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ScienceDirect
Computational neuroscience is, to first order, dominated by

two approaches: the ‘bottom-up’ approach, which searches

for statistical patterns in large-scale neural recordings, and the

‘top-down’ approach, which begins with a theory of

computation and considers plausible neural implementations.

While this division is not clear-cut, we argue that these

approaches should be much more intimately linked. From a

Bayesian perspective, computational theories provide

constrained prior distributions on neural data — albeit highly

sophisticated ones. By connecting theory to observation via a

probabilistic model, we provide the link necessary to test,

evaluate, and revise our theories in a data-driven and

statistically rigorous fashion. This review highlights examples of

this theory-driven pipeline for neural data analysis in recent

literature and illustrates it with a worked example based on the

temporal difference learning model of dopamine.
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Introduction
The statistical toolbox for neuroscience has been steadily

growing in sophistication — relaxing restrictive assump-

tions, increasing expressiveness, and enhancing compu-

tational efficiency. These advances have enabled a recent

blossoming of ‘data-driven’ approaches to neuroscience,

which aim to provide insight into neural mechanisms

without testing specific computational theories. Data-

driven approaches are appealing, at least in principle,

for several reasons: they do not require the scientist to

explicitly specify a set of hypotheses, they are unpreju-

diced by the scientist’s theoretical dispositions, and they
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avoid the problem that many computational theories are

difficult to fit to real data.

In this paper, we argue that such faith in data-driven

approaches is misplaced. Far from escaping the explicit

specification of hypotheses, any statistical model of neural

data inevitably makes assumptions about the structure of

the data, and there is no principled distinction between

statistical assumptions and scientific hypotheses. (Admit-

tedly, a purely data-driven approach is something of a

straw-man, but we pursue this line of argument for

pedagogical purposes.) A corollary of this point is that

theoretical dispositions are inescapable: it is impossible to

specify a statistical model without making assumptions.

The question then becomes what assumptions to make.

We argue that these assumptions should be derived from

computational theories (which provide strong and princi-

pled constraints), coupled with flexible statistical para-

metrizations that compensate for inaccuracy and under-

specification of the theories.

This is not a radically novel perspective; indeed, these

ideas date back decades in classical statistics [1–3] and

find their roots in the works of Popper [4]. This combi-

nation of top-down and bottom-up modeling is becoming

more common in neursocience — as recently reviewed by

Durstewitz et al. [5] — though it is still the exception

rather than the rule. Our goal is to espouse this type of

approach, to simplify it by breaking it down into well

defined blocks, to illustrate it through examples, and to

highlight some of the recent work in the Bayesian ma-

chine learning and statistics communities that could aid in

various steps of the process.

We illustrate this approach with a worked example, using

a paradigmatic neurocomputational theory: the temporal

difference learning model of dopamine. We show how the

computational theory can be augmented with modern

statistical tools to produce a powerful data analysis meth-

odology. This approach generates a more complete and

flexible specification of the theory. Moreover, we show

that this approach offers insights into the mechanisms

underlying neural data that are inaccessible to purely

data-driven approaches.

A theory-driven pipeline for neural data
analysis
Neural data analysis is an iterative process that begins

with a data set and an idea of the underlying processes

that shaped it. The first step, and arguably the most

important one, is to turn that idea into a model. With a
www.sciencedirect.com
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A theory-driven pipeline for neural data analysis based on ‘Box’s Loop’ [3,6]. This review illustrates many examples of translating theory into

statistical model (red box). The benefits are many. Given a model, we may leverage a powerful toolbox of statistical techniques for inference,

model criticism, and experimental design. Equally important, theory constrains the space of models and provides a critical lens through which to

interpret the posterior. We will discuss advances in each stage of this pipeline.
model in hand, we fit it to the data and investigate the

learned parameters, searching for patterns that shed new

light on the system under study. But the process does not

end here; we then interrogate our model, see where it

captures the data well and where it fails, and use these

criticisms to suggest model enhancements or subsequent

experiments. Thus, model criticism leads to a new model

and another iteration of the process.

Statisticians have formalized and automated many pieces

of this pipeline: models are joint distributions over data,

latent variables and parameters; ‘fitting’ is performed by

posterior inference; criticism is carried out with statistical

tests; and optimal experimental design suggests what

experiment to run next. This cyclic process of probabi-

listic modeling, inference, and statistical criticism is

known as ‘Box’s loop’ [1–3,6], and later sections of this

review will discuss many recent advances in each stage of

the pipeline (Figure 1).

Still, the art of carving a tractable class of models from the

infinite space of possibilities remains the province of the

practitioner. It is here that computational theory can play

a vital role, since theories suggest what structure and

patterns may exist in the data. In doing so, theories

constrain the class of models and make it easier to search,

and provide a lens through which to interpret model
www.sciencedirect.com 
parameters. These benefits are reciprocated: once a the-

ory has been translated into a probabilistic model, a vast

statistical toolbox can be harnessed to test and refine it in

light of data.

Theory-driven statistical models are the norm in many

fields, most notably in physics, where strong quantitative

predictions can be derived from first principles. For

example, the discovery of the Higgs boson relied on

statistical tests based on predictions of the standard model

[7]. Perhaps it is unsurprising, then, that some of the best

examples of theory-driven statistical analyses in neuro-

science arise from detailed, biophysical models of single

cells. For example, Huys and Paninski [8] use the Hodg-

kin–Huxley model to derive a probabilistic model for

noisy membrane potential recordings. The conductances

of various ion channels are free parameters of their model,

and the time-varying channel activations are their latent

states. Given the membrane potential, their goal is to

infer the conductances, integrating over possible activa-

tion states. The highly nonlinear nature of the Hodgkin–
Huxley dynamics and the potentially large number of

different channel types present a formidable challenge,

but biophysical constraints limit the space of feasible

parameters. In recent work, these methods have been

extended to data in which only spike trains are observed

[9], which present an even greater challenge.
Current Opinion in Neurobiology 2017, 46:14–24
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1 Code to run this example and reproduce Figures 2 and 3 is available

at https://github.com/slinderman/tdlds.
Many models in neuroscience are phenomenological

rather than mechanistic in nature. One step up from

biophysical models are firing rate models like autoregres-

sive Poisson models, a form of generalized linear model

(GLM) [10–12]. Recent work has extended these classical

models to make them more flexible [13], more biophy-

sically inspired [14], and more interpretable [15�]. While

the GLM omits many mechanistic details, in fully-ob-

served networks its weights can be roughly interpreted as

synaptic strengths [16,17]. However, the weights of the

standard GLM are static, even though synaptic plasticity

may be at work in many neural recordings. While the

space of all possible dynamic GLM’s is intractably large,

theories of synaptic plasticity place strong constraints on

how synaptic weights evolve over time in response to

preceding activity. A number of authors have leveraged

these constraints to develop theory-driven GLM’s with

time-varying weights and have shown how alternative

models of synaptic plasticity can be compared on the basis

of their fit to spike train data [18–20].

This approach extends to computational theories as well,

and is exemplified in the work of Latimer et al. [21��]. The

authors reconsider the long-standing theory of evidence

accumulation in lateral intraparietal (LIP) cortex [22], and

ask whether patterns that emerge in trial-averaged data

are borne out in individual trials. Specifically, do the firing

rates of neurons in LIP slowly ramp as evidence is

accumulated, or do they exhibit a discrete jump in firing

rate? Theory suggests the former, whereas the latter

would indicate that LIP may not be the site of integration

(with the caveat that integration might still be imple-

mented in LIP at the population level without all neurons

behaving like integrators). Critically, both theories would

yield the appearance of a ramp in trial-averaged firing

rate. Latimer et al. [21��] formulate both theories as

probabilistic models for single trial data, fit these models

with Bayesian inference, compare them on the basis of

the marginal likelihood of the data, and find that a large

fraction of neurons are better explained by the discrete

jump model. This provides statistical evidence with

which to assess and reevaluate canonical theory. Indeed,

this work has prompted further assessments of their

modeling assumptions and the validity of their conclu-

sions [23] — a prime example of Box’s loop in action post-

publication.

Integrative approaches to computational theory and

statistical analysis have also been pursued in higher-

level cognition. Detre and colleagues [24] used Bayesian

inference to identify a nonmonotonic relationship be-

tween memory activation (as measured by functional

MRI) and subsequent memory, as predicted by a com-

petition-dependent theory of episodic memory [25].

The same analytical approach was used to identify

other nonmonotonic effects of retrieval strength on

memory [26,27].
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The aforementioned examples stand in contrast to many

dimensionality reduction methods like PCA, tSNE [28],

and others [29], and differ as well from general-purpose

state space models [30–32] and recurrent neural network

models [e.g. 33��] for neural data. Such methods start with

very weak assumptions — linear embeddings or low-di-

mensional dynamics — and, in this sense, allow the data

to speak freely. Thus, they are invaluable exploratory

tools. However, in the absence of a theory, the inferred

low-dimensional states and projections require careful

interpretation. In many cases, theories correspond to

special cases of these general-purpose models, and thus

help address issues of interpretability.

The landscape of neural data-analysis is not as strictly

divided into top-down and bottom-up approaches as the

preceding discussion may suggest. Indeed, many models

fall somewhere in the middle, incorporating aspects of

theory while allowing flexibility in aspects that are less

certain. Wiltschko et al. [34] strike such a balance in their

model for depth videos of freely behaving mice. Starting

with the classic ethological theory that behavior is com-

posed of a sequence of discrete, reusable units, or ‘syl-

lables,’ the authors propose an autoregressive hidden

Markov model to discover these syllables from raw data.

Since the number of syllables is not known a priori, the

authors use a Bayesian nonparametric prior distribution

[35] to determine the number of states in a data-driven

manner.

These works exhibit a diverse array of ‘theory-driven’

neural data analyses, but the best way to understand this

pipeline is through an example.

A worked example
There is no single recipe for translating computational

theories into probabilistic models of data, but the conver-

sion necessarily involves answering a few basic questions.

Which theoretical variables and parameters are observed

and which are latent? How are they encoded by the neural

system under study? How do these variables evolve over

time? What are the sources of noise in the system and in

the measurements? The answers to these questions in-

form statistical models of data that in turn define dis-

tributions of likely patterns of neural activity. We will

illustrate this translation with a simple worked example.1

Temporal difference (TD) learning [37] is a classical

algorithm by which agents, over the course of many trials,

learn to use sensory cues to predict the discounted sum of

future rewards. Assume that there are L trials, each lasting

T time steps. On trial ‘, the agent receives a sequence of

stimuli, which are stored and encoded as vectors, u‘,t, and

a corresponding sequence of rewards, r‘,a, . . ., r‘,T, most of
www.sciencedirect.com
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which may be zero. In a classical conditioning experi-

ment, the stimulus may be a light at time t followed by a

reward some number of time steps in the future, and u‘,t
may encode, for example, the number of time steps since

the bell was heard. The agent then uses this encoding to

compute a value function for the given trial and time step,

V ‘̂;t ¼ zT
‘ u‘;t : (1)

In reinforcement learning, the value is the total amount of

future reward to be expected after receiving input

u‘,t. However, according to the theory, the reward is

discounted by how long one must wait before receiving

it. For example, a reward k time steps into the future is

down-weighted by a factor of gk, where g 2 [0, 1] is the

discount factor. The agent’s goal is to adjust the weights2 of

its value function, z‘, such that the value function approx-

imates this discounted sum of expected future rewards,

V ‘̂;t � V ‘;t ¼ E
XT�t

k¼0

gkr ‘;tþk

" #
: (2)

If the environment is a Markov decision process, the

target value function can be written recursively as

V ‘;t ¼ E½r ‘;t þ gV ‘;tþ1�. When the value function equals

the cumulative discounted reward, the reward prediction
error,

x‘;t ¼ r‘;t þ gV ‘̂;tþ1�V ‘̂;t ; (3)

will equal zero. Intuitively, the reward prediction error

provides an instantaneous estimate of how well the value

function predicts the received reward. Thus, to improve

its value function, the agent should adjust its weights to

reduce this error. Indeed, this is accomplished by the

simple learning rule,

z‘þ1 ¼ z‘ þ a‘
XT

t¼1

x‘;tu‘;t ; (4)

which can be seen as a form of stochastic gradient descent

on the (squared) reward prediction error with learning

rates a1, . . ., aL. In the following experiments, we will

consider two learning schedules: a power-law schedule,

a‘ = (‘+1)�t, and a constant schedule, a‘ � t. In both

cases, assume t 2 [0, 1].

Schultz et al. [38] found that the firing rates of dopami-

nergic neurons in the ventral tegmental area (VTA)

mimic the reward prediction errors essential to the

TD-learning algorithm. Moreover, it is hypothesized that

cortex represents the stimulus, striatum represents the

value function estimate, and VTA activity modulates

plasticity of synapses from cortex to striatum [39]. Still,

many important questions remain, like how learning

schedules, which affect this plasticity, vary from trial to

trial in real neural circuits. As a didactic exercise, we will

we use the TD learning theory to construct a probabilistic
2 We denote the weights by z instead of something more traditional,

like w, since this will highlight the connection to state space models.

www.sciencedirect.com 
model for neural data, and use that model to compare

between different learning schedules in a statistically

rigorous manner.

Suppose that we have access to simultaneous noisy

recordings of a VTA neuron and an upstream population

of N cortical neurons. As has been hypothesized, we will

assume the VTA neuron encodes reward prediction error,

x‘,t, and the cortical neurons carry the stimulus encoding,

u‘,t. Moreover, assume we know the reward signal,

r‘,t. These assumptions may not be warranted in practice,

and they must be tested, as we discuss below. According

to the TD learning theory, the cortical and VTA signals

are related via a value function, which is determined by an

unobserved and dynamic set of weights at each trial. In

other words, the theory implies that the reward prediction

errors follow a latent state space model whose hidden

states are the weights, z‘, and whose parameters vary from

trial to trial according to the cortical inputs, rewards, and

prediction errors. If we assume Gaussian noise in the

weight updates and observations, the theory implies that

the VTA activity follows a Gaussian linear dynamical

system (LDS) with non-stationary parameters.

To see this equivalence, we rewrite the TD learning

updates in standard state space notation:

z‘þ1� N ðA‘z‘ þ b‘; eIÞ; (5)

x‘� N ðC‘z‘ þ d ‘; sIÞ: (6)

Here, the latent states are the weights, z‘ 2 RN , and their

dynamics are determined by A‘ = I and

b‘ ¼ a‘
PT

t¼1x‘;t u‘;t . That is, the weights follow a random

walk biased by the learning rate, error signal, and inputs.

The emissions are vectors of observed VTA activity,

x‘ = [x‘,1, . . ., x‘,T�1], and they are determined by the

matrix C‘ ¼ ½cT
‘;1; . . .; cT

‘;T�1�, where c‘,t = gu‘,t+1 � u‘,t,
and by the bias vector d‘ = [d‘,1, . . ., d‘,T�1], where

d‘,t = r‘,t+1. Note that both the dynamics and emission

parameters are non-stationary; that is, they vary from trial

to trial. The noise in the weight updates is governed by e,

and the noise in the observations is governed by

s. Referring back to Eqns 1–4, we see that the exact

TD learning model is recovered in the noise-free limit.

The free parameters are u = (t, g, e, s) — the learning rate

parameters, discount factor, and noise variances.

We call this constrained model a temporal difference

LDS (TD-LDS). Importantly, by translating the TD

learning theory into a constrained Gaussian LDS, we

have reduced it to an essentially solved model with very

mature estimation and interpretation procedures [40]. In

the next section we will show how to infer the states and

parameters of the TD-LDS from data.

What assumptions did we make in deriving the TD-LDS?

First, we assumed Gaussian noise in both the observed
Current Opinion in Neurobiology 2017, 46:14–24
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reward prediction errors and the weight dynamics. If we

observed spike counts instead, the resulting model would

be more akin to a Poisson linear dynamical system

(PLDS) [30,31]. If we had assumed a nonlinear model

for the value function, that is, V‘,t = f(z‘, u‘,t), then both the

dynamics and observation models would be nonlinear in

z‘, which would necessitate more sophisticated inference

procedures. We will only consider the linear Gaussian

case in this didactic example.

Bayesian inference
Bayesian inference algorithms take as input the observed

data, x, and a probabilistic model, p(x, z, u), and output the

posterior distribution over the latent variables and pa-

rameters of the model, p(z, u j x). By Bayes’ rule, this

posterior distribution is given by,

pðz; ujxÞ ¼ pðxjz; uÞpðzjuÞpðuÞ
pðxÞ

¼ pðxjz; uÞpðzjuÞpðuÞR
pðxjz; uÞpðzjuÞpðuÞ dz du

: (7)

With this posterior distribution in hand, we can answer a

host of scientific questions. We can estimate the posterior

mean and mode (the maximum a posteriori estimate), and

we can provide Bayesian credible intervals by computing

the quantiles of the posterior distribution. Moreover, we

can predict what future data would look like with the

posterior predictive distribution,

pðx�jxÞ ¼
Z

pðx�jz�; uÞpðz�juÞpðu; zjxÞ dz� dz du: (8)

which integrates over the space of parameters and latent

variables, weighting them by their posterior probability

given the data seen thus far. As we will show below, these

functions of the posterior distribution provide principled

means of comparing and checking models.

Unfortunately, the normalizing constant on the right-

hand side of Bayes’ rule, p(x), also known as the marginal
likelihood, requires an integral over all possible parame-

ters. This integral is intractable for all but the simplest

models, so in practice we must resort to approximate

techniques like Markov chain Monte Carlo (MCMC)

[41] or variational inference [42,43]. MCMC algorithms

approximate the posterior distribution with a collection of

samples collected by a Markov chain that randomly walks

over the space of parameters. With a carefully tuned

random walk, the stationary distribution of the Markov

chain is equal to the desired posterior distribution so that,

once the chain has converged, parameters are visited

according to their posterior probability. In contrast, varia-

tional inference algorithms specify a family of ‘simpler’

distributions and search for the member of this family that

best approximates the desired posterior. Thus, they con-

vert an integration problem of computing the denomina-

tor of Bayes’ rule into an optimization problem of
Current Opinion in Neurobiology 2017, 46:14–24 
searching over the variational family. Of course, both

approaches present challenges — how to tell if a Markov

chain has converged? How to select and search over a

variational family and diagnose errors in the obtained

approximation? — making Bayesian inference both an

art and a science.

Fortunately for the practitioner, as probabilistic program-

ming packages grow in sophistication, the nuances of

approximate inference play a lesser role. Probabilistic

programming languages like Anglican [44], Stan [45],

Venture [46], and Edward [47] remove the burden of

deriving and implementing an inference algorithm, and

simply require the practitioner to specify their probabi-

listic model and supply their data. Under the hood, these

packages automatically derive suitable MCMC or varia-

tional inference algorithms. In practice, some care must

be taken to ensure these systems provide accurate infer-

ences, and these tools still cannot compete with well-

tuned, model-specific inference algorithms. However,

they can dramatically accelerate the scientific process

by enabling rapid iteration over models. Once a model

has been selected, time may be invested in deriving

bespoke inference algorithms for peak performance.

We have taken an intermediate approach to inference in

our working example. After reducing TD learning theory

to a canonical state space model, we leverage off-the-shelf

inference algorithms for the latent states and develop

model-specific updates only for the parameters. Specifi-

cally, given the discount factor and the learning schedule,

the posterior distribution over latent states is found with a

standard message passing algorithm [43]. Given a distri-

bution over latent states, we estimate the most likely

learning schedule parameters and discount factor with

hand-derived updates. We alternate these two steps —

updating the latent states and re-estimating the param-

eters — in our variational inference algorithm.

Figure 2 illustrates some of the results of our Bayesian

inference algorithm. Panel (e) shows the posterior mean

of the states, which in this model correspond to the

weights of the value function. From the posterior distri-

bution over weights, we derive the distribution over the

value function, which is linear in the weights (c.f. 1).

Panel (f) shows the true and inferred value function at

early (blue), middle (red), and late (yellow) trials, along

with the uncertainty under the posterior. Likewise, panel

(g) shows the inferred learning rate under two different

models: a model with constant rates and a model with

rates that decay according to a power law (the true model

in this case). Posterior visualizations like these play a

critical role in the scientific process, providing views of

the low-dimensional structure of complex data. However,

these visualizations are only useful to the extent that the

model captures meaningful structure. Panel (h) exempli-

fies this point: a standard LDS with the same latent
www.sciencedirect.com
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dimension as the TD-LDS provides a very good fit to the

data, but its latent states look like pure noise. Without a

theoretical structure with which to interpret this low-

dimensional projection, the latent states are meaningless.

Bayesian inference is only one method of estimation, and

it stands in contrast to other approaches like maximum

likelihood and the method of moments. These could have

been substituted in the center panel of Figure 1, but the

model criticism and experimental design methods dis-

cussed below assume access to the posterior distribution.

Avoiding statistical dogmatism, our view is simply that

the posterior distribution of parameters and latent vari-

ables is often the object of interest, and this is the central

object of study in the Bayesian approach. However, this

requires a choice of prior distribution, which must be

checked, just like the rest of the model, and it requires a

challenging approximate computation, whose accuracy

must also be assessed. The next section addresses the

former; a number of previous works have addressed the

latter [e.g. 48–51]. Finally, we note that posterior predic-

tive checks discussed in the following section are essen-

tially frequentist tests of Bayesian estimators, a pragmatic

blend of approaches.

Model criticism and comparison
Bayesian inference is not the end of the scientific process,

but rather an intermediate step in the iterative loop of

hypothesizing, fitting, criticizing, and revising a model.

Still, posterior inference provides a rigorous and quantifi-

able method of guiding model criticism and revision.

Intuitively, if the model is a good match for the data,

then samples from the fit model should ‘look like’ the

observed data. Posterior predictive checks (PPC’s) [3,52–54],

which are essentially Bayesian goodness-of-fit tests, for-

malize this intuition in a statistically rigorous manner. Our

presentation here parallels that of Blei [6].

PPCs compare the observed data to datasets sampled

from the posterior predictive distribution 8 of the model.

If the sampled data differs from the observed along

important dimensions, the model fails the PPC. These

‘important dimensions’ are determined by the practitio-

ner’s choice of a test statistic, T(x): a function that

identifies a particular aspect of the data, x. For example,

in our TD learning simulations, a salient characteristic is

the propagation of error signal from the onset of reward to

the presentation of the cue. Thus, a simple statistic is

amplitude of the error signal in particular trials and time

bins. The PPC is defined as the probability that the test

statistic of sampled data exceeds that of observed data,

PPC = Pr(T(x*) > T(x) j x).

The choice of test statistic is left to the practitioner.

Clearly, probabilistic modeling under computational con-

straints necessitates trade-offs and assumptions; no model

is perfect. PPCs are a diagnostic tool for assessing whether
www.sciencedirect.com 
the model recapitulates salient features of the data, as

determined by the practitioner. In this sense, PPCs

provide a targeted means of criticizing models, shining

spotlights on the most important parts. Moreover, there is

no limit to the number of PPCs that may be applied, and

the marginal cost of estimating multiple PPCs is negligi-

ble since they can all be estimated using the same

sampled data.

Figure 3 illustrates a very simple posterior predictive

check for the TD learning model. Panels (a–c) show

the observed data (black) and the quantiles of the poste-

rior predictive distribution for the tenth trial, estimated

with 1000 samples from the posterior predictive distribu-

tions. In this case, the true model uses a power law

learning rate, and indeed this is the only model that

consistently captures the data. The constant model over-

estimates the response to the reward (time 60) and the

standard LDS incorrectly predicts a response at cue onset.

We quantify this with PPC’s for the simplest statistics,

Tl,t(x) = xl,t. Panels (d–f) show the PPCs for each trial and

time bin. This reveals the delayed responses of the

constant model in early trials, and the tendency of the

standard LDS to predict a response at cue onset regard-

less of trial. Under the true model, these PPCs are

uniformly distributed on [0, 1]. Panels (g–f) show that

only the power law achieves this.

While PPCs, in absolute terms, how well the model fits

the data, in some cases we seek a relative comparison of

two models instead. For example, we often cascade

models of increasing complexity — factor analysis is a

special case of an LDS, which in turn is a special case of a

switching LDS — and we need means of justifying this

increased capacity. The most straightforward approach is

to measure predictive likelihood on held-out data. A

better model should assign higher posterior predictive

probability, p(x* j x), to the held-out data. We see that the

predictive probability 8 is an expectation with respect to

the posterior. Since this is typically intractable, we esti-

mate the predictive probability with samples from the

approximate posterior.

This is by no means the only method of comparing models.

In ‘fully Bayesian’ analyses, it is common to compare

models on the basis of their marginal likelihood, p(x)

[55,56]. Recall that this is the denominator in Bayes’ rule

7, and it is generally intractable. Variational methods pro-

vide a lower bound on this quantity, and Monte Carlo

estimates like annealed importance sampling [57] can yield

unbiased estimates of it. In general, however, marginal

likelihood estimation is an active area of research [58–60].

Model criticism suggests not only new theories to test, but

also new experiments to run. Specifically, we should

choose an experiment that is most likely to reduce the

uncertainty of the posterior. Equivalently, we should
Current Opinion in Neurobiology 2017, 46:14–24
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An illustrative example of using the theory of TD learning to constrain a probabilistic state space model for neural data. (a) Simulated example of a

dopamine neuron encoding reward prediction error in VTA. Over many trials, the response shifts from the delivery of reward (at t = 60) to the onset

of stimulus (at t = 10, dashed line). (b) Hypothetical cortical neurons encode time since stimulus onset with a set of temporal tuning curves, as has

been suggested [36]. (c) Thus, on each trial, the cortical neurons exhibit a cascade of activity. (d) We use TD learning theory to constrain a state

space model for the activity of cortex and VTA, whose graphical model is shown here (rewards omitted). The latent states are the weights relating

cortical activity to an unobserved value function. (e) The posterior mean of the latent states of the TD learning state space model. Though not

particularly insightful on their own, when combined with cortical activity, the weights determine the posterior distribution of the value function

(f). Colors correspond to trials 1, 30, and 150, as in (a). Dotted black line: ground truth. (g) We also learn the learning rate, al, under two different

models: a constant model and a power-law decay model. (h) In contrast to the TD-LDS, fitting a standard LDS to the VTA activity yields accurate

predictions, but its latent states are uninformative and do not correspond to weights of a value function.
perform the experiment that yields the maximal

information gain in expectation. This intuition is the basis

of Bayesian optimal experimental design [55,61–63] and is

also the guiding principle underlying Bayesian optimiza-

tion [64]. In our working example, these methods could

suggest the combination of stimulus and reward patterns

that would be most informative of the underlying learning

rate. These methods have been proposed for sampling the

voltage on dendritic trees in high-noise settings [65], as

well as for designing training regimes for animals [66�].

Just as probabilistic programming languages and auto-

mated inference algorithms are relieving the burden of

Bayesian inference, recent work has attempted to
Current Opinion in Neurobiology 2017, 46:14–24 
automate model criticism and model comparison. Auto-

matic two-sample tests [67,68] search for test statistics

that best discriminate between the observed data and a

model’s samples. In this sense, these approaches are

similar to generative adversarial networks [69], which

simultaneously train competing generator and discrimi-

nator networks. Likewise, automatic model composition

methods [70,71] iteratively construct models, adding in-

creasingly sophisticated structure to capture nuances of

the data and comparing on the basis of marginal likeli-

hood. While these advances have still not taken the

human ‘out of the loop,’ recent work suggests that these

approaches do indeed mimic the process by which

humans learn the complex structure of data [72].
www.sciencedirect.com
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Figure 3
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Model criticism using posterior predictive checks (PPCs). (a–c) PPC of the data on trial 10 for three models: the TD-LDS with a power-law learning

schedule (i.e. the true model that generated the data); the TD-LDS with a constant learning rate; and a standard LDS. Blue line: posterior

predictive median; blue shading: posterior predictive quantiles; black line: observed data. The constant learning rate fails the PPC because it

generates a much larger prediction error at time t = 59. The standard LDS fails because it always predicts large signals at t = 10, regardless of

trial. (d–f) A summary view of the PPC for all trials and time points. Color denotes the PPC value estimated from 1000 generated trajectories. Blue:

model predictions larger than data; red: data larger than model predictions. Values close to zero or one indicate model mismatch. (g–i) A

histogram of values in (d-f), respectively. The true model should yield uniformly distributed PPCs (dotted line), as indeed the power law does. The

other models generated data that systematically differs from the true data.
Finally, in our worked example, we skipped one of the

hardest steps: how does one arrive at the theory of

temporal difference learning in the first place, not to

mention these hypotheses of where and how various

signals are encoded? We relied on these assumptions to

place critical constraints on the space of models, and when

they were taken into account, we obtained a very differ-

ent view of the data than with the standard LDS. How-

ever, in the regime with few constraints and only vague

ideas of how the systems under study work, standard

models are invaluable tools for exploratory analysis [73].

That is, in the early stages of the pipeline, when compu-

tational theory is lacking, relatively unconstrained models
www.sciencedirect.com 
are invaluable tools for generating hypotheses than can

then be and refined with this pipeline.

Conclusions
The idea of combining statistical models with computa-

tional theories is not new [c.f. 5], but researchers are only

beginning to appreciate the range of possibilities that

have opened up with advances in probabilistic modeling.

Richly expressive probabilistic programming languages,

efficient inference algorithms, and flexible Bayesian non-

parametric priors allow complex models to be specified

and fit to data much more easily than in the past. Model

criticism and comparison techniques can be used to guide
Current Opinion in Neurobiology 2017, 46:14–24
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the refinement of modeling assumptions, as in Box’s loop.

We have shown how this statistical toolbox can be seam-

lessly integrated with computational theory, using a

worked example from reinforcement learning. The key

lesson from this modeling exercise is that data-driven and

theory-driven approaches to neuroscience need not be

mutually exclusive; indeed, the most powerful insights

can be gained by using computational theories as con-

straints on data-driven statistical models.

Conversely, flexible statistical models can enrich compu-

tational theories. Historically, computational tractability

has biased the kinds of models we fit towards simplicity

(conjugacy, convex optimization problems, unimodal pos-

teriors, low-dimensional parametrizations). With faster

computers, larger datasets and new algorithms, machine

learning has increasingly pushed the envelope towards

much more complex models [33��,74,75], altering the usual

tradeoff between neuroscientific realism and computation-

al tractability. We are now in a position to start experimen-

tally testing a vast range of computational theories.

Although we have emphasized probabilistic models in this

paper, the same ideas apply to deterministic models,

where apparent randomness is due to ignorance of latent

variables and measurement noise. For example, although

spike generation is often modeled as a random process,

neurophysiological experiments suggest that spike gener-

ation may be highly reliable when a neuron is stimulated

with white noise inputs [76]. Thus, neurons seem random

until we condition on the relevant latent variables. The

Bayesian framework does not require an ontological com-

mitment to randomness; uncertainty can be purely episte-

mic. The practical motivation for building probabilistic

models of deterministic processes is that it allows us to

parse the different sources of uncertainty. Once we know

that spike generation can be highly reliable, we should

push our uncertainty into other parts of the model (syn-

aptic inputs, ion channels, etc.). Constraining uncertainty

in this way can be a driving force for the discovery of new

latent variables that explain away residual randomness.
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