexity will manifest as subjective task difficulty and that
subjects will systematically adopt policy complexity levels lower
than predicted by the framework.

Transparency and Openness

Data and code for this and subsequent experiments are available at
https://github.com/LSZ2001/policycompression_timememorycosts.

Experiment 1

We aimed to test whether humans incorporate both time
and memory costs when making decisions. In Experiment 1, we
manipulated ITIs to test whether humans adjust policy complexity to
maximize time-averaged reward. We made the following predictions
related to time costs. Under longer ITIs, we predict (a) higher policy
complexity, which, given the framework’s proposed relationship
between policy complexity and RT, leads to (b) slower RTs, because
more complex policies take longer to decode. According to the
framework, this combination of policy complexity and RTmaximizes
time-averaged reward under longer ITIs (Figure 1F). Next, since
higher policy complexity dictates a more deterministic mapping from
states to actions, we predict (c) decreased action stochasticity, the
conditional entropy of actions conditioned on state, HðAjSÞ, with
longer ITIs. As detailed in the Introduction, the optimal policy is
proportional to the exponentiated action values, weighted by an
inverse temperature parameter β, and the marginal action distribution.
At higher policy complexity, β increases, which decreases the
influence of the marginal action distribution PðaÞ on the policy.
Assuming PðaÞ is estimated and updated on a trial-by-trial basis, we
predict (d) decreased perseveration (the probability of repeating the
same action) with longer ITIs. We return to the relationship between
PðaÞ and choice repetition when we develop process models. Finally,
we predict (e) decreased time-averaged reward; although higher
policy complexity results in increased trial-averaged reward, this is
offset by the longer time spent in the ITI.
We made two further predictions related to memory costs. If

increased memory utilization is costly (Zenon et al., 2019), then we
predict (f) longer ITIs should be associated with higher perceived
difficulty, since maximizing time-averaged reward under longer ITIs
necessitates greater policy complexity. Such difficulty measurements
were available to us, as participants had ranked all experimental
blocks by their perceived difficulty. Based on perceived difficulty and
prior work arguing that information transmission incurs a cognitive
cost (Drugowitsch et al., 2015; Fang, 2021; Gershman & Bhui, 2020;
Gershman & Burke, 2023), we hypothesize that participants will
show (g) a systematic leftward bias in policy complexity, in which
their empirical policy complexity is lower than what is optimal. This
is a nontrivial hypothesis, since one would not expect this simply
from maximizing time-averaged reward, as implementing a policy of

slightly less or greater complexity results in similar time-averaged
reward, and there should therefore be no bias.

Materials and Method

Participants

One hundred participants (37 women, 61 men, one nonbinary, one
prefer not to say) were recruited. We selected the sample size based
on the lowest estimated effect size (Cohen’s d = 0.312) among
dependent variables, according to estimates from a separate group of
N = 48 pilot participants (data excluded from final analysis). All
analyses were preregistered at https://aspredicted.org/blind.php?x=
VF2_NH6. We excluded three participants for having an average RT
for any block exceeding 5 s, leaving data from 97 participants (35
women, 60 men, one nonbinary, one prefer not to say) for subsequent
analyses. Participants gave informed consent, and the Harvard
University Committee on the Use of Human Subjects approved the
experiment.

Procedure

Each participant completed three blocks of trials with ITIs of 0 s,
0.5 s, and 2 s respectively. The block order was randomized across
participants. Participants were informed of the ITI of each block.
Participants were informed that they would receive a bonus pro-
portional to their performance for each block (i.e., relative to the
maximum reward attainable for each block).

There were four possible states (images) and four available ac-
tions, which are shared across blocks. Each stimulus was assigned a
unique optimal action (Figure 2B). Participants were informed that
the mapping from stimulus to action was held fixed across all blocks.
This was done to minimize the learning of action values within
blocks.

On each trial, participants were presented with one image (state)
and responded by pressing one of several possible keyboard keys
(actions; Figure 2A). Stimulus presentation was counterbalanced
within runs of eight trials, where the stimulus presentation order was
randomized within each run, and each of the four images appeared
exactly twice per run. We did this to ensure a uniform state dis-
tribution PðsÞ, allowing us to better estimate policy complexity. See
Supplemental Figure S1 for evidence that participants did not
exploit this regularity. Reward delivery was binary and probabi-
listic: Each state was associated with one optimal action (Figure 2B).
After making a response, participants were given immediate
feedback for 0.3 s—either a green border around the image to
indicate reward or a gray border to indicate no reward. We did not
use punishment feedback. A fixation cross then appeared throughout
the ITI. Each block lasted until 3 min elapsed and the current run of
trials finished. Participants could track the remaining time and
reward earned during the block, which were displayed as red and
green bars, respectively. At the end of each block, they were
provided with feedback on the total reward they earned in that block
(Figure 2C).

Participants completed three 1-min training blocks, one for each
ITI condition, to familiarize themselves with the task and learn the
mapping from stimulus to response. These data were not analyzed.
Participants then completed the three 3-min blocks where ITI was
varied, as mentioned above. After completing the whole experiment,
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participants ranked the perceived difficulty for each block.
Participants additionally completed the Barratt Impulsiveness Scale,
which we did not analyze for this article.

Estimating Policy Complexity

We defined policy complexity as the mutual information between
the observed states and chosen actions. Following prior work
(Gershman & Bhui, 2020; Lai & Gershman, 2021, 2024), we
estimated the policy complexity of each participant in each ITI
condition using the Hutter estimator, which computes the posterior
mean value of mutual information under a symmetric Dirichlet prior
(Hutter, 2001).

Statistical Analysis

Due to the directional nature of the framework’s predictions, all
statistical tests were one-sided paired t tests except for the test of
optimal minus empirical policy complexity, which was a one-sided
Wilcoxon signed-rank test due to strong nonnormality. The one-
sided test directions were preregistered. In the main text, we report
all pairwise comparisons, their effect sizes, and the 95% confidence
intervals (CI) of the effect sizes in Supplemental Tables S1 and S2.
We fit a linear mixed-effects (LME) model to determine the

participant-specific relationship between average RT and policy

complexity for a block. The fixed effects were the intercept and
policy complexity and random effects were intercept and policy
complexity (independent from each other), grouped by participant.
We obtained parameter estimates using maximum-likelihood esti-
mation with the “fitlme” function in MATLAB R2023a.

Results

Consistent with prior results, participants achieve near-maximal
trial-averaged reward as a function of policy complexity (Figure 3A;
Bari & Gershman, 2023; Gershman, 2020; Gershman & Lai, 2021;
Lai & Gershman, 2024). In line with our predictions that humans
modulate policy complexity to maximize time-averaged reward,
participants used policies of higher complexity in longer ITI blocks
compared to shorter ITI blocks, t(96) = −6.40, p < 10−8; Figure 3B.
Participants also adopted slower RTs in longer ITI blocks, t(96) =
−7.44, p < 10−10; Figure 3C, consistent with the notion that higher
complexity policies are slower to execute. Action stochasticity
similarly decreased in longer ITI blocks as policies became con-
centrated on one action for each state, t(96) = 4.39, p < 10−4; Figure
3D. Perseveration, as predicted, decreased as a function of ITI, t(96)=
4.09, p < 10−4; Figure 3E. This overall led to a reduction in time-
averaged reward as a function of ITI, t(96) = 25.6, p < 10−44; Figure
3F and 3G. All of these findings are consistent with the idea that
humans are sensitive to time costs when adjusting policy complexity.
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Figure 2
Experiment 1 Setup

Note. (A) The four possible states (S1–S4; images) and the corresponding optimal actions (A1–A4; key
presses). The mapping between images and keys was randomized across participants. (B) Experiment 1
reward structure Qðs, aÞ . The optimal action for each state is indicated by a green border. (C) On every
trial, the participant observes an image (state) and responds by pressing a key (action). Then, reward
feedback is provided as a green border around the image if the action was rewarded or a gray border if
action was not rewarded. After the feedback, a fixation cross is displayed throughout the intertrial
interval (ITI), before the next trial starts. Participants are able to track remaining time (red bar) and
cumulative reward (green bar) for the block. After the block ends, participants receive feedback on the
total reward gained in the block. Participants are informed of the block’s ITI before starting. See the
online article for the color version of this figure.
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We next tested the hypothesis that humans are sensitive to
memory costs when adjusting policy complexity. One readout
of this is perceived task difficulty—if implementing a high-
complexity policy is costly, then participants should perceive it
as more cognitively demanding. This was indeed the case, as
participants ranked the ITI = 0 s condition the easiest—which
demands the lowest policy complexity—and ranked the ITI = 2 s
condition the most difficult—which demands the highest policy
complexity, t(96) = −5.11, p < 10−6; Figure 4A. Furthermore, we
computed the Spearman correlation for each participant between their
perceived difficulty rating and empirical policy complexity across ITI
conditions and confirmed they were positively correlated at the
single-participant level, t(96) = 5.23, p < 10−6, Cohen’s d = 0.526,
95% CI [0.314, 0.736]. Note that one would have predicted the
opposite if the motor cost of the task conditions dominated, since
shorter ITI conditions demand a higher frequency of button presses to
maximize reward.
Finally, since we confirmed that higher policy complexity is

costlier, we tested our prediction that participants should exhibit a
leftward bias in policy complexity. First, we validated the proposed
linear relationship between policy complexity and RT by fitting
LME models to predict average RT as a function of policy com-
plexity. The fitted model yielded significant effects for the intercept,
fixed effects 0.301 ± 0.0251, t(289) = 12.0, p < 10−26, random
effects SD = 0.161, and policy complexity, fixed effects 0.445 ±
0.0400, t(289) = 11.1, p < 10−23, random effects SD = 0.0870.
Visually, empirical RTs and the LME-predicted RTs correlated well
with one another (Figure 4B), and most participants shared linear
time–cost functions that largely differed by intercept (Figure 4C).

We next used the fitted participant-specific linear time–cost func-
tions to estimate their optimal policy complexity, defined as the
policy complexity level that maximizes time-averaged reward for
each participant in each condition. For each participant, we com-
pared empirical policy complexity to optimal and confirmed a
leftward policy complexity bias for each ITI condition: ITI= 0 s, z=
−2.48, p = .00665, Cliff’s δ = −0.468, 95% CI [−0.630, −0.307];
ITI = 0.5 s, z = −2.14, p = .0160, Cliff’s δ = −0.401, 95% CI
[−0.568, −0.233]; ITI = 2 s, z = −8.20, p < 10−15, Cliff’s δ =
−0.674, 95% CI [−0.794, −0.555] (Figure 4D–4F).

One alternative explanation is that the leftward bias arises became
some fraction of participants reach their individual capacity limits
(upper bound on C), which is less than the optimal policy com-
plexity for a given task condition. On average, this will tend to
produce an apparent leftward bias. To test this hypothesis, we
identified a subgroup of participants with a leftward bias in the ITI=
0 s condition and examined their policy complexity in the ITI = 2 s
condition. If these participants reached their capacity limits in the
ITI = 0 s condition that favors low policy complexity, then we
would predict that they should maintain a similar policy complexity
in the ITI= 2 s condition that favors high policy complexity because
they cannot exceed their capacity limits. We found that this rarefied
group of subjects increased policy complexity in ITI= 2 s relative to
ITI = 0 s, t(74) = 3.88, p < 10−3, Cohen’s d = 0.175, 95% CI
[0.0701, 0.280]. This suggests that the leftward bias is not solely due
to capacity limits.

We also used the above results to address an alternative
explanation of our findings: Perhaps a small subgroup of parti-
cipants adjusted policy complexity, but most of our findings can be
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Figure 3
Experiment 1 Sensitivity to Time Costs
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Note. (A) Trial-averaged reward of participants across ITI conditions (color), and the theoretical upper bound (reward-complexity frontier; black) at each
policy complexity level. Some data points lie above the optimal frontier due to the stochastic nature of reward delivery, coupled with the finite number of trials
participants complete. (B–G)M ± SEM of participant policy complexity (B), average RT (C), action stochasticity (D), perseveration (E), trial-averaged reward
(F), and time-averaged reward (G) across ITI conditions. All SEM error bars were within-participant (Cousineau, 2005). ITI = intertrial intervals; RT =
response time; H(A|S) = action entropy; prev. = previous; avg. = averaged; SEM = standard error of the mean. See the online article for the color version of
this figure.
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attributed to a large subgroup of disengaged participants who
consistently responded randomly across all ITI conditions. To
test this explanation, we used the leftward policy complexity bias
for the ITI = 2 s condition (Figure 4F) and partitioned participants
into two subgroups—a “low-complexity” and a “high-complexity”
group. Consistent with our prior findings, this “low-complexity”
subgroup significantly modulated policy complexity and RT across
ITI conditions (Supplemental Figure S2).

Discussion

We found that participants in Experiment 1 were sensitive to ITI
conditions, modulating their policy complexity and RT in the direction
of time-averaged reward maximization. The experimental data sup-
ported all seven predictions of the policy compression framework,
demonstrating that humans are sensitive to both time and memory
costs when making decisions.

Experiment 2

In Experiment 2, we tested an additional prediction of policy
compression: Humans should exploit environmental regularities
(e.g., multiple states sharing the same optimal action) when com-
pressing their policies (endogenized by the P*ðaÞ term in the optimal

policy). We designed Experiment 2 to test this unique prediction and
to replicate findings from Experiment 1. We introduced environ-
mental regularity by having two states (s1 and s2) share the same
optimal action a1 (Figure 5A). This has the effect that the optimal
marginal action distribution P*ðaÞ is nonuniform and favors that
action. We hypothesized that the effect of the optimal marginal
action distribution would be greatest at low policy complexity, since
marginal actions influence the policy more strongly at low com-
plexity (Equation 4).

Materials and Method

Participants

Two hundred participants (113 women, 83 men, four prefer
not to say) were recruited. All participants did not participate in
Experiment 1. We selected the sample size based on the lowest
estimated effect size (Cohen’s d= 0.245) among dependent variables
of interest, according to analyses of a separate group of N = 50 pilot
participants (data excluded from the final analysis). All analyses were
preregistered at https://aspredicted.org/blind.php?x=VF2_NH6. The
inclusion criterion was identical to Experiment 1. A total of 198
participants (112 women, 82 men, four prefer not to say) met this
inclusion criterion. Participants gave informed consent, and the
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Figure 4
Experiment 1 Linear Mixed-Effects Modeling Results and Sensitivity to Memory Costs
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Note. (A) M ± SEM of perceived difficulty rankings (1 denotes easiest block; 3 denotes hardest) for each ITI condition. (B) Model-predicted RT and
empirical RT, for each participant in each ITI condition. (C) Model-predicted linear relationship between average RT and policy complexity for each
participant. (D–F) Difference between each participant’s optimal (maximizing time-averaged reward according to linear mixed-effects predictions for that
participant) and empirical policy complexity, for each ITI condition (left to right: 0 s, 0.5 s, 2 s). ITI = intertrial intervals; RT = response time; pred =
predicted; SEM = standard error of the mean. See the online article for the color version of this figure.
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Harvard University Committee on the Use of Human Subjects
approved the experiment.

Procedure

Task procedures were identical to those in Experiment 1, except
that in Experiment 2, two of the four states (s1 and s2) shared the
same optimal response a1. The specific images and key presses were
randomized across participants.

Estimating Policy Complexity

Policy complexity was estimated using the same procedures as in
Experiment 1.

Statistical Analysis

Statistical testing and error bar visualization procedures were
identical to those in Experiment 1. We report all pairwise com-
parisons, their effect sizes, and the 95% CIs of the effect sizes in
Supplemental Tables S3 and S4. LME modeling procedures were
identical to those in Experiment 1.

Results

Our findingswere largely identical towhat we found in Experiment
1. Participants achieved near-maximal trial-averaged reward as a
function of policy complexity (Supplemental Figure S3B). Policy
complexity increased as a function of ITI, t(197) = −9.74, p < 10−18;
Figure 5B. RTs similarly slowed as a function of ITI, t(197) = −7.95,
p < 10−13; Figure 5C. Action stochasticity, t(197) = 1.95, p = .0264;
perseveration, t(197) = 7.61, p < 10−12; and time-averaged reward,
t(197) = 34.8, p < 10−85 each decreased as a function of ITI.
However, the 95% CI for the effect size of action stochasticity
included zero (Cohen’s d = 0.123, 95% CI [−0.002, 0.248]).
According to the policy compression framework, participants

should exploit the fact that states s1 and s2 share the same optimal
action a1 (Figure 5A), increasingly choosing a1 as ITI decreases,
because this favors lower policy complexity. To gain an intuition, in
the extreme case where policy complexity equals to zero, participants
ignore the stimuli entirely, and they should always pick action a1 since

this maximizes reward. We looked at the policies for stimuli s3 and s4
to identify the effect of the marginal action distribution. For stimuli s3
and s4, under high policy complexity, a1 should be chosen infre-
quently since this is not the reward-maximizing option. However,
as policy complexity decreases and the marginal action distribution
has greater influence on the policy, a1 should be chosen more often.
Consistent with our prediction, the probability of choosing a1
decreased monotonically as a function of ITI, t(197) = 1.88, p =
.0305; Figure 5D. However, the effect size was fairly small, with the
95% CI including zero (Cohen’s d= 0.124, 95%CI [−0.006, 0.256]).
One limitation of this preregistered analysis is it only compares the
most extreme datapoints, at ITI= 0 s and 2 s. We therefore performed
a post hoc LME regression analysis utilizing data from all three
conditions. We included intercept and ITI condition as fixed effects
and independent random effects. The resulting fixed effect for ITI
was significant, coefficient estimate −0.0164 ± 0.00766, t(592) =
−2.14, p= .0330, random effects SD= 0.00134, providing additional
evidence for a monotonically decreasing probability of choosing a1
with increased ITI.

We further replicated Experiment 1’s findings related to memory
costs. Participants ranked the ITI = 0 s condition the easiest and the
ITI = 2 s condition the hardest, t(197) = −12.0, p < 10−24, and this
trend held at the single-participant level, t(197) = 10.6, p < 10−20,
Cohen’s d = 0.756, 95% CI [0.597, 0.913]. The LME had significant
effects for the intercept, fixed effects 0.214 ± 0.0151, t(592) = 14.2,
p < 10−38, random effects SD= 0.0336, and policy complexity, fixed
effects 1.02 ± 0.0115, t(592) = 8.89, p < 10−17, random effects SD =
0.617. We used the same procedure as Experiment 1 to calculate
participant-specific optimal policy complexity, and we again found
a leftward bias in the difference between empirical and optimal
policy complexity for the ITI = 2 s condition, z = −6.21, p < 10−9,
Cliff’s δ = −0.444, 95% CI [−0.546, −0.343] (Supplemental
Figure S3F). We did not find a leftward bias for the ITI = 0 s
and 0.5 s conditions (ITI = 0 s, z = 11.7, p = 1.00, Cliff’s δ =
0.829, 95% CI [0.756, 0.902]; ITI = 0.5 s, z = 7.57, p = 1.00,
Cliff’s δ= 0.427, 95%CI [0.332, 0.523]; Supplemental Figure S3F),
likely because the optimal policy complexity of most participants
for these ITI conditions (ITI = 0 s,M ± standard error of the mean
= 0.00345 ± 0.00144 bits; ITI = 0.5 s, 0.0616 ± 0.00756 bits) was
already very close to zero—the lowest possible policy complexity
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Figure 5
Experiment 2 Behavioral Results
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Note. (A) Reward probability for each state–action pair. S1–S4 denote states, A1–A4 denote actions. (B–D) M ± SEM of
participant policy complexity (B), average RT (C), and mean probability of choosing action a1 in states s3 and s4 (D), across ITI
conditions. ITI = intertrial intervals; RT = response time; SEM = standard error of the mean. See the online article for the color
version of this figure.
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level. In contrast, in Experiment 1, the optimal policy complexity
level for ITI = 0 s was 0.227 ± 0.0153 bits, higher than the
corresponding optimal policy complexity for Experiment 2. We
conducted the same subgroup partition as in Experiment 1 and
found that the “low-complexity” subgroup still significantly
modulated policy complexity and RT as a function of ITI (see
Supplemental Figure S2).

Discussion

In Experiment 2, we replicated findings from Experiment 1,
which demonstrates their robustness. Most importantly, the data
support an important prediction of the framework: Participants
exploit environmental regularities by incorporating them into the
marginal action distribution, PðaÞ, and that this effect is most
pronounced at low policy complexity. This finding contributes to
recent work demonstrating that participants exploit environmental
regularities at low policy complexity (Lai & Gershman, 2024). We
did, however, observe a systematic deviation from the predictions
of the theory. Quantitatively, policy compression predicts that as
policy complexity approaches zero, agents should deterministically
choose the shared action a1 for states s3 and s4; our participants
systematically had higher entropy policies (i.e., their policies were
more stochastic), leading to smaller effect sizes than predicted by
the framework. Overall, this systematic deviation merits future
investigation.

Experiment 3

We have so far demonstrated that humans modulate policy
complexity in response to ITI manipulations to maximize time-
averaged reward. However, manipulating ITI is not the only task
condition that should modulate policy complexity and RTs. The
relationship between policy complexity and decoding speed predicts
set-size effects, a seemingly disparate domain: RTs should grow as a
function of set size because larger sets require higher policy
complexity. As the set size grows and more stimuli must be encoded
by the policy, the optimal policy complexity also grows to maximize
time-averaged reward (Figure 1G and 1H).
In Experiment 3, we manipulated stimulus set size while keeping

ITI fixed. We made the following predictions related to time costs:
Larger set sizes should be associated with (a) higher policy com-
plexity, (b) slower RTs, (c) decreased perseveration, and (d)
decreased time-averaged reward. We also made similar predictions
related to memory costs: (e) Greater set sizes should be associated
with higher perceived difficulty and (f) we should observe a sys-
tematic leftward bias in empirical policy complexity relative to
optimal.
In Experiment 3, we vary the state set size (up to six) but keep the

number of available actions fixed at the largest set size (at six).
Hence, in conditions where the set size is less than the number of
actions, there exist actions that are suboptimal for all possible states.
The framework predicts that such actions should never be chosen,
assigning them zero probability in the optimal policy π*ðajsÞ. This
yields a prediction unique to policy compression: At low policy
complexity, the optimal policy will assign nonzero probability to
suboptimal actions in a given state, as long as they are optimal for
some other state (e.g., if a1 is optimal in s1, then a1 will be chosen
with some nonzero probability in other states). Further, the

probability of choosing these suboptimal actions will increase at
lower values of policy complexity. We therefore predict that (g)
choosing a suboptimal action in a given state, conditioned on that
action being optimal for some other state, will be more probable for
smaller set sizes when policy complexity is the smallest.

Materials and Method

Participants

One hundred one participants (54 women, 44 men, two nonbinary,
one prefer not to say) were recruited. All participants did not participate
in either Experiment 1 or 2. We selected the sample size based on the
lowest estimated effect size (Cohen’s d = 0.459) among dependent
variables of interest, according to analyses of a separate group of N =
48 pilot participants (data excluded from the final analysis). All
analyses were preregistered at https://aspredicted.org/ZSW_HFY. The
inclusion criterion was identical to Experiments 1 and 2. A total of 99
participants (53 women, 43 men, two nonbinary, one prefer not to say)
met this inclusion criterion and were therefore included. Participants
gave informed consent, and the Harvard University Committee on the
Use of Human Subjects approved the experiment.

Procedure

The three test blocks had stimuli set sizes of 2, 4, and 6 stimuli
respectively, and their order was randomized across participants.
Each set size used unique images in order to make each set-size
manipulation as independent as possible. The action set size was fixed
at six across all set-size conditions. We used ITI = 2 s for each block.
Participants were informed of the ITI and set size of each block.

Each stimulus was associated with a unique optimal action. Like
Experiments 1 and 2, optimal actions yielded reward with proba-
bility 0.75, and suboptimal actions yielded reward with probability
0.25. Stimuli were randomized and presented in counterbalanced
runs of 8, 8, and 10 trials for Set Sizes 2, 4, and 6 respectively (each
stimulus therefore appeared 4 times, 2 times, and 2 times respec-
tively within each run).

For each set-size condition, participants first completed three
training blocks with ITI = 0 s, 0.5 s, and 2 s, similar to Experiments 1
and 2. We did this to encourage learning and minimize the length of
training. To ensure similar learning across set-size conditions, we
presented each stimulus 48 times during training (24 for ITI = 0 s, 16
for ITI = 0.5 s, and eight for ITI = 2 s) rather than training for a fixed
time duration. Participants were told that the mapping from stimuli to
actions remained fixed between training and test blocks. After
completing the three training blocks, participants proceeded to the 3-
min test block of the same set-size condition. The structure, visual
display, and duration of blocks were identical to Experiments 1 and 2.

After completing the whole experiment, participants ranked the
perceived difficulty for each block. Participants additionally com-
pleted the Barratt Impulsiveness Scale, which we did not analyze for
this article.

Estimating Policy Complexity

Policy complexity was estimated for each participant in each set-size
condition. Other details were identical to those in Experiments 1 and 2.
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Statistical Analysis

Statistical testing and error bar visualization procedures
were identical to those in Experiments 1 and 2, except that tests
were carried out between set-size conditions instead of ITI
conditions. In the main text, we report comparisons between Set
Size 2 versus 6. We report all pairwise comparisons, their effect
sizes, and the 95% CIs of the effect sizes in Supplemental Tables
S5 and S6. LME modeling procedures were identical to those in
Experiments 1 and 2.

Results

We found support for our predictions that humans are sensitive to
time costs in response to set-size manipulations. Participants achieved
near-maximal trial-averaged reward as a function of policy complexity
(Figure 6A). Consistent with our predictions, policy complexity
increased as a function of set size, t(98)=−10.5, p< 10−17; Figure 6B,
and RTs slowed, t(98) = −3.97, p < 10−4; Figure 6C. Perseveration
decreased as a function of set size, t(98) = 4.00, p < 10−4; Figure 6D.
The probability of choosing a suboptimal action, conditioned on that
action being optimal for some other state, increased for smaller set
sizes, t(98) = 2.84, p = .00275; Figure 6E. Finally, time-averaged
reward decreased as a function of set size, t(98) = 5.28, p < 10−6.
We additionally found support for our predictions regarding

memory costs. Participants ranked the Set Size 2 condition as the
easiest and the Set Size 6 condition as the hardest, t(98) = −7.48, p <
10−10; Figure 6F, and this trend held at the single-participant level,
t(98) = 4.59, p < 10−5, Cohen’s d = 0.458, 95% CI [0.251, 0.663].
We fitted the LME and identified significant effects for the intercept,
fixed effects 0.354 ± 0.0287, t(295)= 12.4, p< 10−27, random effects

SD = 0.0381, and policy complexity, fixed effects 0.568 ± 0.0977,
t(295) = 5.82, p < 10−7, random effects SD = 0.568. We used the
same procedure as Experiment 1 to calculate participant-specific
optimal policy complexity, and we again found a leftward bias in the
difference between empirical and optimal policy complexity for all
set-size conditions: Set Size 2, z = −7.86, p < 10−14, Cliff’s δ =
−0.774, 95% CI [−0.865, −0.684]; Set Size 4, z = −7.71, p < 10−14,
Cliff’s δ = −0.759, 95% CI [−0.848, −0.670]; Set Size 6, z = −8.02,
p< 10−15, Cliff’s δ=−0.777, 95%CI [−0.867,−0.687] (Figure 6G).

Similar to Experiment 1, we find that capacity limits alone are
insufficient to explain the leftward bias. We isolated the subgroup of
participants with a leftward bias in the Set Size 2 condition and
examined their policy complexity in the Set Size 6 condition. If capacity
limits were sufficient to explain the leftward bias, then this subgroup
should not increase policy complexity in the Set Size 6 condition.
Counter to hypothesis, this subgroup increased policy complexity in the
Set Size 6 condition compared to Set Size 2, t(87) = 10.1, p < 10−15,
Cohen’s d = 0.397, 95% CI [0.303, 0.492]. This suggests that the
leftward bias in Set Size 2 is not solely due to capacity limits.

Discussion

In Experiment 3, we have demonstrated the applicability of policy
compression across a different form of task manipulation—stimulus
set size, as opposed to ITI studied in Experiments 1 and 2. Importantly,
both ITI and set-size manipulations induce human behavioral changes
predicted by the framework. In addition, Experiment 3 shows that the
framework is well-suited for a variety of value-based tasks, in which
the environmental state does not feature multiple stimuli each favoring
a different action.
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Figure 6
Experiment 3 Behavioral and Modeling Results
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Note. (A) Trial-averaged reward across set-size conditions (color). The solid line denotes the theoretical upper bound (reward-complexity frontier) for each
set size. Note that some datapoints lie above the upper bound due to the stochastic nature of reward delivery. (B–E) M ± SEM for empirical (black) policy
complexity (B), RT (C), perseveration (D), perceived difficulty (E), and the probability of choosing a suboptimal action that is optimal for some other possible
state, averaged over all eligible actions (F), across set-size conditions. (G) Difference between each participant’s optimal policy complexity (i.e., policy
complexity that maximizes time-averaged reward) and empirical policy complexity, for each set-size condition. RT = response time; SEM = standard error of
the mean. See the online article for the color version of this figure.
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Process-Level Modeling With Evidence-Accumulation
Models

We next sought to understand whether standard formulations of
prior models could account for our experimental results. We focus
on evidence accumulation models as they are capable of generating
choice and RT data in multialternative choice settings. These models
assume agents integrate sequential noisy observations to a decision
bound to make a choice, with the RT determined by the time it
took to accumulate evidence (Forstmann et al., 2016). These models
have been extended to value-based instrumental learning tasks
by assuming agents sequentially retrieve (noisy) Q values from
memory (Fontanesi et al., 2019; McDougle & Collins, 2021; Miletić
et al., 2020; Pedersen et al., 2017; Tajima et al., 2019).
We focus specifically on the linear ballistic accumulator (LBA)

class of models, as they are naturally well-suited for multialternative
choice settings like our experiments (Brown & Heathcote, 2008;
Busemeyer et al., 2019; Donkin et al., 2009, 2011) and have fre-
quently been used in model studies that synthesize memory and
value-based decision making (McDougle & Collins, 2021; Miletić et
al., 2020; van Ravenzwaaij et al., 2020). The simplest LBA assumes
the following: Each available action corresponds to one independent
accumulator. On each trial, the start point of each accumulator is
sampled uniformly between ½0,A$. The drift rate ki of each accu-
mulator i is sampled from a Gaussian distribution Nðvi, s2Þ, where vi
is the mean drift rate of the accumulator and s2 is the variance. As is
standard, vi takes one of two values: vi = vcorrect for the correct action
and vincorrect otherwise where vincorrect < vcorrect (Donkin et al., 2011).
We fixed s = 0.1 to ensure parameter identifiability (Donkin et al.,
2009; McDougle & Collins, 2021). On each trial, each accumulator
ballistically accumulates evidence, and action i is taken when the first
accumulator reaches a decision bound b. The trial’s RT is the time
taken for this first accumulator to reach the bound plus some non-
decision time t0: RT = t0 + b−A

ki
. The simplest LBA model contains

five free parameters: A, b, vcorrect, vincorrect, t0. This model formulation
allows us to express the likelihood of observing a trial’s choice and
RT for a given set of parameter values. Therefore, the LBA
parameters can be fitted jointly on choice and RT data, under
maximum-likelihood estimation procedures.

Standard LBA Models

We first fit three variants of the LBA model to data from each
experiment, each with increasing degrees of freedom. Model 1
(LBA 1) is the LBA we have just described, with five free
parameters shared across all three ITI/set-size conditions. Model 2
(LBA 2) fits the bound height parameter b independently for each
ITI/set size condition. Model 3 (LBA 3) fits all five parameters
separately for each ITI and set-size condition to allow for the
greatest flexibility. After fitting these three models, we simulated
choice and RT data over the same task conditions seen by
participants.
Across the three experiments, the fitted LBA models demonstrate

an increase in policy complexity as a function of ITIs or set size, just
like human participants (Figure 7A). The more complex LBA 2 and
3 also qualitatively captured the increase in RT due to condition-
specific parameters. However, these LBA models could not capture
the perseverative tendencies of the subjects. They fail to repeat
previous actions as frequently as subjects (Figure 7C) and fail to take

advantage of the optimal marginal action distribution (Figure 7D).
This failure is particularly prominent in Experiment 3, where LBAs
diverge further from human behavior at low set-size conditions.
This is because the LBAs allocate probability across all actions in
the Set Size 2 and 4 conditions, even for actions that are suboptimal
across all states. Given these model failures, we sought to augment
the LBAs with a mechanism for capitalizing on the statistical
regularities within each task.

LBA Models Augmented With Perseveration

To investigate whether perseveration toward P*ðaÞ—as predicted
by policy compression—could provide a more parsimonious
explanation for human behavior, we designed and fit a new LBA
model (LBA 4) that builds on LBA 2 (which allows the bound
height b to vary across conditions). LBA 4 updates a marginal action
distribution, PðaÞ, on a trial-by-trial basis and uses this estimate to
bias action selection. This estimate of PðaÞ provides a bonus to the
mean drift rate vðaÞ of each accumulator/action a in a manner that is
similar to Equation 4, the optimal policy. Mathematically, this
model takes the following form:

P0ðaÞ ∝ 1, (7)

PτðaÞ ∝ Pτ− 1ðaÞ + αP · Iða = aτ− 1Þ, (8)

vτðaÞ = expðvrewardðajsτÞ + αV · logðPτðaÞÞÞ, (9)

ðaτ, RTτÞ∼LBAðA, b, t0, vτ, s = 0.1Þ, (10)

where τ denotes the current trial, ðτ − 1Þ denotes the previous trial,
Ið·Þ denotes the indicator function, vrewardðajsτÞ equals vcorrect or
vincorrect depending on whether a is an optimal action for the current
state sτ, and vτ = ðvτða1Þ, vτða2Þ; : : : Þ denote themean drift rates for
all accumulators in the current trial. Specifically, Equation 8 updates
the action distribution based on the previous trial’s chosen action
aτ− 1, using a δ learning rule with learning rate αP. Equation 9
mimics Equation 4, the optimal policy, in allowing reward and the
marginal action distribution to jointly affect choices, where the
trade-off parameter αV acts similarly to β and is fitted independently
across task conditions. The joint influence of both rewards and past
actions manifests in the mean drift rates of each accumulator, which
are used to generate choice and RT data for the current trial ðaτ, RTτÞ
using the usual LBA setup. LBA 4 offers a plausible process-level
implementation of policy compression, connecting trial-by-trial
repetition of previous actions with a bias toward more frequently
rewarded actions.

Overall, LBA 4 contains 11 free parameters: ðA, b1, b2, b3, t0,
vcorrect, vincorrect, αP, αV1, αV2, αV3Þ, where b and αV are fitted inde-
pendently for each task condition (indexed by 1, 2, and 3). We fit LBA
4 to data from each experiment and visualize its simulated data in
Figure 7. Behaviorally, LBA 4 performs similarly to LBAs 1–3 in
replicating the increasing trends of policy complexity and RT (Figure
7A and 7B). This is unsurprising because it builds on top of LBA2 and
should do at least as well as that model. Importantly, it better captures
the probability of repeating previous actions (Figure 7C), as well as the
increasing trends in Pða1js3 or s4Þ in Experiment 2 and P(suboptimal
action optimal for other states) in Experiment 3. Quantitative model
comparison using the Bayesian information criterion revealed that
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LBA 4 is the most parsimonious model for every experiment
(Supplemental Figure S5).

Discussion

By fitting various LBA models, we demonstrate that standard
parameterization could not capture key predictions of policy
compression nor of human behavior—perseveration toward the
marginal action distribution P*ðaÞ, nor its plausible process-level
implementation of repeating previous actions. In contrast, by intro-
ducing a mechanism for perseveration inspired by policy compres-
sion, the resultant LBA 4 better captured these predictions, in a way
more similar to human participants. Further, model comparison re-
sults favored LBA 4, highlighting the novel contribution of policy
compression in explaining a nontrivial component of human
behavior.
Nevertheless, LBA 4 remains imperfect in capturing perseveration

during Experiment 2, systematically underestimating Pða1js3 or s4Þ
for all three ITI conditions (although it still performs better than other

LBAs). We allude to the deviations of human subjects from the
theory’s predictions in the Experiment 2 Discussion (i.e., humans
tend to adopt higher entropy policies than predicted by the theory).
However, another possible contributor is a key disparity between
LBA 4 and policy compression: It is unlikely that the competition
between different LBA accumulators acts equivalently to the nor-
malizing operation in Equation 4. These remaining disparities call
for more refined descriptive models that match the logic of policy
compression.

General Discussion

Here, we developed a theoretical decision-making framework that
jointly considers both time and memory costs. Across three human
instrumental learning tasks, we tested its predictions and validated its
explanatory breadth in seemingly disparate domains. Our findings
reveal that humans are sensitive to the time cost of decoding policies
when striving to maximize time-averaged reward. Importantly, the
task manipulations—ITIs and set sizes—did not impose rigid
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Figure 7
LBA Model Predictions
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Note. Row 1: Experiment 1 predictions. (A–C) Empirical (black) and LBA-predicted (color)M ± SEM policy complexity (A), RT (B), and perseveration (C)
of participants, as a function of ITI. Row 2: Experiment 2 predictions. Same as Row 1, with (D) being a replicate of Figure 5D, additionally with LBA
predictions overlaid. Row 3: Experiment 3 predictions. These four panels are replicates of Figure 6B–6E, additionally with LBA predictions overlaid. RT =
response time; ITI = intertrial intervals; LBA = linear ballistic accumulator; SEM = standard error of the mean. See the online article for the color version of
this figure.

TIME AND MEMORY COSTS JOINTLY INFLUENCE DECISIONS 13

https://doi.org/10.1037/xge0001760.supp


constraints on participants’ behavior, allowing them to freely adjust
their RTs and the complexity of their policies based on the task
context. These features enable us to interpret changes in policy
complexity and RT as reflections of sensitivity to time and memory
costs, rather than hard constraints (e.g., response deadlines) dictated
by our experimental design.
The policy compression framework contributes to our under-

standing of value-based decision making in several ways. First, by
considering both time and memory costs, the framework unifies
several well-studied behavioral and cognitive variables that appear
seemingly disparate. It links choice and RT data for value-based
decisions under a single coherent, normative framework, a long-
standing goal of cognitive science, and separate from the approach of
combining sequential sampling models with reinforcement learning
models to generate both choices and RTs (Fontanesi et al., 2019;
McDougle&Collins, 2021;Miletić et al., 2020; Pedersen et al., 2017;
Tajima et al., 2019). This points to an area of future work for the
policy compression framework, which does not naturally generate RT
distributions. In this framework, policy complexity is the minimum
average description length of the codewords used to decode actions
and therefore only maps onto average RT—a point statistic. In
contrast, sequential sampling models are naturally suited for fitting
and generating full RT distributions.
While descriptive models, such as LBAs, can generate a speed–

accuracy trade-off (i.e., by lowering the decision bound, actions
become faster but less accurate) and are capable of generating
policies of higher complexity as a function of ITI and set sizes, we
demonstrated here that a factorial combination of “vanilla” LBA
parameters is insufficient to explain the host of predictions made by
policy compression. For example, they were unable to account for
perseverative effects. This is because the LBAs did not include a
mechanism for “remembering” prior actions and using action his-
tory to bias the tendency of future actions. One can imagine
incorporating action history by specifying a prior over Q values that
favors previously chosen actions or by converting past action fre-
quency (in units of probability) to Q values (in units of reward), but
such decisions remain largely ad hoc. By showing the higher quality
LBA 4 model fits, we demonstrate that policy compression can
provide both justification and insight for future modeling decisions
(e.g., normalized drift rates, adjusting accumulator start points as a
function of action history) to better fit empirical behavior.
Policy compression offers normative insight into a broad set

of seemingly disparate task manipulations—ITIs, environmental
regularities, and stimulus set sizes. The framework made clear
predictions that could readily be factored into the maximization of
time-averaged reward (Equation 6). Previous normative frameworks
are more limited in their explanatory breadth in this regard. For
example, there is a normative account for how speed and accuracy
should trade off as a function of ITI manipulations in drift diffusion
models (Forstmann et al., 2016), but this framework does not readily
generalize to tasks where there are more than two possible actions.
The race model proposed by Tajima et al. (2019) accommodates
multialternative settings, but their framework is limited to settings in
which agents must choose one of multiple stimuli displayed
simultaneously (i.e., each stimulus provides noisy evidence for its
unique corresponding action). In this case, the number of actions is
constrained to be the number of simultaneous stimuli. In our tasks
where participants observed a single state and could make one of
up to six actions, the normative insights provided by these past

models—which would likely need to assume that a single stimulus
elicits Q value retrieval for all actions simultaneously—become less
clear. The policy compression framework, in contrast, provides a
single explanation for both the speed–accuracy trade-off effects and
set-size effects we observed: These arise due to the time cost of
decoding policies. Our finding that policy complexity and RT are
linked generalizes to task settings where RTs are imposed by
response deadlines, rather than fully determined by participants
(Lai & Gershman, 2024). This is consistent with the idea that actions
are generated by time-dependent decoding.

One of the key features of policy compression is the inclusion of a
state-independent term, P*ðaÞ, in modulating behavior, which we
have argued provides a normative basis for perseveration (Gershman,
2020). Importantly, at low policy complexity, the influence of P*ðaÞ
is greatest, because this is when policies are highly state-indepen-
dent. According to the framework, one role of P*ðaÞ is to exploit
environmental regularities when they exist and allow agents to
maximize reward for no increase in the memory cost (since it does
not require encoding state information). In Experiments 2 and 3, we
validated this nontrivial prediction. Further, assuming participants
estimate P*ðaÞ on a trial-by-trial basis (e.g., via an iterative update
process; Bari et al., 2024; Gershman & Lai, 2021; Lai & Gershman,
2024), then there should be a greater tendency to repeat actions at low
complexity. Across manipulations of ITIs, environmental regulari-
ties, and set sizes, this is what we observed.

A distinctive hypothesis of the policy compression framework is a
linear relationship between RT and policy complexity. This was
supported by LME fits across all experiments (see also Lai &
Gershman, 2021, for additional evidence). In another experiment
featuring five different set sizes, and therefore five independent
measurements of policy complexity and RT for each participant, we
again identified a linear relationship, suggesting that our identifi-
cation of a linear fit was not a consequence of only having three
datapoints per participant (Supplemental Figure S6A–S6F). To
accommodate the possibility of nonlinear relationships between RT
and policy complexity, we fit regressions testing multiple possible
functional forms and found support for the LME model used
throughout this article (Supplemental Figure S6G–S6I). The success
of our chosen LME fits hints at the possibility that a discrete, bit-by-
bit action decoding process, as opposed to sequential sampling of
noisy evidence from memory, may better explain RTs in value-
based decision-making paradigms. Distinguishing this action de-
coding account from sequential sampling accounts appears to be a
valuable area of inquiry—in either case, a successful process-level
account should replicate the approximately linear relationship
between average RT and policy complexity. Generally speaking, it
is unlikely that a Huffman code is exactly how the brain transmits
information, since it likely requires unreasonably high precision. In
support of this idea, the relationship between set size and RT in
working memory tasks flattens for large set sizes (Longstreth, 1988;
Seibel, 1963). However, given the relatively sparse state space of
our experiments, we likely operated within the linear regime, ex-
plaining the quality of our RT-policy complexity fits.

In addition to time costs, our results also demonstrate that humans
are sensitive to memory costs. Participants reported lower perceived
difficulty in task conditions where they used low-complexity pol-
icies, across both ITI and set-size manipulations. This suggests that
there is an intrinsic costliness to information gain. Consistent with
this view, we observed a systematic leftward bias in empirical policy

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
l
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

14 LIU, LAI, GERSHMAN, AND BARI

https://doi.org/10.1037/xge0001760.supp
https://doi.org/10.1037/xge0001760.supp


complexity, compared to optimal as predicted by the framework
(which does not incorporate such memory costs). These memory
costs have previously been suggested to be a function of the amount
of information required to update a prior distribution (i.e., via
Kullback–Leibler divergence between prior and posterior dis-
tributions; Zenon et al., 2019). If we take the prior as P*ðaÞ and the
posterior as πðajsÞ, then this measure of divergence can explain the
memory costs we have observed here. Future studies should
mathematically formalize this notion of memory costs so that the
leftward bias we observed may be seen as a prediction of the theory
(with the inclusion of a memory cost), rather than a systematic
deviation. How this memory cost is instantiated in biological
hardware remains a subject of future research.
Although the LME fits pointed to a linear RT to policy complexity

relationship within participant, the same relationship across parti-
cipants plateaued at high complexity (Supplemental Figure S3C).
This could be due to a tendency for participants with steeper RT-
policy complexity relationships to use low-complexity policies,
whereas those with flatter relationships preferred to use high-
complexity policies. Such behavior could be viewed as rational—if
high-complexity policies cost too much time, it can make sense to
employ low-complexity policies instead. This could be a valuable
area of future work, since such relationships may explain a tendency
toward impulsive behaviors.
The information-theoretic approach underlying policy compres-

sion resonates with past work on choice and memory retrieval. Policy
compression is related to the Hick–Hyman Law, which also assumes
constant information inspection rates (i.e., linear decoding time
costs), but pertains to the number of allowable actions (Hick, 1952).
Policy compression provides predictions for behavior even when the
total number of actions is fixed. Further, the framework’s prediction
regarding perseveration also connects with rational analyses of
memory, which propose that memory retrieval is optimized to capture
statistical regularities in the environment, favoring items that are
relevant across contexts (Anderson &Milson, 1989). Future research
integrating memory and decision making could provide a more
unified understanding of how information shapes human behavior
across both domains.
Another promising avenue for future research is to identify the

neural mechanisms that approximate policy compression, which
could shed light on the state and action representations used by
the brain and clarify why behavior sometimes deviates from this
normative framework. Earlier neuroscience studies hypothesized
how neural firing rates can instantiate optimal entropy codes
(Qian & Zhang, 2020). With regard to rate-distortion theory, we
previously found that tonic dopamine controls the allocation of
cognitive resources (Bari et al., 2024; Bari & Gershman, 2023;
Mikhael et al., 2021). We have begun to explore how phasic
midbrain dopamine is modulated by policy complexity (Gershman
& Lak, 2024). In the domain of visual working memory, we found
that rate-distortion theory predicts novel firing rate properties of
dorsolateral prefrontal cortex, a region critical for the maintenance
of information in working memory (Jakob & Gershman, 2023). We
posit that resource-rational connectionist models may be particularly
valuable since they can better approximate biological structural
motifs (e.g., recurrent loops; Binz et al., 2022). Understanding these
neural processes could significantly advance our knowledge of how
the brain manages cognitive resources in complex decision-making
settings.

Constraints on Generality

We recruited participants from Amazon Mechanical Turk, using
English as the instruction language. We acknowledge the possibility
of behavioral differences induced by online versus in-person task
presentation formats, as well as cross-cultural differences. However,
we have no evidence suggesting that such variations would change
our results significantly. Future work should be carried out to assess
the robustness of our results to population group changes.

Conclusion

In summary, by considering both time and memory as concurrent
resources consumed by decisions, we have developed a normative
framework that specifies the relationship between habitual and goal-
directed components of behavior, as well as their manifestation in
choice and RT profiles. We have shown that the framework can
predict speed–accuracy trade-offs and set-size effects, which de-
monstrates the potential of resource-rational analysis—interpreting
decisions as optimizing a balance between reward and resource
expenditure—in explaining human decisions. We believe future
work that jointly considers multiple cognitive costs promises to have
broad explanatory breadth of human behavior.

References

Anderson, J. R., & Milson, R. (1989). Human memory: An adaptive per-
spective. Psychological Review, 96(4), 703–719. https://doi.org/10.1037/
0033-295X.96.4.703

Balci, F., Simen, P., Niyogi, R., Saxe, A., Hughes, J. A., Holmes, P., &
Cohen, J. D. (2011). Acquisition of decision making criteria: Reward rate
ultimately beats accuracy. Attention, Perception, & Psychophysics, 73(2),
640–657. https://doi.org/10.3758/s13414-010-0049-7

Bari, B. A., & Gershman, S. J. (2023). Undermatching is a consequence of
policy compression. Journal of Neuroscience, 43(3), 447–457. https://
doi.org/10.1523/JNEUROSCI.1003-22.2022

Bari, B. A., Krystal, A. D., Pizzagalli, D. A., & Gershman, S. J. (2024).
Computationally-informed insights into anhedonia and treatment by κ-
opioid receptor antagonism. medRxiv. https://doi.org/10.1101/2024.04
.09.24304873

Bhui, R., Lai, L., & Gershman, S. J. (2021). Resource-rational decision
making.CurrentOpinion in Behavioral Sciences, 41, 15–21. https://doi.org/
10.1016/j.cobeha.2021.02.015

Binz, M., Gershman, S. J., Schulz, E., & Endres, D. (2022). Heuristics from
bounded meta-learned inference. Psychological Review, 129(5), 1042–
1077. https://doi.org/10.1037/rev0000330

Bogacz, R., Hu, P. T., Holmes, P. J., & Cohen, J. D. (2010). Do humans
produce the speed–accuracy trade-off that maximizes reward rate?
Quarterly Journal of Experimental Psychology, 63(5), 863–891. https://
doi.org/10.1080/17470210903091643

Bossaerts, P., Yadav, N., & Murawski, C. (2019). Uncertainty and compu-
tational complexity. Philosophical Transactions of the Royal Society B,
374(1766), Article 20180138. https://doi.org/10.1098/rstb.2018.0138

Brown, S. D., &Heathcote, A. (2008). The simplest complete model of choice
response time: Linear ballistic accumulation. Cognitive Psychology, 57(3),
153–178. https://doi.org/10.1016/j.cogpsych.2007.12.002

Busemeyer, J. R., Gluth, S., Rieskamp, J., & Turner, B. M. (2019). Cognitive
and neural bases of multi-attribute, multi-alternative, value-based deci-
sions. Trends in Cognitive Sciences, 23(3), 251–263. https://doi.org/10
.1016/j.tics.2018.12.003

Callaway, F., Griffiths, T. L., Norman, K. A., & Zhang, Q. (2024). Optimal
metacognitive control of memory recall. Psychological Review, 131(3),
781–811. https://doi.org/10.1037/rev0000441

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
l
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

TIME AND MEMORY COSTS JOINTLY INFLUENCE DECISIONS 15

https://doi.org/10.1037/xge0001760.supp
https://doi.org/10.1037/0033-295X.96.4.703
https://doi.org/10.1037/0033-295X.96.4.703
https://doi.org/10.1037/0033-295X.96.4.703
https://doi.org/10.1037/0033-295X.96.4.703
https://doi.org/10.1037/0033-295X.96.4.703
https://doi.org/10.1037/0033-295X.96.4.703
https://doi.org/10.3758/s13414-010-0049-7
https://doi.org/10.3758/s13414-010-0049-7
https://doi.org/10.1523/JNEUROSCI.1003-22.2022
https://doi.org/10.1523/JNEUROSCI.1003-22.2022
https://doi.org/10.1523/JNEUROSCI.1003-22.2022
https://doi.org/10.1523/JNEUROSCI.1003-22.2022
https://doi.org/10.1523/JNEUROSCI.1003-22.2022
https://doi.org/10.1101/2024.04.09.24304873
https://doi.org/10.1101/2024.04.09.24304873
https://doi.org/10.1101/2024.04.09.24304873
https://doi.org/10.1101/2024.04.09.24304873
https://doi.org/10.1101/2024.04.09.24304873
https://doi.org/10.1016/j.cobeha.2021.02.015
https://doi.org/10.1016/j.cobeha.2021.02.015
https://doi.org/10.1016/j.cobeha.2021.02.015
https://doi.org/10.1016/j.cobeha.2021.02.015
https://doi.org/10.1016/j.cobeha.2021.02.015
https://doi.org/10.1016/j.cobeha.2021.02.015
https://doi.org/10.1016/j.cobeha.2021.02.015
https://doi.org/10.1037/rev0000330
https://doi.org/10.1037/rev0000330
https://doi.org/10.1080/17470210903091643
https://doi.org/10.1080/17470210903091643
https://doi.org/10.1080/17470210903091643
https://doi.org/10.1098/rstb.2018.0138
https://doi.org/10.1098/rstb.2018.0138
https://doi.org/10.1098/rstb.2018.0138
https://doi.org/10.1098/rstb.2018.0138
https://doi.org/10.1016/j.cogpsych.2007.12.002
https://doi.org/10.1016/j.cogpsych.2007.12.002
https://doi.org/10.1016/j.cogpsych.2007.12.002
https://doi.org/10.1016/j.cogpsych.2007.12.002
https://doi.org/10.1016/j.cogpsych.2007.12.002
https://doi.org/10.1016/j.cogpsych.2007.12.002
https://doi.org/10.1016/j.tics.2018.12.003
https://doi.org/10.1016/j.tics.2018.12.003
https://doi.org/10.1016/j.tics.2018.12.003
https://doi.org/10.1016/j.tics.2018.12.003
https://doi.org/10.1016/j.tics.2018.12.003
https://doi.org/10.1016/j.tics.2018.12.003
https://doi.org/10.1037/rev0000441
https://doi.org/10.1037/rev0000441


Collins, A. G. E. (2018). The tortoise and the hare: Interactions between
reinforcement learning and working memory. Journal of Cognitive
Neuroscience, 30(10), 1422–1432. https://doi.org/10.1162/jocn_a_01238

Collins, A. G. E., & Frank, M. J. (2012). How much of reinforcement
learning is working memory, not reinforcement learning? A behavioral,
computational, and neurogenetic analysis. European Journal of Neuro-
science, 35(7), 1024–1035. https://doi.org/10.1111/j.1460-9568.2011
.07980.x

Cousineau, D. (2005). Confidence intervals in within-subject designs:
A simpler solution to Loftus and Masson’s method. Tutorials in
Quantitative Methods for Psychology, 1(1), 42–45. https://doi.org/10
.20982/tqmp.01.1.p042

Donkin, C., Brown, S. D., & Heathcote, A. (2009). The overconstraint
of response time models: Rethinking the scaling problem. Psychonomic
Bulletin & Review, 16, 1129–1135. https://doi.org/10.3758/PBR.16
.6.1129

Donkin, C., Brown, S., & Heathcote, A. (2011). Drawing conclusions from
choice response time models: A tutorial using the linear ballistic accu-
mulator. Journal of Mathematical Psychology, 55(2), 140–151. https://
doi.org/10.1016/j.jmp.2010.10.001

Drugowitsch, J., DeAngelis, G. C., Angelaki, D. E., & Pouget, A. (2015).
Tuning the speed–accuracy trade-off to maximize reward rate in multi-
sensory decision-making. eLife, 4, Article e06678. https://doi.org/10
.7554/eLife.06678

Fang, Z. (2021). Computationally rational reinforcement learning:
Modeling the influence of policy and representation complexity
[Conference session]. Proceedings of the 19th International Conference
on Cognitive Modelling.

Fontanesi, L., Gluth, S., Spektor, M. S., & Rieskamp, J. (2019). A rein-
forcement learning diffusion decision model for value-based decisions.
Psychonomic Bulletin & Review, 26(4), 1099–1121. https://doi.org/10.3758/
s13423-018-1554-2

Forstmann, B. U., Ratcliff, R., & Wagenmakers, E.-J. (2016). Sequential
samplingmodels in cognitive neuroscience: Advantages, applications, and
extensions. Annual Review of Psychology, 67(1), 641–666. https://doi.org/
10.1146/annurev-psych-122414-033645

Gailliot, M. T., & Baumeister, R. F. (2007). The physiology of willpower:
Linking blood glucose to self-control. Personality and Social Psychology
Review, 11(4), 303–327. https://doi.org/10.1177/1088868307303030

Garrett, H. E. (1922). A study of the relation of accuracy to speed (Vol. 8).
Columbia University.

Genewein, T., Leibfried, F., Grau-Moya, J., & Braun, D. A. (2015). Bounded
rationality, abstraction, and hierarchical decision-making: An information-
theoretic optimality principle. Frontiers in Robotics and AI, 2, Article 27.
https://doi.org/10.3389/frobt.2015.00027

Gershman, S. J. (2020). Origin of perseveration in the trade-off between
reward and complexity. Cognition, 204, Article 104394. https://doi.org/10
.1016/j.cognition.2020.104394

Gershman, S. J., & Bhui, R. (2020). Rationally inattentive intertemporal
choice. Nature Communications, 11(1), Article 3365. https://doi.org/10
.1038/s41467-020-16852-y

Gershman, S. J., & Burke, T. (2023). Mental control of uncertainty.
Cognitive, Affective, & Behavioral Neuroscience, 23(3), 465–475. https://
doi.org/10.3758/s13415-022-01034-8

Gershman, S. J., & Lai, L. (2021). The reward-complexity trade-off in
schizophrenia. Computational Psychiatry, 5(1), 38–51. https://doi.org/10
.5334/cpsy.71

Gershman, S. J., & Lak, A. (2024). Policy complexity suppresses dopamine
responses. bioRxiv, https://doi.org/10.1101/2024.09.15.613150

Heitz, R. P. (2014). The speed–accuracy tradeoff: History, physiology,
methodology, and behavior. Frontiers in Neuroscience, 8, Article 150.
https://doi.org/10.3389/fnins.2014.00150

Hick, W. E. (1952). On the rate of gain of information. Quarterly Journal of
Experimental Psychology, 4(1), 11–26. https://doi.org/10.1080/1747021
5208416600

Huffman, D. A. (1952). Amethod for the construction ofminimum-redundancy
codes. Proceedings of the IRE, 40(9), 1098–1101. https://doi.org/10.1109/
JRPROC.1952.273898

Hutter, M. (2001). Distribution of mutual information. Advances in Neural
Information Processing Systems, 14, 399–406. https://doi.org/10.48550/
arXiv.cs/0112019

Hyman, R. (1953). Stimulus information as a determinant of reaction time.
Journal of Experimental Psychology, 45(3), 188–196. https://doi.org/10
.1037/h0056940

Jakob, A. M., & Gershman, S. J. (2023). Rate-distortion theory of neural
coding and its implications for working memory. eLife, 12, Article e79450.
https://doi.org/10.7554/eLife.79450

Lai, L., & Gershman, S. J. (2021). Policy compression: An information
bottleneck in action selection. In K. D. Federmeier (Ed.), The psychology
of learning and motivation (Vol. 74, pp. 195–232). Elsevier.

Lai, L., & Gershman, S. J. (2024). Human decision making balances
reward maximization and policy compression. PLOS Computational
Biology, 20(4), Article e1012057. https://doi.org/10.1371/journal.pcbi
.1012057

Lieder, F., & Griffiths, T. L. (2020). Resource-rational analysis:
Understanding human cognition as the optimal use of limited computa-
tional resources. Behavioral and Brain Sciences, 43, Article e1. https://
doi.org/10.1017/S0140525X1900061X

Longstreth, L. E. (1988). Hick’s law: Its limit is 3 bits. Bulletin of
the Psychonomic Society, 26(1), 8–10. https://doi.org/10.3758/BF03
334845
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