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Abstract: Recent progress in artificial intelligence has renewed interest in building systems that learn and think like people. Many
advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board
games, achieving performance that equals or even beats that of humans in some respects. Despite their biological inspiration and
performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science
suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what
they learn and how they learn it. Specifically, we argue that these machines should (1) build causal models of the world that support
explanation and understanding, rather than merely solving pattern recognition problems; (2) ground learning in intuitive theories of
physics and psychology to support and enrich the knowledge that is learned; and (3) harness compositionality and learning-to-learn to
rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes toward
these goals that can combine the strengths of recent neural network advances with more structured cognitive models.

1. Introduction

Artificial intelligence (AI) has been a story of booms and
busts, yet by any traditional measure of success, the last
few years have been marked by exceptional progress.
Much of this progress has come from recent advances in
“deep learning,” characterized by learning large neural
network-style models with multiple layers of representation
(see Glossary in Table 1). These models have achieved
remarkable gains in many domains spanning object recog-
nition, speech recognition, and control (LeCun et al.
2015; Schmidhuber 2015). In object recognition, Krizhev-
sky et al. (2012) trained a deep convolutional neural
network (ConvNet [LeCun et al. 1989]) that nearly
halved the previous state-of-the-art error rate on the
most challenging benchmark to date. In the years since,

ConvNets continue to dominate, recently approaching
human-level performance on some object recognition
benchmarks (He et al. 2016; Russakovsky et al. 2015;
Szegedy et al. 2014). In automatic speech recognition,
hidden Markov models (HMMs) have been the leading
approach since the late 1980s (Juang & Rabiner 1990),
yet this framework has been chipped away piece by piece
and replaced with deep learning components (Hinton
et al. 2012). Now, the leading approaches to speech recog-
nition are fully neural network systems (Graves et al. 2013;
Hannun et al. 2014). Ideas from deep learning have also
been applied to learning complex control problems. Mnih
et al. (2015) combined ideas from deep learning and rein-
forcement learning to make a “deep reinforcement learn-
ing” algorithm that learns to play large classes of simple
video games from just frames of pixels and the game
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score, achieving human- or superhuman-level performance
on many of them (see also Guo et al. 2014; Schaul et al.
2016; Stadie et al. 2016).
These accomplishments have helped neural networks

regain their status as a leading paradigm in machine learn-
ing, much as they were in the late 1980s and early 1990s.
The recent success of neural networks has captured atten-
tion beyond academia. In industry, companies such as
Google and Facebook have active research divisions explor-
ing these technologies, and object and speech recognition
systems based on deep learning have been deployed in
core products on smart phones and the web. The media
have also covered many of the recent achievements of
neural networks, often expressing the view that neural net-
works have achieved this recent success by virtue of their
brain-like computation and, therefore, their ability to
emulate human learning and human cognition.

In this article, we view this excitement as an opportunity
to examine what it means for a machine to learn or think
like a person. We first review some of the criteria previously
offered by cognitive scientists, developmental psycholo-
gists, and artificial intelligence (AI) researchers. Second,
we articulate what we view as the essential ingredients for
building a machine that learns or thinks like a person, syn-
thesizing theoretical ideas and experimental data from
research in cognitive science. Third, we consider contem-
porary AI (and deep learning in particular) in the light of
these ingredients, finding that deep learning models have
yet to incorporate many of them, and so may be solving
some problems in different ways than people do. We end
by discussing what we view as the most plausible paths
toward building machines that learn and think like
people. This includes prospects for integrating deep learn-
ing with the core cognitive ingredients we identify, inspired
in part by recent work fusing neural networks with lower-
level building blocks from classic psychology and computer
science (attention, working memory, stacks, queues) that
have traditionally been seen as incompatible.
Beyond the specific ingredients in our proposal, we draw

a broader distinction between two different computational
approaches to intelligence. The statistical pattern recogni-
tion approach treats prediction as primary, usually in the
context of a specific classification, regression, or control
task. In this view, learning is about discovering features
that have high-value states in common – a shared label in
a classification setting or a shared value in a reinforcement
learning setting – across a large, diverse set of training data.
The alternative approach treats models of the world as

primary, where learning is the process of model building.
Cognition is about using these models to understand the
world, to explain what we see, to imagine what could
have happened that didn’t, or what could be true that
isn’t, and then planning actions to make it so. The differ-
ence between pattern recognition and model building,
between prediction and explanation, is central to our view
of human intelligence. Just as scientists seek to explain
nature, not simply predict it, we see human thought as fun-
damentally a model building activity. We elaborate this key
point with numerous examples below. We also discuss how
pattern recognition, even if it is not the core of intelligence,
can nonetheless support model building, through “model-
free” algorithms that learn through experience how to
make essential inferences more computationally efficient.
Before proceeding, we provide a few caveats about the

goals of this article, and a brief overview of the key ideas.

1.1. What this article is not

For nearly as long as there have been neural networks,
there have been critiques of neural networks (Crick 1989;
Fodor & Pylyshyn 1988; Marcus 1998, 2001; Minsky &
Papert 1969; Pinker & Prince 1988). Although we are crit-
ical of neural networks in this article, our goal is to build on
their successes rather than dwell on their shortcomings. We
see a role for neural networks in developing more human-
like learning machines: They have been applied in compel-
ling ways to many types of machine learning problems,
demonstrating the power of gradient-based learning and
deep hierarchies of latent variables. Neural networks also
have a rich history as computational models of cognition
(McClelland et al. 1986; Rumelhart et al. 1986b). It is a
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history we describe in more detail in the next section. At a
more fundamental level, any computational model of learn-
ing must ultimately be grounded in the brain’s biological
neural networks.

We also believe that future generations of neural
networks will look very different from the current state-
of-the-art neural networks. They may be endowed with
intuitive physics, theory of mind, causal reasoning, and
other capacities we describe in the sections that follow.
More structure and inductive biases could be built into
the networks or learned from previous experience with
related tasks, leading to more human-like patterns of learn-
ing and development. Networks may learn to effectively
search for and discover new mental models or intuitive
theories, and these improved models will, in turn, enable
subsequent learning, allowing systems that learn-to-
learn – using previous knowledge to make richer inferences
from very small amounts of training data.

It is also important to draw a distinction between AI that
purports to emulate or draw inspiration from aspects of
human cognition and AI that does not. This article focuses
on the former. The latter is a perfectly reasonable and
useful approach to developing AI algorithms: avoiding cogni-
tive or neural inspiration as well as claims of cognitive or
neural plausibility. Indeed, this is how many researchers
have proceeded, and this article has little pertinence to
work conducted under this research strategy.1 On the other
hand, we believe that reverse engineering human intelligence

can usefully inform AI andmachine learning (and has already
done so), especially for the types of domains and tasks that
people excel at. Despite recent computational achievements,
people are better than machines at solving a range of difficult
computational problems, including concept learning, scene
understanding, language acquisition, language understand-
ing, speech recognition, and so on. Other human cognitive
abilities remain difficult to understand computationally,
including creativity, common sense, and general-purpose rea-
soning. As long as natural intelligence remains the best
example of intelligence, we believe that the project of
reverse engineering the human solutions to difficult compu-
tational problems will continue to inform and advance AI.
Finally, whereas we focus on neural network approaches

to AI, we do not wish to give the impression that these are
the only contributors to recent advances in AI. On the con-
trary, some of the most exciting recent progress has been in
new forms of probabilistic machine learning (Ghahramani
2015). For example, researchers have developed auto-
mated statistical reasoning techniques (Lloyd et al. 2014),
automated techniques for model building and selection
(Grosse et al. 2012), and probabilistic programming lan-
guages (e.g., Gelman et al. 2015; Goodman et al. 2008;
Mansinghka et al. 2014). We believe that these approaches
will play important roles in future AI systems, and they are
at least as compatible with the ideas from cognitive science
we discuss here. However, a full discussion of those con-
nections is beyond the scope of the current article.

Table 1. Glossary

Neural network: A network of simple neuron-like processing units that collectively performs complex computations. Neural networks
are often organized into layers, including an input layer that presents the data (e.g., an image), hidden layers that transform the data
into intermediate representations, and an output layer that produces a response (e.g., a label or an action). Recurrent connections are
also popular when processing sequential data.

Deep learning: A neural network with at least one hidden layer (some networks have dozens). Most state-of-the-art deep networks are
trained using the backpropagation algorithm to gradually adjust their connection strengths.

Backpropagation: Gradient descent applied to training a deep neural network. The gradient of the objective function (e.g., classification
error or log-likelihood) with respect to the model parameters (e.g., connection weights) is used to make a series of small adjustments to
the parameters in a direction that improves the objective function.

Convolutional neural network (ConvNet): A neural network that uses trainable filters instead of (or in addition to) fully connected
layers with independent weights. The same filter is applied at many locations across an image or across a time series, leading to neural
networks that are effectively larger, but with local connectivity and fewer free parameters.

Model-free and model-based reinforcement learning: Model-free algorithms directly learn a control policy without explicitly
building a model of the environment (reward and state transition distributions). Model-based algorithms learn a model of the
environment and use it to select actions by planning.

Deep Q-learning: A model-free reinforcement-learning algorithm used to train deep neural networks on control tasks such as playing
Atari games. A network is trained to approximate the optimal action-value functionQ(s, a), which is the expected long-term cumulative
reward of taking action a in state s and then optimally selecting future actions.

Generative model: A model that specifies a probability distribution over the data. For example, in a classification task with examples X
and class labels y, a generative model specifies the distribution of data given labels P(X | y), as well as a priori on labels P(y), which can
be used for sampling new examples or for classification by using Bayes’ rule to compute P(y | X). A discriminative model specifies P(y | X)
directly, possibly by using a neural network to predict the label for a given data point, and cannot directly be used to sample new
examples or to compute other queries regarding the data. We will generally be concerned with directed generative models (such as
Bayesian networks or probabilistic programs), which can be given a causal interpretation, although undirected (non-causal) generative
models such as Boltzmann machines are also possible.

Program induction: Constructing a program that computes some desired function, where that function is typically specified by training
data consisting of example input-output pairs. In the case of probabilistic programs, which specify candidate generative models for
data, an abstract description language is used to define a set of allowable programs, and learning is a search for the programs likely to
have generated the data.
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1.2. Overview of the key ideas

The central goal of this article is to propose a set of core
ingredients for building more human-like learning and
thinking machines. We elaborate on each of these ingredi-
ents and topics in Section 4, but here we briefly overview
the key ideas.
The first set of ingredients focuses on developmental

“start-up software,” or cognitive capabilities present early
in development. There are several reasons for this focus
on development. If an ingredient is present early in devel-
opment, it is certainly active and available well before a
child or adult would attempt to learn the types of tasks dis-
cussed in this paper. This is true regardless of whether the
early-present ingredient is itself learned from experience or
innately present. Also, the earlier an ingredient is present,
the more likely it is to be foundational to later development
and learning.
We focus on two pieces of developmental start-up soft-

ware (see Wellman & Gelman [1992] for a review of
both). First is intuitive physics (sect. 4.1.1): Infants
have primitive object concepts that allow them to track
objects over time and to discount physically implausible
trajectories. For example, infants know that objects will
persist over time and that they are solid and coherent.
Equipped with these general principles, people can
learn more quickly and make more accurate predictions.
Although a task may be new, physics still works the same
way. A second type of software present in early develop-
ment is intuitive psychology (sect. 4.1.2): Infants under-
stand that other people have mental states like goals
and beliefs, and this understanding strongly constrains
their learning and predictions. A child watching an
expert play a new video game can infer that the avatar
has agency and is trying to seek reward while avoiding
punishment. This inference immediately constrains
other inferences, allowing the child to infer what
objects are good and what objects are bad. These types
of inferences further accelerate the learning of new tasks.
Our second set of ingredients focus on learning. Although

there are many perspectives on learning, we seemodel build-
ing as the hallmark of human-level learning, or explaining
observed data through the construction of causal models of
the world (sect. 4.2.2). From this perspective, the early-
present capacities for intuitive physics and psychology are
also causal models of the world. A primary job of learning is
to extend and enrich these models and to build analogous
causally structured theories of other domains.
Compared with state-of-the-art algorithms in machine

learning, human learning is distinguished by its richness
and its efficiency. Children come with the ability and the
desire to uncover the underlying causes of sparsely
observed events and to use that knowledge to go far
beyond the paucity of the data. It might seem paradoxical
that people are capable of learning these richly structured
models from very limited amounts of experience. We
suggest that compositionality and learning-to-learn are
ingredients that make this type of rapid model learning pos-
sible (sects. 4.2.1 and 4.2.3, respectively).
A final set of ingredients concerns how the rich models

our minds build are put into action, in real time (sect.
4.3). It is remarkable how fast we are to perceive and to
act. People can comprehend a novel scene in a fraction of
a second, or a novel utterance in little more than the

time it takes to say it and hear it. An important motivation
for using neural networks in machine vision and speech
systems is to respond as quickly as the brain does. Although
neural networks are usually aiming at pattern recognition
rather than model building, we discuss ways in which
these “model-free” methods can accelerate slow model-
based inferences in perception and cognition (sect. 4.3.1)
(see Glossary in Table 1). By learning to recognize patterns
in these inferences, the outputs of inference can be pre-
dicted without having to go through costly intermediate
steps. Integrating neural networks that “learn to do infer-
ence” with rich model building learning mechanisms
offers a promising way to explain how human minds can
understand the world so well and so quickly.
We also discuss the integration of model-based and

model-free methods in reinforcement learning (sect.
4.3.2.), an area that has seen rapid recent progress. Once
a causal model of a task has been learned, humans can
use the model to plan action sequences that maximize
future reward. When rewards are used as the metric for
successs in model building, this is known as model-based
reinforcement learning. However, planning in complex
models is cumbersome and slow, making the speed-
accuracy trade-off unfavorable for real-time control. By
contrast, model-free reinforcement learning algorithms,
such as current instantiations of deep reinforcement learn-
ing, support fast control, but at the cost of inflexibility and
possibly accuracy. We review evidence that humans
combine model-based and model-free learning algorithms
both competitively and cooperatively and that these inter-
actions are supervised by metacognitive processes. The
sophistication of human-like reinforcement learning has
yet to be realized in AI systems, but this is an area where
crosstalk between cognitive and engineering approaches
is especially promising.

2. Cognitive and neural inspiration in artificial
intelligence

The questions of whether and how AI should relate to
human cognitive psychology are older than the terms arti-
ficial intelligence and cognitive psychology. Alan Turing
suspected that it was easier to build and educate a child-
machine than try to fully capture adult human cognition
(Turing 1950). Turing pictured the child’s mind as a note-
book with “rather little mechanism and lots of blank
sheets,” and the mind of a child-machine as filling in the
notebook by responding to rewards and punishments,
similar to reinforcement learning. This view on representa-
tion and learning echoes behaviorism, a dominant psycho-
logical tradition in Turing’s time. It also echoes the strong
empiricism of modern connectionist models – the idea
that we can learn almost everything we know from the stat-
istical patterns of sensory inputs.
Cognitive science repudiated the oversimplified beha-

viorist view and came to play a central role in early AI
research (Boden 2006). Newell and Simon (1961) devel-
oped their “General Problem Solver” as both an AI algo-
rithm and a model of human problem solving, which
they subsequently tested experimentally (Newell &
Simon 1972). AI pioneers in other areas of research
explicitly referenced human cognition and even published
papers in cognitive psychology journals (e.g., Bobrow &
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Winograd 1977; Hayes-Roth & Hayes-Roth 1979; Wino-
grad 1972). For example, Schank (1972), writing in the
journal Cognitive Psychology, declared that “We hope to
be able to build a program that can learn, as a child
does, how to do what we have described in this paper
instead of being spoon-fed the tremendous information
necessary” (p. 629).

A similar sentiment was expressed by Minsky (1974): “I
draw no boundary between a theory of human thinking
and a scheme for making an intelligent machine; no
purpose would be served by separating these today since
neither domain has theories good enough to explain—or
to produce—enough mental capacity” (p. 6).

Much of this research assumed that human knowledge
representation is symbolic and that reasoning, language,
planning and vision could be understood in terms of sym-
bolic operations. Parallel to these developments, a radically
different approach was being explored based on neuron-
like “sub-symbolic” computations (e.g., Fukushima 1980;
Grossberg 1976; Rosenblatt 1958). The representations
and algorithms used by this approach were more directly
inspired by neuroscience than by cognitive psychology,
although ultimately it would flower into an influential
school of thought about the nature of cognition: parallel
distributed processing (PDP) (McClelland et al. 1986;
Rumelhart et al. 1986b). As its name suggests, PDP empha-
sizes parallel computation by combining simple units to col-
lectively implement sophisticated computations. The
knowledge learned by these neural networks is thus distrib-
uted across the collection of units rather than localized as in
most symbolic data structures. The resurgence of recent
interest in neural networks, more commonly referred to
as “deep learning,” shares the same representational com-
mitments and often even the same learning algorithms as
the earlier PDP models. “Deep” refers to the fact that
more powerful models can be built by composing many
layers of representation (see LeCun et al. [2015] and
Schmidhuber [2015] for recent reviews), still very much
in the PDP style while utilizing recent advances in hard-
ware and computing capabilities, as well as massive data
sets, to learn deeper models.

It is also important to clarify that the PDP perspective is
compatible with “model building” in addition to “pattern
recognition.” Some of the original work done under the
banner of PDP (Rumelhart et al. 1986b) is closer to model
building than pattern recognition, whereas the recent
large-scale discriminative deep learning systems more
purely exemplify pattern recognition (see Bottou [2014]
for a related discussion). But, as discussed, there is also a
question of the nature of the learned representations
within the model – their form, compositionality, and trans-
ferability – and the developmental start-up software that
was used to get there.We focus on these issues in this article.

Neural network models and the PDP approach offer a
view of the mind (and intelligence more broadly) that is
sub-symbolic and often populated with minimal constraints
and inductive biases to guide learning. Proponents of this
approach maintain that many classic types of structured
knowledge, such as graphs, grammars, rules, objects, struc-
tural descriptions, and programs, can be useful yet mislead-
ing metaphors for characterizing thought. These structures
are more epiphenomenal than real, emergent properties of
more fundamental sub-symbolic cognitive processes
(McClelland et al. 2010). Compared with other paradigms

for studying cognition, this position on the nature of repre-
sentation is often accompanied by a relatively “blank slate”
vision of initial knowledge and representation, much like
Turing’s blank notebook.
When attempting to understand a particular cognitive

ability or phenomenon within this paradigm, a common sci-
entific strategy is to train a relatively generic neural network
to perform the task, adding additional ingredients only when
necessary. This approach has shown that neural networks
can behave as if they learned explicitly structured knowl-
edge, such as a rule for producing the past tense of words
(Rumelhart & McClelland 1986), rules for solving simple
balance beam physics problems (McClelland 1988), or a
tree to represent types of living things (plants and animals)
and their distribution of properties (Rogers & McClelland
2004). Training large-scale relatively generic networks is
also the best current approach for object recognition (He
et al. 2016; Krizhevsky et al. 2012; Russakovsky et al. 2015;
Szegedy et al. 2014), where the high-level feature represen-
tations of these convolutional nets have also been used to
predict patterns of neural response in human and
macaque IT cortex (Khaligh-Razavi & Kriegeskorte 2014;
Kriegeskorte 2015; Yamins et al. 2014), as well as human
typicality ratings (Lake et al. 2015b) and similarity ratings
(Peterson et al. 2016) for images of common objects. More-
over, researchers have trained generic networks to perform
structured and even strategic tasks, such as the recent work
on using a Deep Q-learning Network (DQN) to play simple
video games (Mnih et al. 2015) (see Glossary in Table 1). If
neural networks have such broad application in machine
vision, language, and control, and if they can be trained to
emulate the rule-like and structured behaviors that charac-
terize cognition, do we need more to develop truly
human-like learning and thinking machines? How far can
relatively generic neural networks bring us toward this goal?

3. Challenges for building more human-like
machines

Although cognitive science has not yet converged on a
single account of the mind or intelligence, the claim that
a mind is a collection of general-purpose neural networks
with few initial constraints is rather extreme in contempo-
rary cognitive science. A different picture has emerged
that highlights the importance of early inductive biases,
including core concepts such as number, space, agency,
and objects, as well as powerful learning algorithms that
rely on prior knowledge to extract knowledge from small
amounts of training data. This knowledge is often richly
organized and theory-like in structure, capable of the
graded inferences and productive capacities characteristic
of human thought.
Here we present two challenge problems for machine

learning and AI: learning simple visual concepts (Lake
et al. 2015a) and learning to play the Atari game Frostbite
(Mnih et al. 2015). We also use the problems as running
examples to illustrate the importance of core cognitive
ingredients in the sections that follow.

3.1. The Characters Challenge

The first challenge concerns handwritten character recog-
nition, a classic problem for comparing different types of
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machine learning algorithms. Hofstadter (1985) argued
that the problem of recognizing characters in all of the
ways people do – both handwritten and printed – contains
most, if not all, of the fundamental challenges of AI.
Whether or not this statement is correct, it highlights the
surprising complexity that underlies even “simple”
human-level concepts like letters. More practically, hand-
written character recognition is a real problem that chil-
dren and adults must learn to solve, with practical
applications ranging from reading envelope addresses or
checks in an automated teller machine (ATM). Handwrit-
ten character recognition is also simpler than more
general forms of object recognition; the object of interest
is two-dimensional, separated from the background, and
usually unoccluded. Compared with how people learn
and see other types of objects, it seems possible, in the
near term, to build algorithms that can see most of the
structure in characters that people can see.
The standard benchmark is theMixedNational Institute of

Standards and Technology (MNIST) data set for digit recog-
nition, which involves classifying images of digits into the cat-
egories ‘0’ to ‘9’ (LeCun et al. 1998). The training set provides
6,000 images per class for a total of 60,000 training images.
With a large amount of training data available, many algo-
rithms achieve respectable performance, including K-
nearest neighbors (5% test error), support vector machines
(about 1% test error), and convolutional neural networks
(below 1% test error [LeCun et al. 1998]). The best results
achieved using deep convolutional nets are very close to
human-level performance at an error rate of 0.2% (Ciresan
et al. 2012). Similarly, recent results applying convolutional
nets to the farmore challenging ImageNet object recognition
benchmark have shown that human-level performance is
within reach on that data set as well (Russakovsky et al. 2015).
Although humans and neural networks may perform

equally well on the MNIST digit recognition task and

other large-scale image classification tasks, it does not
mean that they learn and think in the same way. There
are at least two important differences: people learn from
fewer examples and they learn richer representations, a
comparison true for both learning handwritten characters
and for learning more general classes of objects (Fig. 1).
People can learn to recognize a new handwritten character
from a single example (Fig. 1A-i), allowing them to discrim-
inate between novel instances drawn by other people and
similar looking non-instances (Lake et al. 2015a; Miller
et al. 2000). Moreover, people learn more than how to do
pattern recognition: they learn a concept, that is, a model
of the class that allows their acquired knowledge to be flex-
ibly applied in new ways. In addition to recognizing new
examples, people can also generate new examples
(Fig. 1A-ii), parse a character into its most important
parts and relations (Fig. 1A-iii) (Lake et al. 2012), and gen-
erate new characters given a small set of related characters
(Fig. 1A-iv). These additional abilities come for free along
with the acquisition of the underlying concept.
Even for these simple visual concepts, people are still

better and more sophisticated learners than the best algo-
rithms for character recognition. People learn a lot more
from a lot less, and capturing these human-level learning
abilities in machines is the Characters Challenge. We
recently reported progress on this challenge using probabi-
listic program induction (Lake et al. 2015a) (see Glossary in
Table 1), yet aspects of the full human cognitive ability
remain out of reach. Although both people and models rep-
resent characters as a sequence of pen strokes and rela-
tions, people have a far richer repertoire of structural
relations between strokes. Furthermore, people can effi-
ciently integrate across multiple examples of a character
to infer which have optional elements, such as the horizon-
tal cross-bar in ‘7’s, combining different variants of the
same character into a single coherent representation.

Figure 1. The Characters Challenge: Human-level learning of novel handwritten characters (A), with the same abilities also illustrated
for a novel two-wheeled vehicle (B). A single example of a new visual concept (red box) can be enough information to support the (i)
classification of new examples, (ii) generation of new examples, (iii) parsing an object into parts and relations, and (iv) generation of
new concepts from related concepts. Adapted from Lake et al. (2015a).
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Additional progress may come by combining deep learning
and probabilistic program induction to tackle even richer
versions of the Characters Challenge.

3.2. The Frostbite Challenge

The second challenge concerns the Atari game Frostbite
(Fig. 2), which was one of the control problems tackled
by the DQN of Mnih et al. (2015). The DQN was a signifi-
cant advance in reinforcement learning, showing that a
single algorithm can learn to play a wide variety of
complex tasks. The network was trained to play 49 classic
Atari games, proposed as a test domain for reinforcement
learning (Bellemare et al. 2013), impressively achieving
human-level performance or above on 29 of the games. It
did, however, have particular trouble with Frostbite and
other games that required temporally extended planning
strategies.

In Frostbite, players control an agent (Frostbite Bailey)
tasked with constructing an igloo within a time limit. The
igloo is built piece by piece as the agent jumps on ice
floes in water (Fig. 2A–C). The challenge is that the ice
floes are in constant motion (moving either left or right),
and ice floes only contribute to the construction of the
igloo if they are visited in an active state (white, rather
than blue). The agent may also earn extra points by gather-
ing fish while avoiding a number of fatal hazards (falling in
the water, snow geese, polar bears, etc.). Success in this
game requires a temporally extended plan to ensure the
agent can accomplish a sub-goal (such as reaching an ice
floe) and then safely proceed to the next sub-goal. Ulti-
mately, once all of the pieces of the igloo are in place,
the agent must proceed to the igloo and complete the
level before time expires (Fig. 2C).

The DQN learns to play Frostbite and other Atari games
by combining a powerful pattern recognizer (a deep convo-
lutional neural network) and a simple model-free reinforce-
ment learning algorithm (Q-learning [Watkins & Dayan
1992]). These components allow the network to map
sensory inputs (frames of pixels) onto a policy over a
small set of actions, and both the mapping and the policy
are trained to optimize long-term cumulative reward (the
game score). The network embodies the strongly empiricist
approach characteristic of most connectionist models: very
little is built into the network apart from the assumptions
about image structure inherent in convolutional networks,
so the network has to essentially learn a visual and concep-
tual system from scratch for each new game. In Mnih et al.
(2015), the network architecture and hyper-parameters
were fixed, but the network was trained anew for each
game, meaning the visual system and the policy are
highly specialized for the games it was trained on. More
recent work has shown how these game-specific networks
can share visual features (Rusu et al. 2016) or be used
to train a multitask network (Parisotto et al. 2016),
achieving modest benefits of transfer when learning to
play new games.
Although it is interesting that the DQN learns to play

games at human-level performance while assuming very
little prior knowledge, the DQN may be learning to play
Frostbite and other games in a very different way than
people do. One way to examine the differences is by consid-
ering the amount of experience required for learning. In
Mnih et al. (2015), the DQN was compared with a profes-
sional gamer who received approximately 2 hours of prac-
tice on each of the 49 Atari games (although he or she
likely had prior experience with some of the games). The
DQN was trained on 200 million frames from each of the
games, which equates to approximately 924 hours of

Figure 2. Screenshots of Frostbite, a 1983 video game designed for the Atari game console. (A) The start of a level in Frostbite. The
agent must construct an igloo by hopping between ice floes and avoiding obstacles such as birds. The floes are in constant motion (either
left or right), making multi-step planning essential to success. (B) The agent receives pieces of the igloo (top right) by jumping on the
active ice floes (white), which then deactivates them (blue). (C) At the end of a level, the agent must safely reach the completed
igloo. (D) Later levels include additional rewards (fish) and deadly obstacles (crabs, clams, and bears).
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game time (about 38 days), or almost 500 times as much
experience as the human received.2 Additionally, the
DQN incorporates experience replay, where each of
these frames is replayed approximately eight more times
on average over the course of learning.
With the full 924 hours of unique experience and addi-

tional replay, the DQN achieved less than 10% of
human-level performance during a controlled test session
(see DQN in Fig. 3). More recent variants of the DQN
perform better, and can even outperform the human
tester (Schaul et al. 2016; Stadie et al. 2016; van Hasselt
et al. 2016; Wang et al. 2016), reaching 83% of the profes-
sional gamer’s score by incorporating smarter experience
replay (Schaul et al. 2016), and 172% by using smarter
replay and more efficient parameter sharing (Wang et al.
2016) (see DQN+ and DQN++ in Fig. 3).3 But they
require a lot of experience to reach this level. The learning
curve for the model of Wang et al. (2016) shows perfor-
mance is approximately 44% after 200 hours, 8% after
100 hours, and less than 2% after 5 hours (which is close
to random play, approximately 1.5%). The differences
between the human and machine learning curves suggest
that they may be learning different kinds of knowledge,
using different learning mechanisms, or both.
The contrast becomes even more dramatic if we look at

the very earliest stages of learning. Although both the orig-
inal DQN and these more recent variants require multiple
hours of experience to perform reliably better than random
play, even non-professional humans can grasp the basics of
the game after just a few minutes of play. We speculate that
people do this by inferring a general schema to describe the
goals of the game and the object types and their interac-
tions, using the kinds of intuitive theories, model-building
abilities and model-based planning mechanisms we
describe below. Although novice players may make some
mistakes, such as inferring that fish are harmful rather
than helpful, they can learn to play better than chance
within a few minutes. If humans are able to first watch
an expert playing for a few minutes, they can learn

even faster. In informal experiments with two of the
authors playing Frostbite on a Javascript emulator (http://
www.virtualatari.org/soft.php?soft=Frostbite), after watch-
ing videos of expert play on YouTube for just 2 minutes,
we found that we were able to reach scores comparable
to or better than the human expert reported in Mnih
et al. (2015) after at most 15 to 20 minutes of total
practice.4

There are other behavioral signatures that suggest funda-
mental differences in representation and learning between
people and the DQN. For example, the game of Frostbite
provides incremental rewards for reaching each active ice
floe, providing the DQN with the relevant sub-goals for
completing the larger task of building an igloo. Without
these sub-goals, the DQN would have to take random
actions until it accidentally builds an igloo and is rewarded
for completing the entire level. In contrast, people likely do
not rely on incremental scoring in the same way when fig-
uring out how to play a new game. In Frostbite, it is possi-
ble to figure out the higher-level goal of building an igloo
without incremental feedback; similarly, sparse feedback
is a source of difficulty in other Atari 2600 games such as
Montezuma’s Revenge, in which people substantially out-
perform current DQN approaches.
The learned DQN network is also rather inflexible to

changes in its inputs and goals. Changing the color or
appearance of objects or changing the goals of the
network would have devastating consequences on perfor-
mance if the network is not retrained. Although any specific
model is necessarily simplified and should not be held to
the standard of general human intelligence, the contrast
between DQN and human flexibility is striking nonethe-
less. For example, imagine you are tasked with playing
Frostbite with any one of these new goals:

1. Get the lowest possible score.
2. Get closest to 100, or 300, or 1,000, or 3,000, or any

level, without going over.
3. Beat your friend, who’s playing next to you, but just

barely, not by too much, so as not to embarrass them.
4. Go as long as you can without dying.
5. Die as quickly as you can.
6. Pass each level at the last possible minute, right before

the temperature timer hits zero and you die (i.e., come as
close as you can todying from frostbitewithout actually dying).
7. Get to the furthest unexplored level without regard

for your score.
8. See if you can discover secret Easter eggs.
9. Get as many fish as you can.
10. Touch all of the individual ice floes on screen once

and only once.
11. Teach your friend how to play as efficiently as

possible.

This range of goals highlights an essential component of
human intelligence: people can learn models and use them
for arbitrary new tasks and goals. Although neural networks
can learn multiple mappings or tasks with the same set of
stimuli – adapting their outputs depending on a specified
goal – these models require substantial training or reconfig-
uration to add new tasks (e.g., Collins & Frank 2013; Elia-
smith et al. 2012; Rougier et al. 2005). In contrast, people
require little or no retraining or reconfiguration, adding
new tasks and goals to their repertoire with relative ease.

Figure 3. Comparing learning speed for people versus Deep
Q-Networks (DQNs). Performance on the Atari 2600 game
Frostbite is plotted as a function of game experience (in hours
at a frame rate of 60 fps), which does not include additional
experience replay. Learning curves and scores are shown from
different networks: DQN (Mnih et al. 2015), DQN+ (Schaul
et al. 2016), and DQN++ (Wang et al. 2016). Random play
achieves a score of 65.2.
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The Frostbite example is a particularly telling contrast
when compared with human play. Even the best deep net-
works learn gradually over many thousands of game epi-
sodes, take a long time to reach good performance, and
are locked into particular input and goal patterns. Humans,
after playing just a small number of games over a span of
minutes, can understand the game and its goals well
enough to perform better than deep networks do after
almost a thousand hours of experience. Even more impres-
sively, people understand enough to invent or accept new
goals, generalize over changes to the input, and explain the
game to others. Why are people different? What core ingre-
dients of human intelligence might the DQN and other
modern machine learning methods be missing?

One might object that both the Frostbite and Characters
challenges draw an unfair comparison between the speed
of human learning and neural network learning. We
discuss this objection in detail in Section 5, but we feel it
is important to anticipate it here as well. To paraphrase
one reviewer of an earlier draft of this article, “It is not
that DQN and people are solving the same task differently.
They may be better seen as solving different tasks. Human
learners – unlike DQN and many other deep learning
systems – approach new problems armed with extensive
prior experience. The human is encountering one in a
years-long string of problems, with rich overlapping
structure. Humans as a result often have important
domain-specific knowledge for these tasks, even before
they ‘begin.’ The DQN is starting completely from scratch.”

We agree, and indeed this is another way of putting our
point here. Human learners fundamentally take on different
learning tasks than today’s neural networks, and if we want to
build machines that learn and think like people, our
machines need to confront the kinds of tasks that human
learners do, not shy away from them. People never start
completely from scratch, or even close to “from scratch,”
and that is the secret to their success. The challenge of build-
ing models of human learning and thinking then becomes:
How do we bring to bear rich prior knowledge to learn
new tasks and solve new problems so quickly? What form
does that prior knowledge take, and how is it constructed,
from some combination of inbuilt capacities and previous
experience? The core ingredients we propose in the next
section offer one route to meeting this challenge.

4. Core ingredients of human intelligence

In the Introduction, we laid out what we see as core ingre-
dients of intelligence. Here we consider the ingredients in
detail and contrast them with the current state of neural
network modeling. Although these are hardly the only ingre-
dients needed for human-like learning and thought (see our
discussion of language in sect. 5), they are key building
blocks, which are not present in most current learning-
based AI systems – certainly not all present together – and
for which additional attention may prove especially fruitful.
We believe that integrating them will produce significantly
more powerful and more human-like learning and thinking
abilities than we currently see in AI systems.

Before considering each ingredient in detail, it is impor-
tant to clarify that by “core ingredient” we do not necessar-
ily mean an ingredient that is innately specified by genetics
or must be “built in” to any learning algorithm. We intend

our discussion to be agnostic with regards to the origins of
the key ingredients. By the time a child or an adult is
picking up a new character or learning how to play
Frostbite, he or she is armed with extensive real-world expe-
rience that deep learning systems do not benefit from –
experience that would be hard to emulate in any general
sense. Certainly, the core ingredients are enriched by this
experience, and some may even be a product of the experi-
ence itself. Whether learned, built in, or enriched, the key
claim is that these ingredients play an active and important
role in producing human-like learning and thought, in
ways contemporary machine learning has yet to capture.

4.1. Developmental start-up software

Early in development, humans have a foundational
understanding of several core domains (Spelke 2003;
Spelke & Kinzler 2007). These domains include number
(numerical and set operations), space (geometry and navi-
gation), physics (inanimate objects and mechanics), and
psychology (agents and groups). These core domains
cleave cognition at its conceptual joints, and each domain
is organized by a set of entities and abstract principles relat-
ing the entities to each other. The underlying cognitive rep-
resentations can be understood as “intuitive theories,” with
a causal structure resembling a scientific theory (Carey
2004; 2009; Gopnik et al. 2004; Gopnik & Meltzo 1999;
Gweon et al. 2010; Schulz 2012b; Wellman & Gelman
1992; 1998). The “child as scientist” proposal further views
the process of learning itself as also scientist-like, with
recent experiments showing that children seek out new
data to distinguish between hypotheses, isolate variables,
test causal hypotheses, make use of the data-generating
process in drawing conclusions, and learn selectively from
others (Cook et al. 2011; Gweon et al. 2010; Schulz et al.
2007; Stahl & Feigenson 2015; Tsividis et al. 2013). We
address the nature of learning mechanisms in Section 4.2.
Each core domain has been the target of a great deal of

study and analysis, and together the domains are thought to
be shared cross-culturally and partly with non-human
animals. All of these domains may be important augmenta-
tions to current machine learning, though below, we focus
in particular on the early understanding of objects and
agents.

4.1.1. Intuitive physics. Young children have a rich knowl-
edge of intuitive physics. Whether learned or innate,
important physical concepts are present at ages far earlier
than when a child or adult learns to play Frostbite, suggest-
ing these resources may be used for solving this and many
everyday physics-related tasks.
At the age of 2 months, and possibly earlier, human

infants expect inanimate objects to follow principles of per-
sistence, continuity, cohesion, and solidity. Young infants
believe objects should move along smooth paths, not
wink in and out of existence, not inter-penetrate and not
act at a distance (Spelke 1990; Spelke et al. 1995). These
expectations guide object segmentation in early infancy,
emerging before appearance-based cues such as color,
texture, and perceptual goodness (Spelke 1990).
These expectations also go on to guide later learning. At

around 6 months, infants have already developed different
expectations for rigid bodies, soft bodies, and liquids (Rips
& Hespos 2015). Liquids, for example, are expected to go
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through barriers, while solid objects cannot (Hespos et al.
2009). By their first birthday, infants have gone through
several transitions of comprehending basic physical con-
cepts such as inertia, support, containment, and collisions
(Baillargeon 2004; Baillargeon et al. 2009; Hespos & Bail-
largeon 2008).
There is no single agreed-upon computational account of

these early physical principles and concepts, and previous
suggestions have ranged from decision trees (Baillargeon
et al. 2009), to cues, to lists of rules (Siegler & Chen
1998). A promising recent approach sees intuitive physical
reasoning as similar to inference over a physics software
engine, the kind of simulators that power modern-day ani-
mations and games (Bates et al. 2015; Battaglia et al. 2013;
Gerstenberg et al. 2015; Sanborn et al. 2013). According to
this hypothesis, people reconstruct a perceptual scene using
internal representations of the objects and their physically
relevant properties (such as mass, elasticity, and surface fric-
tion) and forces acting on objects (such as gravity, friction, or
collision impulses). Relative to physical ground truth, the
intuitive physical state representation is approximate and
probabilistic, and oversimplified and incomplete in many
ways. Still, it is rich enough to support mental simulations
that can predict how objects will move in the immediate
future, either on their own or in responses to forces we
might apply.
This “intuitive physics engine” approach enables flexible

adaptation to a wide range of everyday scenarios and judg-
ments in a way that goes beyond perceptual cues. For
example, (Fig. 4), a physics-engine reconstruction of a
tower of wooden blocks from the game Jenga can be
used to predict whether (and how) a tower will fall,
finding close quantitative fits to how adults make these pre-
dictions (Battaglia et al. 2013), as well as simpler kinds of
physical predictions that have been studied in infants
(Téglás et al. 2011). Simulation-based models can also
capture how people make hypothetical or counterfactual
predictions: What would happen if certain blocks were
taken away, more blocks were added, or the table support-
ing the tower was jostled? What if certain blocks were glued
together, or attached to the table surface? What if the

blocks were made of different materials (Styrofoam, lead,
ice)? What if the blocks of one color were much heavier
than those of other colors? Each of these physical judg-
ments may require new features or new training for a
pattern recognition account to work at the same level as
the model-based simulator.
What are the prospects for embedding or acquiring this

kind of intuitive physics in deep learning systems? Connec-
tionist models in psychology have previously been applied
to physical reasoning tasks such as balance-beam rules
(McClelland 1988; Shultz 2003) or rules relating to dis-
tance, velocity, and time in motion (Buckingham &
Shultz 2000). However, these networks do not attempt to
work with complex scenes as input, or a wide range of sce-
narios and judgments as in Figure 4. A recent paper from
Facebook AI researchers (Lerer et al. 2016) represents
an exciting step in this direction. Lerer et al. (2016)
trained a deep convolutional network-based system
(PhysNet) to predict the stability of block towers from sim-
ulated images similar to those in Figure 4A, but with much
simpler configurations of two, three, or four cubical blocks
stacked vertically. Impressively, PhysNet generalized to
simple real images of block towers, matching human per-
formance on these images, meanwhile exceeding human
performance on synthetic images. Human and PhysNet
confidence were also correlated across towers, although
not as strongly as for the approximate probabilistic simula-
tion models and experiments of Battaglia et al. (2013). One
limitation is that PhysNet currently requires extensive
training – between 100,000 and 200,000 scenes – to learn
judgments for just a single task (will the tower fall?) on a
narrow range of scenes (towers with two to four cubes).
It has been shown to generalize, but also only in limited
ways (e.g., from towers of two and three cubes to towers
of four cubes). In contrast, people require far less experi-
ence to perform any particular task, and can generalize to
many novel judgments and complex scenes with no new
training required (although they receive large amounts of
physics experience through interacting with the world
more generally). Could deep learning systems such as
PhysNet capture this flexibility, without explicitly

Figure 4. The intuitive physics-engine approach to scene understanding, illustrated through tower stability. (A) The engine takes in
inputs through perception, language, memory, and other faculties. It then constructs a physical scene with objects, physical
properties, and forces; simulates the scene’s development over time; and hands the output to other reasoning systems. (B) Many
possible “tweaks” to the input can result in very different scenes, requiring the potential discovery, training, and evaluation of new
features for each tweak. Adapted from Battaglia et al. (2013).
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simulating the causal interactions between objects in three
dimensions? We are not sure, but we hope this is a chal-
lenge they will take on.

Alternatively, instead of trying to make predictions
without simulating physics, could neural networks be
trained to emulate a general-purpose physics simulator,
given the right type and quantity of training data, such as
the raw input experienced by a child? This is an active
and intriguing area of research, but it too faces significant
challenges. For networks trained on object classification,
deeper layers often become sensitive to successively
higher-level features, from edges to textures to shape-
parts to full objects (Yosinski et al. 2014; Zeiler & Fergus
2014). For deep networks trained on physics-related data,
it remains to be seen whether higher layers will encode
objects, general physical properties, forces, and approxi-
mately Newtonian dynamics. A generic network trained
on dynamic pixel data might learn an implicit representa-
tion of these concepts, but would it generalize broadly
beyond training contexts as people’s more explicit physical
concepts do? Consider, for example, a network that learns
to predict the trajectories of several balls bouncing in a box
(Kodratoff & Michalski 2014). If this network has actually
learned something like Newtonian mechanics, then it
should be able to generalize to interestingly different
scenarios – at a minimum different numbers of differently
shaped objects, bouncing in boxes of different shapes and
sizes and orientations with respect to gravity, not to
mention more severe generalization tests such as all of
the tower tasks discussed above, which also fall under the
Newtonian domain. Neural network researchers have yet
to take on this challenge, but we hope they will. Whether
such models can be learned with the kind (and quantity)
of data available to human infants is not clear, as we
discuss further in Section 5.

It may be difficult to integrate object and physics-based
primitives into deep neural networks, but the payoff in
terms of learning speed and performance could be great
for many tasks. Consider the case of learning to play Frost-
bite. Although it can be difficult to discern exactly how a
network learns to solve a particular task, the DQN probably
does not parse a Frostbite screenshot in terms of stable
objects or sprites moving according to the rules of intuitive
physics (Fig. 2). But incorporating a physics-engine–based
representation could help DQNs learn to play games such
as Frostbite in a faster and more general way, whether the
physics knowledge is captured implicitly in a neural
network or more explicitly in a simulator. Beyond reducing
the amount of training data, and potentially improving the
level of performance reached by the DQN, it could elimi-
nate the need to retrain a Frostbite network if the objects
(e.g., birds, ice floes, and fish) are slightly altered in their
behavior, reward structure, or appearance. When a new
object type such as a bear is introduced, as in the later
levels of Frostbite (Fig. 2D), a network endowed with intu-
itive physics would also have an easier time adding this
object type to its knowledge (the challenge of adding new
objects was also discussed in Marcus [1998; 2001]). In
this way, the integration of intuitive physics and deep learn-
ing could be an important step toward more human-like
learning algorithms.

4.1.2. Intuitive psychology. Intuitive psychology is another
early-emerging ability with an important influence on

human learning and thought. Pre-verbal infants distinguish
animate agents from inanimate objects. This distinction is
partially based on innate or early-present detectors for
low-level cues, such as the presence of eyes, motion initiated
from rest, and biological motion (Johnson et al. 1998;
Premack & Premack 1997; Schlottmann et al. 2006; Trem-
oulet & Feldman 2000). Such cues are often sufficient but
not necessary for the detection of agency.
Beyond these low-level cues, infants also expect agents to

act contingently and reciprocally, to have goals, and to take
efficient actions toward those goals subject to constraints
(Csibra 2008; Csibra et al. 2003; Spelke & Kinzler 2007).
These goals can be socially directed; at around 3 months
of age, infants begin to discriminate antisocial agents that
hurt or hinder others from neutral agents (Hamlin 2013;
Hamlin et al. 2010), and they later distinguish between
anti-social, neutral, and pro-social agents (Hamlin et al.
2007; 2013).
It is generally agreed that infants expect agents to act in a

goal-directed, efficient, and socially sensitive fashion
(Spelke & Kinzler 2007). What is less agreed on is the com-
putational architecture that supports this reasoning and
whether it includes any reference to mental states and
explicit goals.
One possibility is that intuitive psychology is simply cues

“all the way down” (Schlottmann et al. 2013; Scholl & Gao
2013), though this would require more and more cues as
the scenarios become more complex. Consider, for
example, a scenario in which an agent A is moving toward
a box, and an agent B moves in a way that blocks A from
reaching the box. Infants and adults are likely to interpret
B’s behavior as “hindering” (Hamlin 2013). This inference
could be captured by a cue that states, “If an agent’s
expected trajectory is prevented from completion, the
blocking agent is given some negative association.”
Although the cue is easily calculated, the scenario is also

easily changed to necessitate a different type of cue.
Suppose A was already negatively associated (a “bad
guy”); acting negatively toward A could then be seen as
good (Hamlin 2013). Or suppose something harmful was
in the box, which A did not know about. Now B would
be seen as helping, protecting, or defending A. Suppose
A knew there was something bad in the box and wanted
it anyway. B could be seen as acting paternalistically. A
cue-based account would be twisted into gnarled combina-
tions such as, “If an expected trajectory is prevented from
completion, the blocking agent is given some negative asso-
ciation, unless that trajectory leads to a negative outcome or
the blocking agent is previously associated as positive, or
the blocked agent is previously associated as negative,
or….”
One alternative to a cue-based account is to use genera-

tive models of action choice, as in the Bayesian inverse
planning, or Bayesian theory of mind (ToM), models of
Baker et al. (2009) or the naive utility calculus models of
Jara-Ettinger et al. (2015) (see also Jern and Kemp
[2015] and Tauber and Steyvers [2011] and a related alter-
native based on predictive coding from Kilner et al. [2007]).
These models formalize explicitly mentalistic concepts such
as “goal,” “agent,” “planning,” “cost,” “efficiency,” and
“belief,” used to describe core psychological reasoning in
infancy. They assume adults and children treat agents as
approximately rational planners who choose the most effi-
cient means to their goals. Planning computations may be
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formalized as solutions to Markov decision processes
(MDPs) or partially observable Markov decision processes
(POMDPs), taking as input utility and belief functions
defined over an agent’s state-space and the agent’s state-
action transition functions, and returning a series of
actions the agent should perform to most efficiently fulfill
their goals (or maximize their utility). By simulating these
planning processes, people can predict what agents might
do next, or use inverse reasoning from observing a series
of actions to infer the utilities and beliefs of agents in a
scene. This is directly analogous to how simulation engines
can be used for intuitive physics, to predict what will
happen next in a scene or to infer objects’ dynamical proper-
ties from how they move. It yields similarly flexible reasoning
abilities: Utilities and beliefs can be adjusted to take into
account how agents might act for a wide range of novel
goals and situations. Importantly, unlike in intuitive
physics, simulation-based reasoning in intuitive psychology
can be nested recursively to understand social interactions.
We can think about agents thinking about other agents.
As in the case of intuitive physics, the success that

generic deep networks will have in capturing intuitive psy-
chological reasoning will depend in part on the representa-
tions humans use. Although deep networks have not yet
been applied to scenarios involving theory of mind and
intuitive psychology, they could probably learn visual
cues, heuristics and summary statistics of a scene that
happens to involve agents.5 If that is all that underlies
human psychological reasoning, a data-driven deep learn-
ing approach can likely find success in this domain.
However, it seems to us that any full formal account of

intuitive psychological reasoning needs to include repre-
sentations of agency, goals, efficiency, and reciprocal rela-
tions. As with objects and forces, it is unclear whether a
complete representation of these concepts (agents, goals,
etc.) could emerge from deep neural networks trained in
a purely predictive capacity. Similar to the intuitive
physics domain, it is possible that with a tremendous
number of training trajectories in a variety of scenarios,
deep learning techniques could approximate the reasoning
found in infancy even without learning anything about goal-
directed or socially directed behavior more generally. But
this is also unlikely to resemble how humans learn, under-
stand, and apply intuitive psychology unless the concepts
are genuine. In the same way that altering the setting of
a scene or the target of inference in a physics-related task
may be difficult to generalize without an understanding
of objects, altering the setting of an agent or their goals
and beliefs is difficult to reason about without understand-
ing intuitive psychology.
In introducing the Frostbite challenge, we discussed how

people can learn to play the game extremely quickly by
watching an experienced player for just a few minutes
and then playing a few rounds themselves. Intuitive psy-
chology provides a basis for efficient learning from
others, especially in teaching settings with the goal of com-
municating knowledge efficiently (Shafto et al. 2014). In
the case of watching an expert play Frostbite, whether or
not there is an explicit goal to teach, intuitive psychology
lets us infer the beliefs, desires, and intentions of the expe-
rienced player. For example, we can learn that the birds are
to be avoided from seeing how the experienced player
appears to avoid them. We do not need to experience a
single example of encountering a bird, and watching

Frostbite Bailey die because of the bird, to infer that
birds are probably dangerous. It is enough to see that the
experienced player’s avoidance behavior is best explained
as acting under that belief.
Similarly, consider how a sidekick agent (increasingly

popular in video games) is expected to help a player
achieve his or her goals. This agent can be useful in differ-
ent ways in different circumstances, such as getting items,
clearing paths, fighting, defending, healing, and providing
information, all under the general notion of being helpful
(Macindoe 2013). An explicit agent representation can
predict how such an agent will be helpful in new circum-
stances, whereas a bottom-up pixel-based representation
is likely to struggle.
There are several ways that intuitive psychology could be

incorporated into contemporary deep learning systems.
Although it could be built in, intuitive psychology may
arise in other ways. Connectionists have argued that
innate constraints in the form of hard-wired cortical circuits
are unlikely (Elman 2005; Elman et al. 1996), but a simple
inductive bias, for example, the tendency to notice things
that move other things, can bootstrap reasoning about
more abstract concepts of agency (Ullman et al. 2012a).6

Similarly, a great deal of goal-directed and socially directed
actions can also be boiled down to a simple utility calculus
(e.g., Jara-Ettinger et al. 2015), in a way that could be
shared with other cognitive abilities. Although the origins
of intuitive psychology are still a matter of debate, it is
clear that these abilities are early emerging and play an
important role in human learning and thought, as exempli-
fied in the Frostbite challenge and when learning to play
novel video games more broadly.

4.2. Learning as rapid model building

Since their inception, neural networks models have
stressed the importance of learning. There are many learn-
ing algorithms for neural networks, including the percep-
tron algorithm (Rosenblatt 1958), Hebbian learning
(Hebb 1949), the BCM rule (Bienenstock et al. 1982),
backpropagation (Rumelhart et al. 1986a), the wake-sleep
algorithm (Hinton et al. 1995), and contrastive divergence
(Hinton 2002). Whether the goal is supervised or unsuper-
vised learning, these algorithms implement learning as a
process of gradual adjustment of connection strengths.
For supervised learning, the updates are usually aimed at
improving the algorithm’s pattern recognition capabilities.
For unsupervised learning, the updates work toward grad-
ually matching the statistics of the model’s internal patterns
with the statistics of the input data.
In recent years, machine learning has found particular

success using backpropagation and large data sets to solve
difficult pattern recognition problems (see Glossary in
Table 1). Although these algorithms have reached human-
level performance on several challenging benchmarks, they
are still far from matching human-level learning in other
ways. Deep neural networks often need more data than
people do to solve the same types of problems, whether it
is learning to recognize a new type of object or learning to
play a new game. When learning the meanings of words in
their native language, children make meaningful generaliza-
tions from very sparse data (Carey & Bartlett 1978; Landau
et al. 1988; Markman 1989; Smith et al. 2002; Xu & Tenen-
baum 2007; although see Horst & Samuelson 2008
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regarding memory limitations). Children may only need to
see a few examples of the concepts hairbrush, pineapple,
and lightsaber, before they largely “get it,” grasping the
boundary of the infinite set that defines each concept from
the infinite set of all possible objects. Children are far
more practiced than adults at learning new concepts, learn-
ing roughly 9 or 10 new words each day, after beginning to
speak through the end of high school (Bloom 2000; Carey
1978). Yet the ability for rapid “one-shot” learning does not
disappear in adulthood. An adult may need to see a single
image or movie of a novel two-wheeled vehicle to infer the
boundary between this concept and others, allowing him or
her to discriminate new examples of that concept from
similar-looking objects of a different type (Fig. 1B-i).

Contrasting with the efficiency of human learning,
neural networks, by virtue of their generality as highly flex-
ible function approximators, are notoriously data hungry
(the bias/variance dilemma [Geman et al. 1992]). Bench-
mark tasks such as the ImageNet data set for object recog-
nition provide hundreds or thousands of examples per class
(Krizhevsky et al. 2012; Russakovsky et al. 2015): 1,000
hairbrushes, 1,000 pineapples, and so on. In the context
of learning new, handwritten characters or learning to
play Frostbite, the MNIST benchmark includes 6,000
examples of each handwritten digit (LeCun et al. 1998),
and the DQN of Mnih et al. (2015) played each Atari
video game for approximately 924 hours of unique training
experience (Fig. 3). In both cases, the algorithms are clearly
using information less efficiently than a person learning to
perform the same tasks.

It is also important to mention that there are many
classes of concepts that people learn more slowly. Concepts
that are learned in school are usually far more challenging
and more difficult to acquire, including mathematical func-
tions, logarithms, derivatives, integrals, atoms, electrons,
gravity, DNA, and evolution. There are also domains for
which machine learners outperform human learners, such
as combing through financial or weather data. But for the
vast majority of cognitively natural concepts – the types of
things that children learn as the meanings of words –
people are still far better learners than machines. This is
the type of learning we focus on in this section, which is
more suitable for the enterprise of reverse engineering
and articulating additional principles that make human
learning successful. It also opens the possibility of building
these ingredients into the next generation of machine
learning and AI algorithms, with potential for making pro-
gress on learning concepts that are both easy and difficult
for humans to acquire.

Even with just a few examples, people can learn remark-
ably rich conceptual models. One indicator of richness is
the variety of functions that these models support
(Markman & Ross 2003; Solomon et al. 1999). Beyond clas-
sification, concepts support prediction (Murphy & Ross
1994; Rips 1975), action (Barsalou 1983), communication
(Markman & Makin 1998), imagination (Jern & Kemp
2013; Ward 1994), explanation (Lombrozo 2009; Williams
& Lombrozo 2010), and composition (Murphy 1988; Osh-
erson & Smith 1981). These abilities are not independent;
rather they hang together and interact (Solomon et al.
1999), coming for free with the acquisition of the underly-
ing concept. Returning to the previous example of a novel
two-wheeled vehicle, a person can sketch a range of new
instances (Fig. 1B-ii), parse the concept into its most

important components (Fig. 1B-iii), or even create a new
complex concept through the combination of familiar con-
cepts (Fig. 1B-iv). Likewise, as discussed in the context of
Frostbite, a learner who has acquired the basics of the
game could flexibly apply his or her knowledge to an infi-
nite set of Frostbite variants (sect. 3.2). The acquired
knowledge supports reconfiguration to new tasks and new
demands, such as modifying the goals of the game to
survive, while acquiring as few points as possible, or to effi-
ciently teach the rules to a friend.
This richness and flexibility suggest that learning as

model building is a better metaphor than learning as
pattern recognition. Furthermore, the human capacity for
one-shot learning suggests that these models are built
upon rich domain knowledge rather than starting from a
blank slate (Mikolov et al. 2016; Mitchell et al. 1986). In con-
trast, much of the recent progress in deep learning has been
on pattern recognition problems, including object recogni-
tion, speech recognition, and (model-free) video game learn-
ing, that use large data sets and little domain knowledge.
There has been recent work on other types of tasks,

including learning generative models of images (Denton
et al. 2015; Gregor et al. 2015), caption generation (Karpa-
thy & Fei-Fei 2017; Vinyals et al. 2014; Xu et al. 2015),
question answering (Sukhbaatar et al. 2015; Weston et al.
2015b), and learning simple algorithms (Graves et al.
2014; Grefenstette et al. 2015). We discuss question
answering and learning simple algorithms in Section 6.1.
Yet, at least for image and caption generation, these tasks
have been mostly studied in the big data setting that is at
odds with the impressive human ability to generalize
from small data sets (although see Rezende et al. [2016]
for a deep learning approach to the Character Challenge).
And it has been difficult to learn neural network–style rep-
resentations that effortlessly generalize new tasks that they
were not trained on (see Davis & Marcus 2015; Marcus
1998; 2001). What additional ingredients may be needed
to rapidly learn more powerful and more general-purpose
representations?
A relevant case study is from our own work on the Char-

acters Challenge (sect. 3.1; Lake 2014; Lake et al. 2015a).
People and various machine learning approaches were
compared on their ability to learn new handwritten charac-
ters from the world’s alphabets. In addition to evaluating
several types of deep learning models, we developed an
algorithm using Bayesian program learning (BPL) that rep-
resents concepts as simple stochastic programs: structured
procedures that generate new examples of a concept when
executed (Fig. 5A). These programs allow the model to
express causal knowledge about how the raw data are
formed, and the probabilistic semantics allow the model to
handle noise and perform creative tasks. Structure sharing
across concepts is accomplished by the compositional
re-use of stochastic primitives that can combine in new
ways to create new concepts.
Note that we are overloading the word model to refer to

the BPL framework as a whole (which is a generative
model), as well as the individual probabilistic models (or
concepts) that it infers from images to represent novel
handwritten characters. There is a hierarchy of models: a
higher-level program that generates different types of con-
cepts, which are themselves programs that can be run to
generate tokens of a concept. Here, describing learning
as “rapid model building” refers to the fact that BPL
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constructs generative models (lower-level programs) that
produce tokens of a concept (Fig. 5B).
Learning models of this form allows BPL to perform a

challenging one-shot classification task at human-level per-
formance (Fig. 1A-i) and to outperform current deep learn-
ing models such as convolutional networks (Koch et al.
2015).7 The representations that BPL learns also enable
it to generalize in other, more creative, human-like ways,
as evaluated using “visual Turing tests” (e.g., Fig. 5B).
These tasks include generating new examples (Figs. 1A-ii
and 5B), parsing objects into their essential components
(Fig. 1A-iii), and generating new concepts in the style of
a particular alphabet (Fig. 1A-iv). The following sections
discuss the three main ingredients – compositionality, cau-
sality, and learning-to-learn – that were important to the
success of this framework and, we believe, are important
to understanding human learning as rapid model building
more broadly. Although these ingredients fit naturally
within a BPL or a probabilistic program induction frame-
work, they could also be integrated into deep learning
models and other types of machine learning algorithms,
prospects we discuss in more detail below.

4.2.1. Compositionality. Compositionality is the classic
idea that new representations can be constructed through
the combination of primitive elements. In computer pro-
gramming, primitive functions can be combined to create
new functions, and these new functions can be further
combined to create even more complex functions. This
function hierarchy provides an efficient description of
higher-level functions, such as a hierarchy of parts for
describing complex objects or scenes (Bienenstock et al.
1997). Compositionality is also at the core of productivity:
an infinite number of representations can be constructed
from a finite set of primitives, just as the mind can think
an infinite number of thoughts, utter or understand an infi-
nite number of sentences, or learn new concepts from a

seemingly infinite space of possibilities (Fodor 1975;
Fodor & Pylyshyn 1988; Marcus 2001; Piantadosi 2011).
Compositionality has been broadly influential in both AI

and cognitive science, especially as it pertains to theories of
object recognition, conceptual representation, and lan-
guage. Here, we focus on compositional representations
of object concepts for illustration. Structural description
models represent visual concepts as compositions of parts
and relations, which provides a strong inductive bias for
constructing models of new concepts (Biederman 1987;
Hummel & Biederman 1992; Marr & Nishihara 1978;
van den Hengel et al. 2015; Winston 1975). For instance,
the novel two-wheeled vehicle in Figure 1B might be rep-
resented as two wheels connected by a platform, which
provides the base for a post, which holds the handlebars,
and so on. Parts can themselves be composed of sub-
parts, forming a “partonomy” of part-whole relationships
(Miller & Johnson-Laird 1976; Tversky & Hemenway
1984). In the novel vehicle example, the parts and relations
can be shared and re-used from existing related concepts,
such as cars, scooters, motorcycles, and unicycles.
Because the parts and relations are themselves a product
of previous learning, their facilitation of the construction
of new models is also an example of learning-to-learn,
another ingredient that is covered below. Although compo-
sitionality and learning-to-learn fit naturally together, there
are also forms of compositionality that rely less on previous
learning, such as the bottom-up, parts-based representa-
tion of Hoffman and Richards (1984).
Learning models of novel handwritten characters can be

operationalized in a similar way. Handwritten characters
are inherently compositional, where the parts are pen
strokes, and relations describe how these strokes connect
to each other. Lake et al. (2015a) modeled these parts
using an additional layer of compositionality, where parts
are complex movements created from simpler sub-part
movements. New characters can be constructed by

Figure 5. A causal, compositional model of handwritten characters. (A) New types are generated compositionally by choosing primitive
actions (color coded) from a library (i), combining these sub-parts (ii) to make parts (iii), and combining parts with relations to define
simple programs (iv). These programs can create different tokens of a concept (v) that are rendered as binary images (vi). (B)
Probabilistic inference allows the model to generate new examples from just one example of a new concept; shown here in a visual
Turing test. An example image of a new concept is shown above each pair of grids. One grid was generated by nine people and the
other is nine samples from the BPL model. Which grid in each pair (A or B) was generated by the machine? Answers by row:
1,2;1,1. Adapted from Lake et al. (2015a).
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combining parts, sub-parts, and relations in novel ways
(Fig. 5). Compositionality is also central to the construction
of other types of symbolic concepts beyond characters,
where new spoken words can be created through a novel
combination of phonemes (Lake et al. 2014), or a new
gesture or dance move can be created through a combina-
tion of more primitive body movements.

An efficient representation for Frostbite should be sim-
ilarly compositional and productive. A scene from the
game is a composition of various object types, including
birds, fish, ice floes, igloos, and so on (Fig. 2). Representing
this compositional structure explicitly is both more eco-
nomical and better for generalization, as noted in previous
work on object-oriented reinforcement learning (Diuk
et al. 2008). Many repetitions of the same objects are
present at different locations in the scene, and therefore,
representing each as an identical instance of the same
object with the same properties is important for efficient
representation and quick learning of the game. Further,
new levels may contain different numbers and combina-
tions of objects, where a compositional representation of
objects – using intuitive physics and intuitive psychology
as glue –would aid in making these crucial generalizations
(Fig. 2D).

Deep neural networks have at least a limited notion of
compositionality. Networks trained for object recognition
encode part-like features in their deeper layers (Zeiler &
Fergus 2014), whereby the presentation of new types of
objects can activate novel combinations of feature detec-
tors. Similarly, a DQN trained to play Frostbite may
learn to represent multiple replications of the same
object with the same features, facilitated by the invariance
properties of a convolutional neural network architecture.
Recent work has shown how this type of compositionality
can be made more explicit, where neural networks can be
used for efficient inference in more structured generative
models (both neural networks and three-dimensional
scene models) that explicitly represent the number of
objects in a scene (Eslami et al. 2016). Beyond the compo-
sitionality inherent in parts, objects, and scenes, composi-
tionality can also be important at the level of goals and
sub-goals. Recent work on hierarchical DQNs shows that
by providing explicit object representations to a DQN,
and then defining sub-goals based on reaching those
objects, DQNs can learn to play games with sparse
rewards (such as Montezuma’s Revenge) by combining
these sub-goals together to achieve larger goals (Kulkarni
et al. 2016).

We look forward to seeing these new ideas continue to
develop, potentially providing even richer notions of com-
positionality in deep neural networks that lead to faster
and more flexible learning. To capture the full extent of
the mind’s compositionality, a model must include explicit
representations of objects, identity, and relations, all while
maintaining a notion of “coherence” when understanding
novel configurations. Coherence is related to our next prin-
ciple, causality, which is discussed in the section that
follows.

4.2.2. Causality. In concept learning and scene under-
standing, causal models represent hypothetical real-world
processes that produce the perceptual observations. In
control and reinforcement learning, causal models

represent the structure of the environment, such as model-
ing state-to-state transitions or action/state-to-state
transitions.
Concept learning and vision models that use causality are

usually generative (as opposed to discriminative; see Glos-
sary in Table 1), but not every generative model is also
causal. Although a generative model describes a process
for generating data, or at least assigns a probability distribu-
tion over possible data points, this generative process may
not resemble how the data are produced in the real
world. Causality refers to the subclass of generative
models that resemble, at an abstract level, how the data
are actually generated. Although generative neural net-
works such as Deep Belief Networks (Hinton et al. 2006)
or variational auto-encoders (Gregor et al. 2016; Kingma
et al. 2014) may generate compelling handwritten digits,
they mark one end of the “causality spectrum,” because
the steps of the generative process bear little resemblance
to steps in the actual process of writing. In contrast, the
generative model for characters using BPL does resemble
the steps of writing, although even more causally faithful
models are possible.
Causality has been influential in theories of perception.

“Analysis-by-synthesis” theories of perception maintain
that sensory data can be more richly represented by mod-
eling the process that generated it (Bever & Poeppel
2010; Eden 1962; Halle & Stevens 1962; Neisser 1966).
Relating data to their causal source provides strong priors
for perception and learning, as well as a richer basis for gen-
eralizing in new ways and to new tasks. The canonical exam-
ples of this approach are speech and visual perception. For
example, Liberman et al. (1967) argued that the richness of
speech perception is best explained by inverting the pro-
duction plan, at the level of vocal tract movements, to
explain the large amounts of acoustic variability and the
blending of cues across adjacent phonemes. As discussed,
causality does not have to be a literal inversion of the
actual generative mechanisms, as proposed in the motor
theory of speech. For the BPL of learning handwritten
characters, causality is operationalized by treating concepts
as motor programs, or abstract causal descriptions of how to
produce examples of the concept, rather than concrete
configurations of specific muscles (Fig. 5A). Causality is
an important factor in the model’s success in classifying
and generating new examples after seeing just a single
example of a new concept (Lake et al. 2015a) (Fig. 5B).
Causal knowledge has also been shown to influence how

people learn new concepts; providing a learner with differ-
ent types of causal knowledge changes how he or she learns
and generalizes. For example, the structure of the causal
network underlying the features of a category influences
how people categorize new examples (Rehder 2003;
Rehder & Hastie 2001). Similarly, as related to the Charac-
ters Challenge, the way people learn to write a novel hand-
written character influences later perception and
categorization (Freyd 1983; 1987).
To explain the role of causality in learning, conceptual

representations have been likened to intuitive theories or
explanations, providing the glue that lets core features
stick, whereas other equally applicable features wash
away (Murphy & Medin 1985). Borrowing examples from
Murphy and Medin (1985), the feature “flammable” is
more closely attached to wood than money because of
the underlying causal roles of the concepts, even though
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the feature is equally applicable to both. These causal roles
derive from the functions of objects. Causality can also glue
some features together by relating them to a deeper under-
lying cause, explaining why some features such as “can fly,”
“has wings,” and “has feathers” co-occur across objects,
whereas others do not.
Beyond concept learning, people also understand scenes

by building causal models. Human-level scene understanding
involves composing a story that explains the perceptual obser-
vations, drawing upon and integrating the ingredients of
intuitive physics, intuitive psychology, and compositionality.
Perception without these ingredients, and absent the causal
glue that binds them, can lead to revealing errors. Consider
image captions generated by a deep neural network
(Fig. 6) (Karpathy & Fei-Fei 2017). In many cases, the
network gets the key objects in a scene correct, but fails to
understand the physical forces at work, the mental states of
the people, or the causal relationships between the objects.
In other words, it does not build the right causal model of
the data.
There have been steps toward deep neural networks and

related approaches that learn causal models. Lopez-Paz
et al. (2015) introduced a discriminative, data-driven
framework for distinguishing the direction of causality
from examples. Although it outperforms existing methods
on various causal prediction tasks, it is unclear how to
apply the approach to inferring rich hierarchies of latent
causal variables, as needed for the Frostbite Challenge
and especially the Characters Challenge. Graves (2014)
learned a generative model of cursive handwriting using a
recurrent neural network trained on handwriting data.
Although it synthesizes impressive examples of handwriting
in various styles, it requires a large training corpus and has
not been applied to other tasks. The DRAW network per-
forms both recognition and generation of handwritten
digits using recurrent neural networks with a window of
attention, producing a limited circular area of the image
at each time step (Gregor et al. 2015). A more recent
variant of DRAW was applied to generating examples of
a novel character from just a single training example
(Rezende et al. 2016). The model demonstrates an impres-
sive ability to make plausible generalizations that go beyond
the training examples, yet it generalizes too broadly in other
cases, in ways that are not especially human-like. It is not
clear that it could yet pass any of the “visual Turing tests”
in Lake et al. (2015a) (Fig. 5B), although we hope

DRAW-style networks will continue to be extended and
enriched, and could be made to pass these tests.
Incorporating causality may greatly improve these deep

learning models; they were trained without access to
causal data about how characters are actually produced,
and without any incentive to learn the true causal
process. An attentional window is only a crude approxima-
tion of the true causal process of drawing with a pen, and in
Rezende et al. (2016) the attentional window is not pen-like
at all, although a more accurate pen model could be incor-
porated. We anticipate that these sequential generative
neural networks could make sharper one-shot inferences,
with the goal of tackling the full Characters Challenge by
incorporating additional causal, compositional, and hierar-
chical structure (and by continuing to use learning-to-
learn, described next), potentially leading to a more compu-
tationally efficient and neurally grounded variant of the
BPL model of handwritten characters (Fig. 5).
A causal model of Frostbite would have to be more

complex, gluing together object representations and
explaining their interactions with intuitive physics and intu-
itive psychology, much like the game engine that generates
the game dynamics and, ultimately, the frames of pixel
images. Inference is the process of inverting this causal
generative model, explaining the raw pixels as objects and
their interactions, such as the agent stepping on an ice
floe to deactivate it or a crab pushing the agent into the
water (Fig. 2). Deep neural networks could play a role in
two ways: by serving as a bottom-up proposer to make
probabilistic inference more tractable in a structured gen-
erative model (sect. 4.3.1) or by serving as the causal gen-
erative model if imbued with the right set of ingredients.

4.2.3. Learning-to-learn.When humans or machines make
inferences that go far beyond the data, strong prior knowl-
edge (or inductive biases or constraints) must be making up
the difference (Geman et al. 1992; Griffiths et al. 2010;
Tenenbaum et al. 2011). One way people acquire this
prior knowledge is through “learning-to-learn,” a term
introduced by Harlow (1949) and closely related to the
machine learning notions of “transfer learning,” “multitask
learning,” and “representation learning.” These terms refer
to ways that learning a new task or a new concept can be
accelerated through previous or parallel learning of other
related tasks or other related concepts. The strong priors,
constraints, or inductive bias needed to learn a particular

Figure 6. Perceiving scenes without intuitive physics, intuitive psychology, compositionality, and causality. Image captions are
generated by a deep neural network (Karpathy & Fei-Fei 2017) using code from github.com/karpathy/neuraltalk2. Image credits:
Gabriel Villena Fernández (left), TVBS Taiwan/Agence France-Presse (middle), and AP Photo/Dave Martin (right). Similar examples
using images from Reuters news can be found at twitter.com/interesting_jpg.
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task quickly are often shared to some extent with other
related tasks. A range of mechanisms have been developed
to adapt the learner’s inductive bias as they learn specific
tasks and then apply these inductive biases to new tasks.

In hierarchical Bayesian modeling (Gelman et al. 2004),
a general prior on concepts is shared by multiple specific
concepts, and the prior itself is learned over the course of
learning the specific concepts (Salakhutdinov et al. 2012;
2013). These models have been used to explain the dynam-
ics of human learning-to-learn in many areas of cognition,
including word learning, causal learning, and learning intu-
itive theories of physical and social domains (Tenenbaum
et al. 2011). In machine vision, for deep convolutional net-
works or other discriminative methods that form the core of
recent recognition systems, learning-to-learn can occur
through the sharing of features between the models
learned for old objects or old tasks and the models
learned for new objects or new tasks (Anselmi et al. 2016;
Baxter 2000; Bottou 2014; Lopez-Paz et al. 2016; Rusu
et al. 2016; Salakhutdinov et al. 2011; Srivastava & Sala-
khutdinov, 2013; Torralba et al. 2007; Zeiler & Fergus
2014). Neural networks can also learn-to-learn by optimiz-
ing hyper-parameters, including the form of their weight
update rule (Andrychowicz et al. 2016), over a set of
related tasks.

Although transfer learning and multitask learning are
already important themes across AI, and in deep learning
in particular, they have not yet led to systems that learn
new tasks as rapidly and flexibly as humans do. Capturing
more human-like learning-to-learn dynamics in deep net-
works and other machine learning approaches could facili-
tate much stronger transfer to new tasks and new problems.
To gain the full benefit that humans get from learning-to-
learn, however, AI systems might first need to adopt the
more compositional (or more language-like, see sect. 5)
and causal forms of representations that we have argued
for above.

We can see this potential in both of our challenge prob-
lems. In the Characters Challenge as presented in Lake
et al. (2015a), all viable models use “pre-training” on
many character concepts in a background set of alphabets
to tune the representations they use to learn new character
concepts in a test set of alphabets. But to perform well,
current neural network approaches require much more
pre-training than do people or our Bayesian program learn-
ing approach. Humans typically learn only one or a few
alphabets, and even with related drawing experience, this
likely amounts to the equivalent of a few hundred charac-
ter-like visual concepts at most. For BPL, pre-training
with characters in only five alphabets (for around 150 char-
acter types in total) is sufficient to perform human-level
one-shot classification and generation of new examples.
With this level of pre-training, current neural networks
perform much worse on classification and have not even
attempted generation; they are still far from solving the
Characters Challenge.8

We cannot be sure how people get to the knowledge they
have in this domain, but we do understand how this works
in BPL, and we think people might be similar. BPL trans-
fers readily to new concepts because it learns about object
parts, sub-parts, and relations, capturing learning about
what each concept is like and what concepts are like in
general. It is crucial that learning-to-learn occurs at multi-
ple levels of the hierarchical generative process. Previously

learned primitive actions and larger generative pieces can
be re-used and re-combined to define new generative
models for new characters (Fig. 5A). Further transfer
occurs by learning about the typical levels of variability
within a typical generative model. This provides knowledge
about how far and in what ways to generalize when we have
seen only one example of a new character, which on its own
could not possibly carry any information about variance.
BPL could also benefit from deeper forms of learning-to-
learn than it currently does. Some of the important struc-
ture it exploits to generalize well is built in to the prior
and not learned from the background pre-training,
whereas people might learn this knowledge, and ultimately,
a human-like machine learning system should as well.
Analogous learning-to-learn occurs for humans in learn-

ing many new object models, in vision and cognition: Con-
sider the novel two-wheeled vehicle in Figure 1B, where
learning-to-learn can operate through the transfer of pre-
viously learned parts and relations (sub-concepts such as
wheels, motors, handle bars, attached, powered by) that
reconfigure compositionally to create a model of the
new concept. If deep neural networks could adopt
similarly compositional, hierarchical, and causal represen-
tations, we expect they could benefit more from learning-
to-learn.
In the Frostbite Challenge, and in video games more

generally, there is a similar interdependence between
the form of the representation and the effectiveness of
learning-to-learn. People seem to transfer knowledge at
multiple levels, from low-level perception to high-level
strategy, exploiting compositionality at all levels. Most
basically, they immediately parse the game environment
into objects, types of objects, and causal relations
between them. People also understand that video games
like these have goals, which often involve approaching or
avoiding objects based on their type. Whether the
person is a child or a seasoned gamer, it seems obvious
that interacting with the birds and fish will change the
game state in some way, either good or bad, because
video games typically yield costs or rewards for these
types of interactions (e.g., dying or points). These types
of hypotheses can be quite specific and rely on prior
knowledge: When the polar bear first appears and tracks
the agent’s location during advanced levels (Fig. 2D), an
attentive learner is sure to avoid it. Depending on the
level, ice floes can be spaced far apart (Fig. 2A–C) or
close together (Fig. 2D), suggesting the agent may be
able to cross some gaps, but not others. In this way,
general world knowledge and previous video games may
help inform exploration and generalization in new scenar-
ios, helping people learn maximally from a single mistake
or avoid mistakes altogether.
Deep reinforcement learning systems for playing Atari

games have had some impressive successes in transfer
learning, but they still have not come close to learning to
play new games as quickly as humans can. For example,
Parisotto et al. (2016) present the “actor-mimic” algorithm
that first learns 13 Atari games by watching an expert
network play and trying to mimic the expert network
action selection and/or internal states (for about 4 million
frames of experience each, or 18.5 hours per game). This
algorithm can then learn new games faster than a randomly
initialized DQN: Scores that might have taken 4 or 5
million frames of learning to reach might now be reached
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after 1 or 2 million frames of practice. But anecdotally, we
find that humans can still reach these scores with a few
minutes of practice, requiring far less experience than the
DQNs.
In sum, the interaction between representation and pre-

vious experience may be key to building machines that
learn as fast as people. A deep learning system trained
on many video games may not, by itself, be enough to
learn new games as quickly as people. Yet, if such a
system aims to learn compositionally structured causal
models of each game – built on a foundation of intuitive
physics and psychology – it could transfer knowledge
more efficiently and thereby learn new games much
more quickly.

4.3. Thinking Fast

The previous section focused on learning rich models from
sparse data and proposed ingredients for achieving these
human-like learning abilities. These cognitive abilities are
even more striking when considering the speed of percep-
tion and thought: the amount of time required to under-
stand a scene, think a thought, or choose an action. In
general, richer and more structured models require more
complex and slower inference algorithms, similar to how
complex models require more data, making the speed of
perception and thought all the more remarkable.
The combination of rich models with efficient inference

suggests another way psychology and neuroscience may
usefully inform AI. It also suggests an additional way to
build on the successes of deep learning, where efficient
inference and scalable learning are important strengths of
the approach. This section discusses possible paths toward
resolving the conflict between fast inference and structured
representations, including Helmholtz machine–style
approximate inference in generative models (Dayan et al.
1995; Hinton et al. 1995) and cooperation between
model-free and model-based reinforcement learning
systems.

4.3.1. Approximate inference in structured models. Hier-
arhical Bayesian models operating over probabilistic
programs (Goodman et al. 2008; Lake et al. 2015a; Tenen-
baum et al. 2011) are equipped to deal with theory-like
structures and rich causal representations of the world,
yet there are formidable algorithmic challenges for efficient
inference. Computing a probability distribution over an
entire space of programs is usually intractable, and often
even finding a single high-probability program poses an
intractable search problem. In contrast, whereas represent-
ing intuitive theories and structured causal models is less
natural in deep neural networks, recent progress has dem-
onstrated the remarkable effectiveness of gradient-based
learning in high-dimensional parameter spaces. A complete
account of learning and inference must explain how the
brain does so much with limited computational resources
(Gershman et al. 2015; Vul et al. 2014).
Popular algorithms for approximate inference in proba-

bilistic machine learning have been proposed as psycholog-
ical models (see Griffiths et al. [2012] for a review). Most
prominently, it has been proposed that humans can approx-
imate Bayesian inference using Monte Carlo methods,
which stochastically sample the space of possible hypothe-
ses and evaluate these samples according to their

consistency with the data and prior knowledge (Bonawitz
et al. 2014; Gershman et al. 2012; Ullman et al. 2012b;
Vul et al. 2014). Monte Carlo sampling has been invoked
to explain behavioral phenomena ranging from children’s
response variability (Bonawitz et al. 2014), to garden-path
effects in sentence processing (Levy et al. 2009) and
perceptual multistability (Gershman et al. 2012; Moreno-
Bote et al. 2011). Moreover, we are beginning to under-
stand how such methods could be implemented in neural
circuits (Buesing et al. 2011; Huang & Rao 2014; Pecevski
et al. 2011).9

Although Monte Carlo methods are powerful and come
with asymptotic guarantees, it is challenging to make them
work on complex problems like program induction and
theory learning. When the hypothesis space is vast, and
only a few hypotheses are consistent with the data, how
can good models be discovered without exhaustive
search? In at least some domains, people may not have
an especially clever solution to this problem, instead grap-
pling with the full combinatorial complexity of theory learn-
ing (Ullman et al. 2012b). Discovering new theories can be
slow and arduous, as testified by the long time scale of cog-
nitive development, and learning in a saltatory fashion
(rather than through gradual adaptation) is characteristic
of aspects of human intelligence, including discovery and
insight during development (Schulz 2012b), problem-
solving (Sternberg & Davidson 1995), and epoch-making
discoveries in scientific research (Langley et al. 1987). Dis-
covering new theories can also occur much more quickly. A
person learning the rules of Frostbite will probably
undergo a loosely ordered sequence of “Aha!” moments:
He or she will learn that jumping on ice floes causes
them to change color, that changing the color of ice floes
causes an igloo to be constructed piece-by-piece, that
birds make him or her lose points, that fish make him or
her gain points, that he or she can change the direction
of ice floes at the cost of one igloo piece, and so on.
These little fragments of a “Frostbite theory” are assembled
to form a causal understanding of the game relatively
quickly, in what seems more like a guided process than
arbitrary proposals in a Monte Carlo inference scheme.
Similarly, as described in the Characters Challenge,
people can quickly infer motor programs to draw a new
character in a similarly guided processes.
For domains where program or theory learning occurs

quickly, it is possible that people employ inductive biases
not only to evaluate hypotheses, but also to guide hypothe-
sis selection. Schulz (2012b) has suggested that abstract
structural properties of problems contain information
about the abstract forms of their solutions. Even without
knowing the answer to the question, “Where is the
deepest point in the Pacific Ocean?” one still knows that
the answer must be a location on a map. The answer “20
inches” to the question, “What year was Lincoln born?”
can be invalidated a priori, even without knowing the
correct answer. In recent experiments, Tsividis et al.
(2015) found that children can use high-level abstract fea-
tures of a domain to guide hypothesis selection, by reason-
ing about distributional properties like the ratio of seeds to
flowers, and dynamical properties like periodic or mono-
tonic relationships between causes and effects (see also
Magid et al. 2015).
How might efficient mappings from questions to a plau-

sible subset of answers be learned? Recent work in AI,
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spanning both deep learning and graphical models, has
attempted to tackle this challenge by “amortizing” probabi-
listic inference computations into an efficient feed-forward
mapping (Eslami et al. 2014; Heess et al. 2013; Mnih &
Gregor, 2014; Stuhlmüller et al. 2013). We can also think
of this as “learning to do inference,” which is independent
from the ideas of learning as model building discussed in
the previous section. These feed-forward mappings can
be learned in various ways, for example, using paired gen-
erative/recognition networks (Dayan et al. 1995; Hinton
et al. 1995) and variational optimization (Gregor et al.
2015; Mnih & Gregor 2014; Rezende et al. 2014), or
nearest-neighbor density estimation (Kulkarni et al.
2015a; Stuhlmüller et al. 2013). One implication of amorti-
zation is that solutions to different problems will become
correlated because of the sharing of amortized computa-
tions. Some evidence for inferential correlations in
humans was reported by Gershman and Goodman
(2014). This trend is an avenue of potential integration of
deep learning models with probabilistic models and proba-
bilistic programming: Training neural networks to help
perform probabilistic inference in a generative model or
a probabilistic program (Eslami et al. 2016; Kulkarni
et al. 2015b; Yildirim et al. 2015). Another avenue for
potential integration is through differentiable program-
ming (Dalrymple 2016), by ensuring that the program-
like hypotheses are differentiable and thus learnable via
gradient descent – a possibility discussed in the concluding
section (Section 6.1).

4.3.2. Model-based and model-free reinforcement
learning. The DQN introduced by Mnih et al. (2015)
used a simple form of model-free reinforcement learning
in a deep neural network that allows for fast selection of
actions. There is indeed substantial evidence that the
brain uses similar model-free learning algorithms in
simple associative learning or discrimination learning
tasks (see Niv 2009, for a review). In particular, the
phasic firing of midbrain dopaminergic neurons is qualita-
tively (Schultz et al. 1997) and quantitatively (Bayer &
Glimcher 2005) consistent with the reward prediction
error that drives updating of model-free value estimates.

Model-free learning is not, however, the whole story.
Considerable evidence suggests that the brain also has a
model-based learning system, responsible for building a
“cognitive map” of the environment and using it to plan
action sequences for more complex tasks (Daw et al.
2005; Dolan & Dayan 2013). Model-based planning is an
essential ingredient of human intelligence, enabling flexible
adaptation to new tasks and goals; it is where all of the rich
model-building abilities discussed in the previous sections
earn their value as guides to action. As we argued in our dis-
cussion of Frostbite, one can design numerous variants of
this simple video game that are identical except for the
reward function; that is, governed by an identical environ-
ment model of state-action–dependent transitions. We
conjecture that a competent Frostbite player can easily
shift behavior appropriately, with little or no additional
learning, and it is hard to imagine a way of doing that
other than having a model-based planning approach in
which the environment model can be modularly combined
with arbitrary new reward functions and then deployed
immediately for planning. One boundary condition on
this flexibility is the fact that the skills become “habitized”

with routine application, possibly reflecting a shift from
model-based to model-free control. This shift may arise
from a rational arbitration between learning systems to
balance the trade-off between flexibility and speed (Daw
et al. 2005; Keramati et al. 2011).
Similarly to how probabilistic computations can be amor-

tized for efficiency (see previous section), plans can be
amortized into cached values by allowing the model-
based system to simulate training data for the model-free
system (Sutton 1990). This process might occur offline
(e.g., in dreaming or quiet wakefulness), suggesting a
form of consolidation in reinforcement learning (Gershman
et al. 2014). Consistent with the idea of cooperation
between learning systems, a recent experiment demon-
strated that model-based behavior becomes automatic
over the course of training (Economides et al. 2015).
Thus, a marriage of flexibility and efficiency might be
achievable if we use the human reinforcement learning
systems as guidance.
Intrinsic motivation also plays an important role in

human learning and behavior (Berlyne 1966; Harlow
1950; Ryan & Deci 2007). Although much of the previous
discussion assumes the standard view of behavior as seeking
to maximize reward and minimize punishment, all exter-
nally provided rewards are reinterpreted according to the
“internal value” of the agent, which may depend on the
current goal and mental state. There may also be an intrin-
sic drive to reduce uncertainty and construct models of the
environment (Edelman 2015; Schmidhuber 2015), closely
related to learning-to-learn and multitask learning. Deep
reinforcement learning is only just starting to address
intrinsically motivated learning (Kulkarni et al. 2016;
Mohamed & Rezende 2015).

5. Responses to common questions

In disussing the arguments in this article with colleagues,
three lines of questioning or critiques have frequently
arisen. We think it is helpful to address these points
directly, to maximize the potential for moving forward
together.

5.1. Comparing the learning speeds of humans and
neural networks on specific tasks is not meaningful,
because humans have extensive prior experience

It may seem unfair to compare neural networks and
humans on the amount of training experience required to
perform a task, such as learning to play new Atari games
or learning new handwritten characters, when humans
have had extensive prior experience that these networks
have not benefited from. People have had many hours
playing other games, and experience reading or writing
many other handwritten characters, not to mention experi-
ence in a variety of more loosely related tasks. If neural net-
works were “pre-trained” on the same experience, the
argument goes, then they might generalize similarly to
humans when exposed to novel tasks.
This has been the rationale behind multitask learning or

transfer learning, a strategy with a long history that has
shown some promising results recently with deep networks
(e.g., Donahue et al. 2014; Luong et al. 2015; Parisotto
et al. 2016). Furthermore, some deep learning advocates
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argue the human brain effectively benefits from even more
experience through evolution. If deep learning researchers
see themselves as trying to capture the equivalent of
humans’ collective evolutionary experience, this would be
equivalent to a truly immense “pre-training” phase.
We agree that humans have a much richer starting point

than neural networks when learning most new tasks, includ-
ing learning a new concept or learning to play a new video
game. That is the point of the “developmental start-up soft-
ware” and other building blocks that we argued are key to
creating this richer starting point. We are less committed
to a particular story regarding the origins of the ingredients,
including the relative roles of genetically programmed and
experience-driven developmental mechanisms in building
these components in early infancy. Either way, we see
them as fundamental building blocks for facilitating rapid
learning from sparse data.
Learning-to-learn across multiple tasks is conceivably

one route to acquiring these ingredients, but simply train-
ing conventional neural networks on many related tasks
may not be sufficient to generalize in human-like ways for
novel tasks. As we argued in Section 4.2.3, successful learn-
ing-to-learn – or, at least, human-level transfer learning – is
enabled by having models with the right representational
structure, including the other building blocks discussed in
this article. Learning-to-learn is a powerful ingredient,
but it can be more powerful when operating over composi-
tional representations that capture the underlying causal
structure of the environment, while also building on intui-
tive physics and psychology.
Finally, we recognize that some researchers still hold out

hope that if only they can just get big enough training data
sets, sufficiently rich tasks, and enough computing power –
far beyond what has been tried out so far – then deep learn-
ing methods might be sufficient to learn representations
equivalent to what evolution and learning provide
humans. We can sympathize with that hope, and believe
it deserves further exploration, although we are not sure
it is a realistic one. We understand in principle how evolu-
tion could build a brain with the cognitive ingredients we
discuss here. Stochastic hill climbing is slow. It may
require massively parallel exploration, over millions of
years with innumerable dead ends, but it can build
complex structures with complex functions if we are
willing to wait long enough. In contrast, trying to build
these representations from scratch using backpropagation,
Deep Q-learning, or any stochastic gradient-descent weight
update rule in a fixed network architecture, may be unfea-
sible regardless of how much training data are available. To
build these representations from scratch might require
exploring fundamental structural variations in the net-
work’s architecture, which gradient-based learning in
weight space is not prepared to do. Although deep learning
researchers do explore many such architectural variations,
and have been devising increasingly clever and powerful
ones recently, it is the researchers who are driving and
directing this process. Exploration and creative innovation
in the space of network architectures have not yet been
made algorithmic. Perhaps they could, using genetic pro-
gramming methods (Koza 1992) or other structure-search
algorithms (Yamins et al. 2014). We think this would be a
fascinating and promising direction to explore, but we
may have to acquire more patience than machine-learning
researchers typically express with their algorithms: the

dynamics of structure search may look much more like
the slow random hill climbing of evolution than the
smooth, methodical progress of stochastic gradient
descent. An alternative strategy is to build in appropriate
infant-like knowledge representations and core ingredients
as the starting point for our learning-based AI systems, or to
build learning systems with strong inductive biases that
guide them in this direction.
Regardless of which way an AI developer chooses to go,

our main points are orthogonal to this objection. There are
a set of core cognitive ingredients for human-like learning
and thought. Deep learning models could incorporate
these ingredients through some combination of additional
structure and perhaps additional learning mechanisms,
but for the most part have yet to do so. Any approach to
human-like AI, whether based on deep learning or not, is
likely to gain from incorporating these ingredients.

5.2. Biological plausibility suggests theories of
intelligence should start with neural networks

We have focused on how cognitive science can motivate
and guide efforts to engineer human-like AI, in contrast
to some advocates of deep neural networks who cite neuro-
science for inspiration. Our approach is guided by a prag-
matic view that the clearest path to a computational
formalization of human intelligence comes from under-
standing the “software” before the “hardware.” In the
case of this article, we proposed key ingredients of this soft-
ware in previous sections.
Nonetheless, a cognitive approach to intelligence should

not ignore what we know about the brain. Neuroscience
can provide valuable inspirations for both cognitive
models and AI researchers: The centrality of neural net-
works and model-free reinforcement learning in our pro-
posals for “thinking fast” (sect. 4.3) are prime exemplars.
Neuroscience can also, in principle, impose constraints on
cognitive accounts, at both the cellular and systems levels.
If deep learning embodies brain-like computational mech-
anisms and those mechanisms are incompatible with some
cognitive theory, then this is an argument against that cog-
nitive theory and in favor of deep learning. Unfortunately,
what we “know” about the brain is not all that clear-cut.
Many seemingly well-accepted ideas regarding neural com-
putation are in fact biologically dubious, or uncertain at
best, and therefore should not disqualify cognitive ingredi-
ents that pose challenges for implementation within that
approach.
For example, most neural networks use some form of

gradient-based (e.g., backpropagation) or Hebbian learn-
ing. It has long been argued, however, that backpropaga-
tion is not biologically plausible. As Crick (1989) famously
pointed out, backpropagation seems to require that infor-
mation be transmitted backward along the axon, which
does not fit with realistic models of neuronal function
(although recent models circumvent this problem in
various ways [Liao et al. 2015; Lillicrap et al. 2014; Scellier
& Bengio 2016]). This has not prevented backpropagation
from being put to good use in connectionist models of cog-
nition or in building deep neural networks for AI. Neural
network researchers must regard it as a very good thing,
in this case, that concerns of biological plausibility did not
hold back research on this particular algorithmic approach
to learning.10 We strongly agree: Although neuroscientists
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have not found any mechanisms for implementing backpro-
pagation in the brain, neither have they produced definitive
evidence against it. The existing data simply offer little con-
straint either way, and backpropagation has been of obvi-
ously great value in engineering today’s best pattern
recognition systems.

Hebbian learning is another case in point. In the form of
long-term potentiation (LTP) and spike-timing dependent
plasticity (STDP), Hebbian learning mechanisms are
often cited as biologically supported (Bi & Poo 2001).
However, the cognitive significance of any biologically
grounded form of Hebbian learning is unclear. Gallistel
and Matzel (2013) have persuasively argued that the critical
interstimulus interval for LTP is orders of magnitude
smaller than the intervals that are behaviorally relevant in
most forms of learning. In fact, experiments that simultane-
ously manipulate the interstimulus and intertrial intervals
demonstrate that no critical interval exists. Behavior can
persist for weeks or months, whereas LTP decays to base-
line over the course of days (Power et al. 1997). Learned
behavior is rapidly re-acquired after extinction (Bouton
2004), whereas no such facilitation is observed for LTP
(Jonge & Racine 1985). Most relevantly for our focus, it
would be especially challenging to try to implement the
ingredients described in this article using purely Hebbian
mechanisms.

Claims of biological plausibility or implausibility usually
rest on rather stylized assumptions about the brain that
are wrong in many of their details. Moreover, these
claims usually pertain to the cellular and synaptic levels,
with few connections made to systems-level neuroscience
and subcortical brain organization (Edelman 2015). Under-
standing which details matter and which do not requires a
computational theory (Marr 1982). Moreover, in the
absence of strong constraints from neuroscience, we can
turn the biological argument around: Perhaps a hypotheti-
cal biological mechanism should be viewed with skepticism
if it is cognitively implausible. In the long run, we are opti-
mistic that neuroscience will eventually place more con-
straints on theories of intelligence. For now, we believe
cognitive plausibility offers a surer foundation.

5.3. Language is essential for human intelligence. Why is
it not more prominent here?

We have said little in this article about people’s ability to
communicate and think in natural language, a distinctively
human cognitive capacity where machine capabilities strik-
ingly lag. Certainly one could argue that language should be
included on any short list of key ingredients in human intel-
ligence: For example, Mikolov et al. (2016) featured lan-
guage prominently in their recent paper sketching
challenge problems and a road map for AI. Moreover,
whereas natural language processing is an active area of
research in deep learning (e.g., Bahdanau et al. 2015;
Mikolov et al. 2013; Xu et al. 2015), it is widely recognized
that neural networks are far from implementing human
language abilities. The question is, how do we develop
machines with a richer capacity for language?

We believe that understanding language and its role in
intelligence goes hand-in-hand with understanding the
building blocks discussed in this article. It is also true that
language builds on the core abilities for intuitive physics,
intuitive psychology, and rapid learning with compositional,

causal models that we focus on. These capacities are in
place before children master language, and they provide
the building blocks for linguistic meaning and language
acquisition (Carey 2009; Jackendoff 2003; Kemp 2007;
O’Donnell 2015; Pinker 2007; Xu & Tenenbaum 2007).
We hope that by better understanding these earlier ingre-
dients and how to implement and integrate them computa-
tionally, we will be better positioned to understand
linguistic meaning and acquisition in computational terms
and to explore other ingredients that make human language
possible.
What else might we need to add to these core ingredi-

ents to get language? Many researchers have speculated
about key features of human cognition that give rise to lan-
guage and other uniquely human modes of thought: Is it
recursion, or some new kind of recursive structure building
ability (Berwick & Chomsky 2016; Hauser et al. 2002)? Is it
the ability to re-use symbols by name (Deacon 1998)? Is it
the ability to understand others intentionally and build
shared intentionality (Bloom 2000; Frank et al. 2009; Tom-
asello 2010)? Is it some new version of these things, or is it
just more of the aspects of these capacities that are already
present in infants? These are important questions for
future work with the potential to expand the list of key
ingredients; we did not intend our list to be complete.
Finally, we should keep in mind all of the ways that

acquiring language extends and enriches the ingredients
of cognition that we focus on in this article. The intuitive
physics and psychology of infants are likely limited to rea-
soning about objects and agents in their immediate
spatial and temporal vicinity and to their simplest proper-
ties and states. But with language, older children become
able to reason about a much wider range of physical and
psychological situations (Carey 2009). Language also facil-
itates more powerful learning-to-learn and compositional-
ity (Mikolov et al. 2016), allowing people to learn more
quickly and flexibly by representing new concepts and
thoughts in relation to existing concepts (Lupyan &
Bergen 2016; Lupyan & Clark 2015). Ultimately, the full
project of building machines that learn and think like
humans must have language at its core.

6. Looking forward

In the last few decades, AI and machine learning have
made remarkable progress: Computer programs beat
chess masters; AI systems beat Jeopardy champions; apps
recognize photos of your friends; machines rival humans
on large-scale object recognition; smart phones recognize
(and, to a limited extent, understand) speech. The
coming years promise still more exciting AI applications,
in areas as varied as self-driving cars, medicine, genetics,
drug design, and robotics. As a field, AI should be proud
of these accomplishments, which have helped move
research from academic journals into systems that
improve our daily lives.
We should also be mindful of what AI has and has not

achieved. Although the pace of progress has been impres-
sive, natural intelligence is still by far the best example of
intelligence. Machine performance may rival or exceed
human performance on particular tasks, and algorithms
may take inspiration from neuroscience or aspects of psy-
chology, but it does not follow that the algorithm learns
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or thinks like a person. This is a higher bar worth reaching
for, potentially leading to more powerful algorithms, while
also helping unlock the mysteries of the human mind.
When comparing people with the current best algo-

rithms in AI and machine learning, people learn from
fewer data and generalize in richer and more flexible
ways. Even for relatively simple concepts such as handwrit-
ten characters, people need to see just one or a few exam-
ples of a new concept before being able to recognize new
examples, generate new examples, and generate new con-
cepts based on related ones (Fig. 1A). So far, these abilities
elude even the best deep neural networks for character rec-
ognition (Ciresan et al. 2012), which are trained on many
examples of each concept and do not flexibly generalize
to new tasks. We suggest that the comparative power and
flexibility of people’s inferences come from the causal
and compositional nature of their representations.
We believe that deep learning and other learning para-

digms can move closer to human-like learning and
thought if they incorporate psychological ingredients,
including those outlined in this article. Before closing, we
discuss some recent trends that we see as some of the
most promising developments in deep learning – trends
we hope will continue and lead to more important
advances.

6.1. Promising directions in deep learning

There has been recent interest in integrating psychological
ingredients with deep neural networks, especially selective
attention (Bahdanau et al. 2015; Mnih et al. 2014; Xu et al.
2015), augmented working memory (Graves et al. 2014;
2016; Grefenstette et al. 2015; Sukhbaatar et al. 2015;
Weston et al. 2015b), and experience replay (McClelland
et al. 1995; Mnih et al. 2015). These ingredients are
lower-level than the key cognitive ingredients discussed
in this article. yet they suggest a promising trend of using
insights from cognitive psychology to improve deep learn-
ing, one that may be even furthered by incorporating
higher-level cognitive ingredients.
Paralleling the human perceptual apparatus, selective

attention forces deep learning models to process raw, per-
ceptual data as a series of high-resolution “foveal glimpses”
rather than all at once. Somewhat surprisingly, the incorpo-
ration of attention has led to substantial performance gains
in a variety of domains, including in machine translation
(Bahdanau et al. 2015), object recognition (Mnih et al.
2014), and image caption generation (Xu et al. 2015).
Attention may help these models in several ways. It helps
to coordinate complex, often sequential, outputs by attend-
ing to only specific aspects of the input, allowing the model
to focus on smaller sub-tasks rather than solving an entire
problem in one shot. For example, during caption genera-
tion, the attentional window has been shown to track the
objects as they are mentioned in the caption, where the
network may focus on a boy and then a Frisbee when pro-
ducing a caption like, “A boy throws a Frisbee” (Xu et al.
2015). Attention also allows larger models to be trained
without requiring every model parameter to affect every
output or action. In generative neural network models,
attention has been used to concentrate on generating par-
ticular regions of the image rather than the whole image at
once (Gregor et al. 2015). This could be a stepping stone
toward building more causal generative models in neural

networks, such as a neural version of the Bayesian
program learning model that could be applied to tackling
the Characters Challenge (sect. 3.1).
Researchers are also developing neural networks with

“working memories” that augment the shorter-term
memory provided by unit activation and the longer-term
memory provided by the connection weights (Graves et al.
2014; 2016; Grefenstette et al. 2015; Reed & Freitas 2016;
Sukhbaatar et al. 2015; Weston et al. 2015b). These develop-
ments are also part of a broader trend toward “differentiable
programming,” the incorporation of classic data structures,
such as random access memory, stacks, and queues, into gra-
dient-based learning systems (Dalrymple 2016). For
example, the neural Turing machine (NTM) (Graves et al.
2014) and its successor the differentiable neural computer
(DNC) (Graves et al. 2016) are neural networks augmented
with a random access external memory with read and write
operations that maintain end-to-end differentiability. The
NTM has been trained to perform sequence-to-sequence
prediction tasks such as sequence copying and sorting, and
the DNC has been applied to solving block puzzles and
finding paths between nodes in a graph after memorizing
the graph. Additionally, neural programmer-interpreters
learn to represent and execute algorithms such as addition
and sorting from fewer examples, by observing input-
output pairs (like the NTM and DNC), as well as execution
traces (Reed & Freitas 2016). Each model seems to learn
genuine programs from examples, albeit in a representation
more like assembly language than a high-level programming
language.
Although this new generation of neural networks has yet to

tackle the types of challenge problems introduced in this
article, differentiableprogramming suggests the intriguingpos-
sibility of combining the best of program induction and deep
learning. The types of structured representations and model
building ingredients discussed in this article – objects,
forces, agents, causality, and compositionality – help
explain important facets of human learning and thinking,
yet they also bring challenges for performing efficient
inference (sect. 4.3.1). Deep learning systems have not yet
shown they can work with these representations, but they
have demonstrated the surprising effectiveness of gradient
descent in large models with high-dimensional parameter
spaces. A synthesis of these approaches, able to perform effi-
cient inference over programs that richly model the causal
structure an infant sees in the world, would be a major
step forward in building human-like AI.
Another example of combining pattern recognition and

model-based search comes from recent AI research into
the game Go. Go is considerably more difficult for AI
than chess, and it was only recently that a computer
program – AlphaGo – first beat a world-class player
(Chouard 2016) by using a combination of deep convolu-
tional neural networks (ConvNets) and Monte-Carlo Tree
Search (Silver et al. 2016). Each of these components has
made gains against artificial and real Go players (Gelly &
Silver 2008; 2011; Silver et al. 2016; Tian & Zhu 2016),
and the notion of combining pattern recognition and
model-based search goes back decades in Go and other
games. Showing that these approaches can be integrated
to beat a human Go champion is an important AI accom-
plishment (see Fig. 7). Just as important, however, are
the new questions and directions they open up for the
long-term project of building genuinely human-like AI.
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One worthy goal would be to build an AI system that
beats a world-class player with the amount and kind of
training human champions receive, rather than overpower-
ing them with Google-scale computational resources.
AlphaGo is initially trained on 28.4 million positions and
moves from 160,000 unique games played by human
experts; it then improves through reinforcement learning,
playing 30 million more games against itself. Between the
publication of Silver et al. (2016) and facing world cham-
pion Lee Sedol, AlphaGo was iteratively retrained several
times in this way. The basic system always learned from
30 million games, but it played against successively stronger
versions of itself, effectively learning from 100 million or
more games altogether (D. Silver, personal communica-
tion, 2017). In contrast, Lee has probably played around
50,000 games in his entire life. Looking at numbers like
these, it is impressive that Lee can even compete with
AlphaGo. What would it take to build a professional-level
Go AI that learns from only 50,000 games? Perhaps a
system that combines the advances of AlphaGo with
some of the complementary ingredients for intelligence
we argue for here would be a route to that end.

Artificial intelligence could also gain much by trying to
match the learning speed and flexibility of normal human
Go players. People take a long time to master the game
of Go, but as with the Frostbite and Characters challenges
(sects. 3.1 and 3.2), humans can quickly learn the basics of
the game through a combination of explicit instruction,
watching others, and experience. Playing just a few games
teaches a human enough to beat someone who has just
learned the rules but never played before. Could
AlphaGo model these earliest stages of real human learning
curves? Human Go players can also adapt what they have
learned to innumerable game variants. The Wikipedia

page “Go variants” describes versions such as playing
on bigger or smaller board sizes (ranging from 9 × 9 to
38 × 38, not just the usual 19 × 19 board), or playing on
boards of different shapes and connectivity structures (rect-
angles, triangles, hexagons, even a map of the English city
Milton Keynes). The board can be a torus, a mobius strip, a
cube, or a diamond lattice in three dimensions. Holes can
be cut in the board, in regular or irregular ways. The
rules can be adapted to what is known as First Capture
Go (the first player to capture a stone wins), NoGo (the
player who avoids capturing any enemy stones longer
wins), or Time Is Money Go (players begin with a fixed
amount of time and at the end of the game, the number
of seconds remaining on each player’s clock is added to
his or her score). Players may receive bonuses for creating
certain stone patterns or capturing territory near certain
landmarks. There could be four or more players, competing
individually or in teams. In each of these variants, effective
play needs to change from the basic game, but a skilled
player can adapt, and does not simply have to relearn the
game from scratch. Could AlphaGo quickly adapt to new
variants of Go? Although techniques for handling vari-
able-sized inputs in ConvNets may help in playing on dif-
ferent board sizes (Sermanet et al. 2014), the value
functions and policies that AlphaGo learns seem unlikely
to generalize as flexibly and automatically as people.
Many of the variants described above would require signifi-
cant reprogramming and retraining, directed by the smart
humans who programmed AlphaGo, not the system itself.
As impressive as AlphaGo is in beating the world’s best
players at the standard game – and it is extremely impres-
sive – the fact that it cannot even conceive of these variants,
let alone adapt to them autonomously, is a sign that it does
not understand the game as humans do. Human players can

Figure 7. An AI system for playing Go, combining a deep convolutional network (ConvNet) and model-based search through Monte-
Carlo Tree Search (MCTS). (A) The ConvNet on its own can be used to predict the next k moves given the current board. (B) A search
tree with the current board state as its root and the current “win/total” statistics at each node. A newMCTS rollout selects moves along the
tree according to the MCTS policy (red arrows) until it reaches a new leaf (red circle), where the next move is chosen by the ConvNet.
From there, play proceeds until the game’s end according to a pre-defined default policy based on the Pachi program (Baudiš & Gailly
2012), itself based on MCTS. (C) The end-game result of the new leaf is used to update the search tree. Adapted from Tian and Zhu
(2016) with permission.
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understand these variants and adapt to them because they
explicitly represent Go as a game, with a goal to beat an
adversary who is playing to achieve the same goal he or
she is, governed by rules about how stones can be placed
on a board and how board positions are scored. Humans
represent their strategies as a response to these constraints,
such that if the game changes, they can begin to adjust their
strategies accordingly.
In sum, Go presents compelling challenges for AI beyond

matching world-class human performance, in trying to
match human levels of understanding and generalization,
based on the same kinds and amounts of data, explicit
instructions, and opportunities for social learning afforded
to people. In learning to play Go as quickly and as flexibly
as they do, people are drawing on most of the cognitive
ingredients this article has laid out. They are learning-to-
learn with compositional knowledge. They are using their
core intuitive psychology and aspects of their intuitive
physics (spatial and object representations). And like
AlphaGo, they are also integrating model-free pattern rec-
ognition with model-based search. We believe that Go AI
systems could be built to do all of these things, potentially
better capturing how humans learn and understand the
game. We believe it would be richly rewarding for AI and
cognitive science to pursue this challenge together and
that such systems could be a compelling testbed for the
principles this article suggests, as well as building on all of
the progress to date that AlphaGo represents.

6.2. Future applications to practical AI problems

In this article, we suggested some ingredients for building
computational models with more human-like learning and
thought. These principles were explained in the context
of the Characters and Frostbite Challenges, with special
emphasis on reducing the amount of training data required
and facilitating transfer to novel yet related tasks. We also
see ways these ingredients can spur progress on core AI
problems with practical applications. Here we offer some
speculative thoughts on these applications.

1. Scene understanding. Deep learning is moving
beyond object recognition and toward scene understand-
ing, as evidenced by a flurry of recent work focused on gen-
erating natural language captions for images (Karpathy &
Fei-Fei 2017; Vinyals et al. 2014; Xu et al. 2015). Yet
current algorithms are still better at recognizing objects
than understanding scenes, often getting the key objects
right but their causal relationships wrong (Fig. 6). We see
compositionality, causality, intuitive physics, and intuitive
psychology as playing an increasingly important role in
reaching true scene understanding. For example, picture
a cluttered garage workshop with screw drivers and
hammers hanging from the wall, wood pieces and tools
stacked precariously on a work desk, and shelving and
boxes framing the scene. For an autonomous agent to
effectively navigate and perform tasks in this environment,
the agent would need intuitive physics to properly reason
about stability and support. A holistic model of the scene
would require the composition of individual object
models, glued together by relations. Finally, causality
helps infuse the recognition of existing tools or the learning
of new ones with an understanding of their use, helping to
connect different object models in the proper way (e.g.,

hammering a nail into a wall, or using a saw horse to
support a beam being cut by a saw). If the scene includes
people acting or interacting, it will be nearly impossible
to understand their actions without thinking about their
thoughts and especially their goals and intentions toward
the other objects and agents they believe are present.
2. Autonomous agents and intelligent devices. Robots

and personal assistants such as cell phones cannot be pre-
trained on all possible concepts they may encounter. Like
a child learning the meaning of new words, an intelligent
and adaptive system should be able to learn new concepts
from a small number of examples, as they are encountered
naturally in the environment. Common concept types
include new spoken words (names like “Ban Ki-Moon”
and “Kofi Annan”), new gestures (a secret handshake and
a “fist bump”), and new activities, and a human-like
system would be able to learn both to recognize and to
produce new instances from a small number of examples.
As with handwritten characters, a system may be able to
quickly learn new concepts by constructing them from
pre-existing primitive actions, informed by knowledge of
the underlying causal process and learning-to-learn.
3. Autonomous driving. Perfect autonomous driving

requires intuitive psychology. Beyond detecting and avoid-
ing pedestrians, autonomous cars could more accurately
predict pedestrian behavior by inferring mental states,
including their beliefs (e.g., Do they think it is safe to
cross the street? Are they paying attention?) and desires
(e.g., Where do they want to go? Do they want to cross?
Are they retrieving a ball lost in the street?). Similarly,
other drivers on the road have similarly complex mental
states underlying their behavior (e.g., Does he or she
want to change lanes? Pass another car? Is he or she swerv-
ing to avoid a hidden hazard? Is he or she distracted?). This
type of psychological reasoning, along with other types of
model-based causal and physical reasoning, are likely to be
especially valuable in challenging and novel driving circum-
stances for which there are few relevant training data (e.g.,
navigating unusual construction zones, natural disasters).
4. Creative design. Creativity is often thought to be a

pinnacle of human intelligence. Chefs design new dishes,
musicians write new songs, architects design new buildings,
and entrepreneurs start new businesses. Although we are
still far from developing AI systems that can tackle these
types of tasks, we see compositionality and causality as
central to this goal. Many commonplace acts of creativity
are combinatorial, meaning they are unexpected combina-
tions of familiar concepts or ideas (Boden 1998; Ward
1994). As illustrated in Figure 1-iv, novel vehicles can be
created as a combination of parts from existing vehicles,
and similarly, novel characters can be constructed from
the parts of stylistically similar characters, or familiar char-
acters can be re-conceptualized in novel styles (Rehling
2001). In each case, the free combination of parts is not
enough on its own: Although compositionality and learn-
ing-to-learn can provide the parts for new ideas, causality
provides the glue that gives them coherence and purpose.

6.3. Toward more human-like learning and thinking
machines

Since the birth of AI in the 1950s, people have wanted to
build machines that learn and think like people. We hope
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researchers in AI, machine learning, and cognitive science
will accept our challenge problems as a testbed for pro-
gress. Rather than just building systems that recognize
handwritten characters and play Frostbite or Go as the
end result of an asymptotic process, we suggest that deep
learning and other computational paradigms should aim
to tackle these tasks using as few training data as people
need, and also to evaluate models on a range of human-
like generalizations beyond the one task on which the
model was trained. We hope that the ingredients outlined
in this article will prove useful for working toward this
goal: seeing objects and agents rather than features, build-
ing causal models and not just recognizing patterns, recom-
bining representations without needing to retrain, and
learning-to-learn rather than starting from scratch.
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NOTES
1. In their influential textbook, Russell and Norvig (2003) state

that “The quest for ‘artificial flight’ succeeded when the Wright
brothers and others stopped imitating birds and started using
wind tunnels and learning about aerodynamics” (p. 3).

2. The time required to train the DQN (compute time) is not
the same as the game (experience) time.

3. The Atari games are deterministic, raising the possibility that
a learner can succeed by memorizing long sequences of actions
without learning to generalize (van Hasselt et al. 2016). A
recent article shows that one can outperformDQNs early in learn-
ing (and make non-trivial generalizations) with an “episodic con-
troller” that chooses actions based on memory and simple
interpolation (Blundell et al. 2016). Although it is unclear if the
DQN also memorizes action sequences, an alternative “human
starts” metric provides a stronger test of generalization (van
Hasselt et al. 2016), evaluating the algorithms on a wider variety
of start states and levels that are sampled from human play. It
would be preferable to compare people and algorithms on the
human starts metric, but most learning curves to date have only
been reported using standard test performance, which starts the
game from the beginning with some added jitter.

4. More precisely, the human expert in Mnih et al. (2015)
scored an average of 4335 points across 30 game sessions of up
to 5 minutes of play. In individual sessions lasting no longer
than 5 minutes, author TDU obtained scores of 3520 points
after approximately 5 minutes of gameplay, 3510 points after 10
minutes, and 7810 points after 15 minutes. Author JBT obtained
4060 after approximately 5 minutes of gameplay, 4920 after 10 to
15 minutes, and 6710 after no more than 20 minutes. TDU and
JBT each watched approximately 2 minutes of expert play on
YouTube (e.g., https://www.youtube.com/watch?v=ZpUFztf9Fjc,
but there are many similar examples that can be found in a
YouTube search).

5. Although connectionist networks have been used to model
the general transition that children undergo between the ages of
3 and 4 regarding false belief (e.g., Berthiaume et al. 2013), we

are referring here to scenarios, which require inferring goals, utili-
ties, and relations.

6. We must be careful here about what “simple” means. An
inductive bias may appear simple in the sense that we can com-
pactly describe it, but it may require complex computation (e.g.,
motion analysis, parsing images into objects, etc.) just to
produce its inputs in a suitable form.

7. A new approach using convolutional “matching networks”
achieves good one-shot classification performance when discrim-
inating between characters from different alphabets (Vinyals
et al. 2016). It has not yet been directly compared with BPL,
which was evaluated on one-shot classification with characters
from the same alphabet.

8. Deep convolutional neural network classifiers have error
rates approximately five times higher than those of humans
when pre-trained with five alphabets (23% versus 4% error),
and two to three times higher when pre-training on six times as
much data (30 alphabets) (Lake et al. 2015a). The current need
for extensive pre-training is illustrated for deep generative
models by Rezende et al. (2016), who present extensions of the
DRAW architecture capable of one-shot learning.

9. In the interest of brevity, we do not discuss here another
important vein of work linking neural circuits to variational
approximations (Bastos et al. 2012), which have received less
attention in the psychological literature.

10. Michael Jordan made this point forcefully in his 2015
speech accepting the Rumelhart Prize.
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Abstract: In this commentary, we highlight a crucial challenge posed by
the proposal of Lake et al. to introduce key elements of human
cognition into deep neural networks and future artificial-intelligence
systems: the need to design effective sophisticated architectures. We
propose that looking at the brain is an important means of facing this
great challenge.

We agree with the claim of Lake et al. that to obtain human-level
learning speed and cognitive flexibility, future artificial-intelli-
gence (AI) systems will have to incorporate key elements of
human cognition: from causal models of the world, to intuitive
psychological theories, compositionality, and knowledge transfer.
However, the authors largely overlook the importance of a
major challenge to implementation of the functions they advocate:
the need to develop sophisticated architectures to learn,
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represent, and process the knowledge related to those functions.
Here we call this the architecture challenge. In this commentary,
we make two claims: (1) tackling the architecture challenge is fun-
damental to success in developing human-level AI systems; (2)
looking at the brain can furnish important insights on how to
face the architecture challenge.

The difficulty of the architecture challenge stems from the fact
that the space of the architectures needed to implement the
several functions advocated by Lake et al. is huge. The authors
get close to this problem when they recognize that one thing
that the enormous genetic algorithm of evolution has done in mil-
lions of years of the stochastic hill-climbing search is to develop
suitable brain architectures. One possible way to attack the archi-
tecture challenge, also mentioned by Lake et al., would be to use
evolutionary techniques mimicking evolution.We think that today
this strategy is out of reach, given the “ocean-like” size of the
search space. At most, we can use such techniques to explore
small, interesting “islands lost within the ocean.” But how do we
find those islands in the first place? We propose looking at the
architecture of real brains, the product of the evolution genetic
algorithm, and try to “steal insights” from nature. Indeed, we
think that much of the intelligence of the brain resides in its archi-
tecture. Obviously, identifying the proper insights is not easy to do,
as the brain is very difficult to understand. However, it might be
useful to try, as the effort might give us at least some general indi-
cations, a compass, to find the islands in the ocean. Here we
present some examples to support our intuition.

When building architectures of AI systems, even when following
cognitive science indications (e.g., Franklin 2007), the tendency is
to “divide and conquer,” that is, to list the needed high-level func-
tions, implement a module for each of them, and suitably interface
the modules. However, the organisation of the brain can be under-
stood on the basis of not only high-level functions (see below), but
also “low-level” functions (usually called “mechanisms”). An
example of a mechanism is brain organisation based on macro-
structures, each having fine repeated micro-architectures imple-
menting specific computations and learning processes (Caligiore
et al. 2016; Doya 1999): the cortex to statically and dynamically
store knowledge acquired by associative learning processes
(Penhune & Steele 2012; Shadmehr & Krakauer 2008), the basal
ganglia to learn to select information by reinforcement learning
(Graybiel 2005; Houk et al. 1995), the cerebellum to implement
fast time-scale computations possibly acquired with supervised
learning (Kawato et al. 2011; Wolpert et al. 1998), and the
limbic brain structures interfacing the brain to the body and gen-
erating motivations, emotions, and the value of things (Mirolli et al.
2010; Mogenson et al. 1980). Each of these mechanisms supports
multiple, high-level functions (see below).

Brain architecture is also forged by the fact that natural intelli-
gence is strongly embodied and situated (an aspect not much
stressed by Lake et al.); that is, it is shaped to adaptively interact
with the physical world (Anderson 2003; Pfeifer & Gómez 2009)
to satisfy the organism’s needs and goals (Mannella et al. 2013).
Thus, the cortex is organised along multiple cortical pathways
running from sensors to actuators (Baldassarre et al. 2013a) and
“intercepted” by the basal ganglia selective processes in their
last part closer to action (Mannella & Baldassarre 2015). These
pathways are organised in a hierarchical fashion, with the higher
ones that process needs and motivational information controlling
the lower ones closer to sensation/action. The lowest pathways
dynamically connect musculoskeletal body proprioception with
primary motor areas (Churchland et al. 2012). Higher-level
“dorsal” pathways control the lowest pathways by processing
visual/auditory information used to interact with the environment
(Scott 2004). Even higher-level “ventral” pathways inform the
brain on the identity and nature of resources in the environment
to support decisions (Caligiore et al. 2010; Milner & Goodale
2006). At the hierarchy apex, the limbic brain supports goal selec-
tion based on visceral, social, and other types of needs/goals.
Embedded within the higher pathways, an important structure

involving basal ganglia–cortical loops learns and implements stim-
ulus–response habitual behaviours (used to act in familiar situa-
tions) and goal-directed behaviours (important for problem
solving and planning when new challenges are encountered) (Bal-
dassarre et al. 2013b; Mannella et al. 2013). These brain structures
form a sophisticated network, knowledge of which might help in
designing the architectures of human-like embodied AI systems
able to act in the real world.
A last example of the need for sophisticated architectures starts

with the recognition by Lake et al. that we need to endow AI
systems with a “developmental start-up software.” In this respect,
together with other authors (e.g., Weng et al. 2001; see Baldassarre
et al. 2013b; 2014, for collections of works) we believe that human-
level intelligence can be achieved only through open-ended learn-
ing, that is, the cumulative learning of progressively more
complex skills and knowledge, driven by intrinsic motivations,
which are motivations related to the acquisition of knowledge and
skills rather than material resources (Baldassarre 2011). The brain
(e.g., Lisman & Grace 2005; Redgrave & Gurney 2006) and com-
putational theories and models (e.g., Baldassarre & Mirolli 2013;
Baldassarre et al. 2014; Santucci et al. 2016) indicate how the
implementation of these processes indeed requires very sophisti-
cated architectures able to store multiple skills, to transfer knowl-
edge while avoiding catastrophic interference, to explore the
environment based on the acquired skills, to self-generate goals/
tasks, and to focus on goals that ensure a maximum knowledge gain.

Building machines that learn and think for
themselves

doi:10.1017/S0140525X17000048, e255
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Abstract: We agree with Lake and colleagues on their list of “key
ingredients” for building human-like intelligence, including the idea that
model-based reasoning is essential. However, we favor an approach that
centers on one additional ingredient: autonomy. In particular, we aim
toward agents that can both build and exploit their own internal models,
with minimal human hand engineering. We believe an approach centered
on autonomous learning has the greatest chance of success as we scale
toward real-world complexity, tackling domains for which ready-made
formal models are not available. Here, we survey several important
examples of the progress that has been made toward building autonomous
agents with human-like abilities, and highlight some outstanding challenges.

Lake et al. identify some extremely important desiderata for
human-like intelligence. We agree with many of their central
assertions: Human-like learning and decision making surely do
depend upon rich internal models; the learning process must be
informed and constrained by prior knowledge, whether this is
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part of the agent’s initial endowment or acquired through learn-
ing; and naturally, prior knowledge will offer the greatest leverage
when it reflects the most pervasive or ubiquitous structures in the
environment, including physical laws, the mental states of others,
andmore abstract regularities such as compositionality and causality.
Together, these points comprise a powerful set of target goals for AI
research. However, while we concur on these goals, we choose a
differently calibrated strategy for accomplishing them. In particular,
we favor an approach that prioritizes autonomy, empowering artifi-
cial agents to learn their own internal models and how to use them,
mitigating their reliance on detailed configuration by a human
engineer.

Lake et al. characterize their position as “agnostic with regards
to the origins of the key ingredients” (sect. 4, para. 2) of human-
like intelligence. This agnosticism implicitly licenses a modeling
approach in which detailed, domain-specific information can be
imparted to an agent directly, an approach for which some
of the authors’ Bayesian Program Learning (BPL) work is
emblematic. The two domains Lake and colleagues focus most
upon – physics and theory of mind – are amenable to such an
approach, in that these happen to be fields for which mature sci-
entific disciplines exist. This provides unusually rich support for
hand design of cognitive models. However, it is not clear that
such hand design will be feasible in other more idiosyncratic
domains where comparable scaffolding is unavailable. Lake et al.
(2015a) were able to extend the approach to Omniglot characters
by intuiting a suitable (stroke-based) model, but are we in a position
to build comparably detailed domain models for such things as
human dialogue and architecture? What about Japanese cuisine or
ice skating? Even video-game play appears daunting, when one
takes into account the vast amount of semantic knowledge that is
plausibly relevant (knowledge about igloos, ice floes, cold water,
polar bears, video-game levels, avatars, lives, points, and so forth).
In short, it is not clear that detailed knowledge engineering will be
realistically attainable in all areas we will want our agents to tackle.

Given this observation, it would appear most promising to focus
our efforts on developing learning systems that can be flexibly
applied across a wide range of domains, without an unattainable
overhead in terms of a priori knowledge. Encouraging this view,
the recent machine learning literature offers many examples of
learning systems conquering tasks that had long eluded more
hand-crafted approaches, including object recognition, speech
recognition, speech generation, language translation, and (signifi-
cantly) game play (Silver et al. 2016). In many cases, such suc-
cesses have depended on large amounts of training data, and
have implemented an essentially model-free approach.
However, a growing volume of work suggests that flexible,
domain-general learning can also be successful on tasks where
training data are scarcer and where model-based inference is
important.

For example, Rezende and colleagues (2016) reported a deep
generative model that produces plausible novel instances of
Omniglot characters after one presentation of a model character,
going a significant distance toward answering Lake’s “Character
Challenge.” Lake et al. call attention to this model’s “need for
extensive pre-training.” However, it is not clear why their pre-
installed model is to be preferred over knowledge acquired
through pre-training. In weighing this point, it is important to
note that the human modeler, to furnish the BPL architecture
with its “start-up software,” must draw on his or her own large
volume of prior experience. In this sense, the resulting BPL
model is dependent on the human designer’s own “pre-training.”

A more significant aspect of the Rezende model is that it can be
applied without change to very different domains, as Rezende and
colleagues (2016) demonstrate through experiments on human
facial images. This flexibility is one hallmark of an autonomous
learning system, and contrasts with the more purpose-built
flavor of the BPL approach, which relies on irreducible primitives
with domain-specific content (e.g., the strokes in Lake’s Omniglot
model). Furthermore, a range of recent work with deep

generative models (e.g. van den Oord 2016; Ranzato et al. 2016)
indicates that they can identify quite rich structure, increasingly
avoiding silly mistakes like those highlighted in Lake et al.’s
Figure 6.

Importantly, a learning-centered approach does not prevent us
from endowing learning systems with some forms of a priori
knowledge. Indeed, the current resurgence in neural network
research was triggered largely by work that does just this, for
example, by building an assumption of translational invariance
into the weight matrix of image classification networks (Krizhevsky
et al. 2012a). The same strategy can be taken to endow learning
systems with assumptions about compositional and causal struc-
ture, yielding architectures that learn efficiently about the dynam-
ics of physical systems, and even generalize to previously unseen
numbers of objects (Battaglia et al. 2016), another challenge
problem highlighted by Lake et al. In such cases, however, the
inbuilt knowledge takes a highly generic form, leaving wide
scope for learning to absorb domain-specific structure (see also
Eslami et al 2016; Raposo et al. 2017; Reed and de Freitas 2016).

Under the approach we advocate, high-level prior knowledge
and learning biases can be installed not only at the level of repre-
sentational structure, but also through larger-scale architectural
and algorithmic factors, such as attentional filtering (Eslami
et al. 2016), intrinsic motivation mechanisms (Bellemare et al.
2016), and episodic learning (Blundell et al. 2016). Recently
developed architectures for memory storage (e.g., Graves et al.
2016) offer a critical example. Lake et al. describe neural networks
as implementing “learning as a process of gradual adjustment of
connection strengths.” However, recent work has introduced a
number of architectures within which learning depends on rapid
storage mechanisms, independent of connection-weight changes
(Duan et al. 2016; Graves et al. 2016; Wang et al. 2017; Vinyals
et al. 2016). Indeed, such mechanisms have even been applied
to one-shot classification of Omniglot characters (Santoro et al.,
2016) and Atari video game play (Blundell et al. 2016). Further-
more, the connection-weight changes that do occur in such
models can serve in part to support learning-to-learn (Duan
et al. 2016; Graves et al. 2016; Ravi and Larochelle 2017;
Vinyals et al. 2016; Wang et al. 2017), another of Lake et al.’s
key ingredients for human-like intelligence. As recent work has
shown (Andrychowicz et al. 2016; Denil et al. 2016; Duan et al.
2016; Hochreiter et al. 2001; Santoro et al. 2016; Wang et al.
2017), this learning-to-learn mechanism can allow agents to
adapt rapidly to new problems, providing a novel route to install
prior knowledge through learning, rather than by hand. Learning
to learn enables us to learn a neural network agent over a long
time. This network, however, is trained to be good at learning
rapidly from few examples, regardless of what those examples
might be. So, although the meta-learning process might be
slow, the product is a neural network agent that can learn to
harness a few data points to carry out numerous tasks, including
imitation, inference, task specialization, and prediction.

Another reason why we believe it may be advantageous to
autonomously learn internal models is that such models can be
shaped directly by specific, concrete tasks. A model is valuable
not because it veridically captures some ground truth, but
because it can be efficiently leveraged to support adaptive behav-
ior. Just as Newtonian mechanics is sufficient for explaining many
everyday phenomena, yet too crude to be useful to particle phys-
icists and cosmologists, an agent’s models should be calibrated to
its tasks. This is essential for models to scale to real-world com-
plexity, because it is usually too expensive, or even impossible,
for a system to acquire and work with extremely fine-grained
models of the world (Botvinick & Weinstein 2015; Silver et al.
2017). Of course, a good model of the world should be applicable
across a range of task conditions, even ones that have not been
previously encountered. However, this simply implies that
models should be calibrated not only to individual tasks, but
also to the distribution of tasks – inferred through experience or
evolution – that is likely to arise in practice.
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Finally, in addition to the importance of model building, it is
important to recognize that real autonomy also depends on
control functions, the processes that leverage models to make
actual decisions. An autonomous agent needs good models, but
it also needs to know how to make use of them (Botvinick &
Cohen 2014), especially in settings where task goals may vary
over time. This point also favors a learning and agent-based
approach, because it allows control structures to co-evolve with
internal models, maximizing their compatibility. Though efforts
to capitalize on these advantages in practice are only in their
infancy, recent work from Hamrick and colleagues (2017),
which simultaneously trained an internal model and a correspond-
ing set of control functions, provides a case study of how this
might work.

Our comments here, like the target article, have focused on
model-based cognition. However, an aside on model-free
methods is warranted. Lake et al. describe model-free methods
as providing peripheral support for model-based approaches.
However, there is abundant evidence that model-free mecha-
nisms play a pervasive role in human learning and decision
making (Kahneman 2011). Furthermore, the dramatic recent suc-
cesses of model-free learning in areas such as game play, naviga-
tion, and robotics suggest that it may constitute a first-class,
independently valuable approach for machine learning. Lake
et al. call attention to the heavy data demands of model-free learn-
ing, as reflected in DQN learning curves. However, even since the
initial report on DQN (Mnih et al. 2015), techniques have been
developed that significantly reduce the data requirements of this
and related model-free learning methods, including prioritized
memory replay (Schaul et al. 2016), improved exploration
methods (Bellemare et al. 2016), and techniques for episodic rein-
forcement learning (Blundell et al. 2016). Given the pace of such
advances, it may be premature to relegate model-free methods to
a merely supporting role.

To conclude, despite the differences we have focused on here,
we agree strongly with Lake et al. that human-like intelligence
depends at least in part on richly structured internal models.
Our approach to building human-like intelligence can be summa-
rized as a commitment to developing autonomous agents: agents
that shoulder the burden of building their own models and arriv-
ing at their own procedures for leveraging them. Autonomy, in
this sense, confers a capacity to build economical task-sensitive
internal models, and to adapt flexibly to diverse circumstances,
while avoiding a dependence on detailed, domain-specific prior
information. A key challenge in pursuing greater autonomy is
the need to find more efficient means of extracting knowledge
from potentially limited data. But recent work on memory,
exploration, compositional representation, and processing
architectures, provides grounds for optimism. In fairness, the
authors of the target article have also offered, in other work,
some indication of how their approach might be elaborated to
support greater agent autonomy (Lake et al. 2016). We may
therefore be following slowly converging paths. On a final
note, it is worth pointing out that as our agents gain in
autonomy, the opportunity increasingly arises for us to obtain
new insights from what they themselves discover. In this way,
the pursuit of agent autonomy carries the potential to transform
the current AI landscape, revealing new paths toward human-like
intelligence.

Digging deeper on “deep” learning: A
computational ecology approach
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Abstract: We propose an alternative approach to “deep” learning that is
based on computational ecologies of structurally diverse artificial neural
networks, and on dynamic associative memory responses to stimuli.
Rather than focusing on massive computation of many different
examples of a single situation, we opt for model-based learning and
adaptive flexibility. Cross-fertilization of learning processes across
multiple domains is the fundamental feature of human intelligence that
must inform “new” artificial intelligence.

In The Society of Mind, Minsky (1986) argued that the human
brain is more similar to a complex society of diverse neural net-
works, than to a large, single one. The current theoretical main-
stream in “deep” (artificial neural network [ANN]-based)
learning leans in the opposite direction: building large ANNs
with many layers of hidden units, relying more on computational
power than on reverse engineering of brain functioning (Bengio
2009). The distinctive structural feature of the human brain is
its synthesis of uniformity and diversity. Although the structure
and functioning of neurons are uniform across the brain and
across humans, the structure and evolution of neural connections
make every human subject unique. Moreover, the mode of func-
tioning of the left versus right hemisphere of the brain seems dis-
tinctively different (Gazzaniga 2004). If we do not wonder about
this homogeneity of components that results in a diversity of func-
tions, we cannot understand the computational design principles
of the brain, or make sense of the variety of “constitutional
arrangements” in the governance of neural interactions at
various levels – “monarchic” in some cases, “democratic” or “fed-
erative” in others.
In an environment characterized by considerable stimulus vari-

ability, a biological machine that responds by combining two dif-
ferent principles (as embodied in its two hemispheres) has a
better chance of devising solutions that can flexibly adapt to
circumstances, and even anticipate singular events. The two
hemispheres seem to follow two opposite criteria: an analogical-
intuitive one, gradient descent-like, and a digital-rational one,
vector quantization-like. The former aims at anticipating and
understanding sudden environmental changes – the “black
swans.” The latter extrapolates trends from (currently classified
as) familiar contexts and situations. These two criteria are concep-
tually orthogonal and, therefore, span a very rich space of cogni-
tive functioning through their complex cooperation. On the
other hand, the Bayesian approach advocated by the authors to
complement the current “deep” learning agenda is useful only
to simulate the functioning of the left-brain hemisphere.
The best way to capture these structural features is to imagine

the brain as a society of agents (Minsky 1986), very heterogeneous
and communicating through their common neural base by means
of shared protocols, much like the Internet. The brain, as a highly
functionally bio-diverse computational ecology, may therefore
extract, from a large volume of external data, limited meaningful
subsets (small data sets), to generate a variety of possible
responses to these data sets and to learn from these very
responses. This logic is antithetical to the mainstream notion of
“deep learning” and of the consequential “big data” philosophy
of processing large volumes of data to generate a few, “static”
(i.e., very domain specific) responses – and which could,
perhaps, more appropriately be called “fat” learning. Such dichot-
omy clearly echoes the tension between model-based learning and
pattern recognition highlighted by the authors of the target article.
Teaching a single, large, neural network how to associate an
output to a certain input through millions of examples of a
single situation is an exercise in brute force. It would be much
more effective, in our view, to train a whole population of
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“deep” ANNs, mathematically very different from one another, on
the same problem and to filter their results by means of a Meta-
Net (Buscema 1998; Buscema et al. 2010; 2013) that ignores
their specific architectures, in terms of both prediction perfor-
mance and biological plausibility.

We can therefore sum up the main tenets of our approach as
follows:

1. There is extreme diversity in the architectures, logical prin-
ciples, and mathematical structures of the deployed ANNs.

2. “parliament” is created whereby each ANN proposes its sol-
ution to each case, in view of its past track record for similar
occurrences.

3. There is dynamic negotiation among the various hypotheses:
The solution proposal of an ANN and its reputation re-enter as
inputs for the other ANNs, until the ANN assembly reaches a
consensus.

4. Another highly diverse pool of ANNs learns the whole
dynamic process generated by the previous negotiation.

Responding to a pattern with a dynamic process rather than
with a single output is much closer to the actual functioning of
the human brain than associating a single output in a very
domain-specific way, however nonlinear. Associative memory is
a fundamental component of human intelligence: It is a cognitive
morphing that connects apparently diverse experiences such as a
lightning bolt and the fracture of a window pane. Human intelli-
gence is a prediction engine working on hypotheses, generated
from a relatively small database and constantly verified through
sequential sampling: a cycle of perception, prediction, validation,
and modification. Novelties, or changes in an already known envi-
ronmental scene, will command immediate attention. Pattern rec-
ognition, therefore, is but the first step in understanding human
intelligence. The next step should be building machines that gen-
erate dynamic responses to stimuli, that is, behave as dynamic
associative memories (Buscema 1995; 1998; 2013; Buscema
et al. 2015). The very same associative process generated by the
machine, in addition to interacting with itself and the external
stimuli, must itself become the object of learning: This is learn-
ing-to-learn in its fuller meaning. In this way, the artificial intelli-
gence frontier moves from pattern recognition to recognition of
pattern transformations – learning the topology used by the
brain to connect environmental scenes. Analyzing the cause-
effect links within these internal processes provides the basis to
identify meaningful rules of folk psychology or cognitive biases:
A pound of feathers may be judged lighter than a pound of lead
only in a thought process where feathers are associated with light-
ness. The meta-analysis of the connections generated by a mind
may yield physically absurd, but psychologically consistent,
associations.

An approach based on ecologies of computational diversity and
dynamic brain associations seems to us the most promising route
to a model-based learning paradigm that capitalizes on our
knowledge of the brain’s computational potential. And this also
means allowing for mental disturbances, hallucinations, or delir-
ium. A “deep” machine that cannot reproduce a dissociated
brain is just not intelligent enough, and if it merely maximizes
IQ, it is, in a sense, “dumb.” A system that can also contemplate
stupidity or craziness is the real challenge of the “new” artificial
intelligence.

Back to the future: The return of cognitive
functionalism
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Abstract: The claims that learning systems must build causal models and
provide explanations of their inferences are not new, and advocate a
cognitive functionalism for artificial intelligence. This view conflates the
relationships between implicit and explicit knowledge representation. We
present recent evidence that neural networks do engage in model building,
which is implicit, and cannot be dissociated from the learning process.

The neural network revolution occurred more than 30 years ago,
stirring intense debate over what neural networks (NNs) can and
cannot learn and represent. Much of the target article resurrects
these earlier concerns, but in the context of the latest NN revolution,
spearheaded by an algorithm that was known, but failed because of
scale and computational power, namely, deep learning (DL).

Claims that learning systems must build causal models and
provide explanations of their inferences are not new (DeJong
1986; Lenat 1995; Mitchell 1986), nor have they been proven suc-
cessful. Advocating the idea that artificial intelligence (AI) systems
need commonsense knowledge, ambitious projects such as “Cyc”
(Lenat 1990) created hand-crafted and labor-intensive knowledge
bases, combined with an inference engine to derive answers in the
form of explicit knowledge. Despite feeding a large but finite
number of factual assertions and explicit rules into such
systems, the desired human-like performance was never accom-
plished. Other explanation-based and expert systems (e.g.,
WordNet [Miller 1990]) proved useful in some applied
domains, but were equally unable to solve the problem of AI.
At the essence of such projects lies the idea of “cognitive function-
alism.” Proposing that mental states are functional states deter-
mined and individuated by their causal relations to other mental
states and behaviors, it suggests that mental states are programma-
ble with explicitly determined representational structures (Fodor,
1981; Hayes 1974; McCarthy & Hayes 1969; Putnam 1967). Such
a view stresses the importance of “formalizing concepts of causa-
lity, ability, and knowledge” to create “a computer program that
decides what to do by inferring in a formal language that a
certain strategy will achieve its assigned goal” (McCarthy &
Hayes, 1969, p. 1). Lake et al.’s appeal to causal mechanisms
and their need for explicit model representations is closely
related to this cognitive functionalism, which had been put forth
as a set of principles by many founders of the AI field (Hayes
1974; McCarthy 1959; McCarthy & Hayes 1969; Newell &
Simon, 1956).

One important shortcoming of cognitive functionalism is its
failure to acknowledge that the same behavior/function may be
caused by different representations and mechanisms (Block
1978; Hanson 1995). Consequently, the problem with this propo-
sition that knowledge within a learning system must be explicit is
that it conflates the relationship between implicit knowledge and
explicit knowledge and their representations. The ability to throw
a low hanging fast ball would be difficult, if not impossible, to
encode as a series of rules. However, this type of implicit know-
ledge can indeed be captured in a neural network, simply by
having it learn from an analog perception–action system and a
series of ball throws – all while also having the ability to represent
rule-based knowledge (Horgan & Tienson 1996). This associative
versus rule learning debate, referred to in this article as “pattern
recognition” versus “model building,” was shown a number of
times to be a meaningless dichotomy (Hanson & Burr 1990;
Hanson et al. 2002; Prasada & Pinker 1993).

Although we agree with Lake et al. that “model building” is
indeed an important component of any AI system, we do not
agree that NNs merely recognize patterns and lack the ability to
build models. Our disagreement arises from the presumption
that “a model must include explicit representations of objects,
identity and relations” (Lake et al. 2016, pp. 38–39). Rather
than being explicit or absent altogether, model representation is
implicit in NNs. Investigating implicitly learned models is
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somewhat more challenging, but work on learning dynamics and
learning functions with respect to their relationship to representa-
tions provides insights into these implicit models (Caglar &
Hanson 2016; Cleeremans 1993; Hanson & Burr 1990; Metcalf
et al. 1992; Saxe et al. 2014).

Recent work has shown that in DL, the internal structure, or
“model,” accumulates at later layers, and is effectively constructing
“scaffolds” over the learning process that are then used to train sub-
sequent layers (Caglar &Hanson 2016; Saxe 2013). These learning
dynamics can be investigated through analysis of the learning
curves and the internal representations resultant in the hidden
units. Analysis of the learning curves of NNs with different archi-
tectures reveals that merely adding depth to a NN results in differ-
ent learning dynamics and representational structures, which do
not require explicit preprogramming or pre-training (Caglar &
Hanson 2016). In fact, the shape of the learning curves for
single-layer NNs and for multilayered DLs are qualitatively differ-
ent, with the former fitting a negative exponential function (“asso-
ciative”) and the latter fitting a hyperbolic function
(“accumulative”). This type of structured learning, consistent
with the shape of the learning curves, can be shown to be equivalent
to the “learning-to-learn” component suggested by the authors.
Appearing across different layers of the NNs, it also satisfies the
need for “learning-to-learn to occur at multiple levels of the hierar-
chical generative process” (Lake et al., sect. 4.2.3, para. 5).

Furthermore, in category learning tasks with DLs, the internal
representation of the hidden units shows that it creates proto-
type-like representations at each layer of the network (Caglar &
Hanson 2016). These higher-level representations are the result
of concept learning from exemplars, and go far beyond simple
pattern recognition. Additionally, the plateau characteristic of the
hyperbolic learning curves provides evidence for rapid learning,
as well as one-shot learning once this kind of implicit conceptual
representation has been formed over some subset of exemplars
(similar to a “prior”) (Saxe 2014). Longstanding investigation in
the learning theory literature proposes that the hyperbolic learning
curve of DLs is also the shape that best describes human learning
(Mazur & Hastie 1978; Thurstone 1919), thereby suggesting that
the learning mechanisms of DLs and humans might be more
similar than thought (Hanso et al., in preparation).

Taken together, the analysis of learning curves and internal rep-
resentations of hidden units indicates that NNs do in fact build
models and create representational structures. However, these
models are implicitly built into the learning process and cannot
be explicitly dissociated from it. Exploiting the rich information
of the stimulus and its context, the learning process creates
models and shapes representational structures without the need
for explicit preprogramming.

Theories or fragments?
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Abstract: Lake et al. argue persuasively that modelling human-like
intelligence requires flexible, compositional representations in order to
embody world knowledge. But human knowledge is too sparse and self-
contradictory to be embedded in “intuitive theories.” We argue, instead,
that knowledge is grounded in exemplar-based learning and
generalization, combined with high flexible generalization, a viewpoint

compatible both with non-parametric Bayesian modelling and with sub-
symbolic methods such as neural networks.

Lake et al. make a powerful case that modelling human-like intelli-
gence depends on highly flexible, compositional representations,
to embody world knowledge. But will such knowledge really be
embedded in “intuitive theories”ofphysics or psychology?This com-
mentary argues that there is a paradox at the heart of the “intuitive
theory” viewpoint, that has bedevilled analytic philosophy and sym-
bolic artificial intelligence: human knowledge is both (1) extremely
sparse and (2) self-contradictory (e.g., Oaksford & Chater 1991).
The sparseness of intuitive knowledge is exemplified in Rozen-

blit and Keil’s (2002) discussion of the “illusion of explanatory
depth.” We have the feeling that we understand how a crossbow
works, how a fridge stays cold, or how electricity flows around
the house. Yet, when pressed, few of us can provide much more
than sketchy and incoherent fragments of explanation. Therefore,
our causal models of the physical world appear shallow. The
sparseness of intuitive psychology seems at least as striking.
Indeed, our explanations of our own and others’ behavior often
appear to be highly ad hoc (Nisbett & Ross 1980).
Moreover, our physical and psychological intuitions are also

self-contradictory. The foundations of physics and rational
choice theory have consistently shown how remarkably few
axioms (e.g., the laws of thermodynamics, the axioms of decision
theory) completely fix a considerable body of theory. Yet our intu-
itions about heat and work, or probability and utility, are vastly
richer and more amorphous, and cannot be captured in any con-
sistent system (e.g., some of our intuitions may imply our axioms,
but others will contradict them). Indeed, contradictions can also
be evident even in apparent innocuous mathematical or logical
assumptions (as illustrated by Russell’s paradox, which unexpect-
edly exposed a contradiction in Frege’s attempted logical founda-
tion for mathematics [Irvine & Deutsch 2016]).
The sparse and contradictory nature of our intuition explains

why explicit theorizing requires continually ironing out contradic-
tions, making vague concepts precise, and radically distorting or
replacing existing concepts. And the lesson of two and half millen-
nia of philosophy is arguable, that clarifying even the most basic
concepts, such as “object” or “the good” can be entirely intracta-
ble, a lesson re-learned in symbolic artificial intelligence. In any
case, the raw materials for this endeavor – our disparate intui-
tions –may not be properly viewed as organized as theories at all.
If this is so, how do we interact so successfully in the physical and

social worlds? We have experience, whether direct, or by observa-
tion or instruction – of crossbows, fridges, and electricity – to be
able to interact with them in familiar ways. Indeed, our ability to
make sense of new physical situations often appears to involve cre-
ative extrapolation from familiar examples: for example, assuming
that heavy objects will fall faster than light objects, even in a
vacuum, or where air resistance can be neglected. Similarly, we
have a vast repertoire of experience of human interaction, from
which we can generalize to new interactions. Generalization from
such experiences, to deal with new cases, can be extremely flexible
and abstract (Hofstadter 2001). For example, the perceptual system
uses astonishing ingenuity to construct complex percepts (e.g.,
human faces) from highly impoverished signals (e.g., Hoffman
2000; Rock 1983) or to interpret art (Gombrich 1960).
We suspect that the growth and operation of cognition are more

closely analogous to case law than to scientific theory. Each new
case is decided by reference to the facts of that present case
and to ingenious and open-ended links to precedents from past
cases; and the history of cases creates an intellectual tradition
that is only locally coherent, often ill-defined, but surprisingly
effective in dealing with a complex and ever-changing world. In
short, knowledge has the form of a loosely interlinked history of
reusable fragments, each building on the last, rather than being
organized into anything resembling a scientific theory.
Recent work on construction-based approaches to language

exemplify this viewpoint in the context of linguistics (e.g.,
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Goldberg 1995). Rather than seeing language as generated by a
theory (a formally specified grammar), and the acquisition of lan-
guage as the fine-tuning of that theory, such approaches see lan-
guage as a tradition, where each new language processing
episode, like a new legal case, is dealt with by reference to past
instances (Christiansen & Chater 2016). In both law and language
(see Blackburn 1984), there will be a tendency to impose local
coherence across similar instances, but there will typically be no
globally coherent theory from which all cases can be generated.

Case instance or exemplar-based theorizing has been wide-
spread in the cognitive sciences (e.g., Kolodner 1993; Logan
1988; Medin & Shaffer 1978). Exploring how creative extensions
of past experience can be used to deal with new experience
(presumably by processes of analogy and metaphor rather than
deductive theorizing from basic principles) provides an
exciting challenge for artificial intelligence, whether from a non-
parametric Bayesian standpoint or a neural network perspective,
and is likely to require drawing on the strengths of both.
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Abstract: Technoscientific ambitions for perfecting human-likemachines, by
advancing state-of-the-art neuromorphic architectures and cognitive
computing, may end in ironic regret without pondering the humanness of
fallible artificial non-normative personalities. Self-organizing artificial
personalities individualize machine performance and identity through fuzzy
conscientiousness, emotionality, extraversion/introversion, and other traits,
rendering insights into technology-assisted human evolution, robot ethology/
pedagogy, andbestpractices against unwantedautonomousmachinebehavior.

Within a modern framework of promising, yet still inadequate
state-of-the-art artificial intelligence, Lake et al. construct an opti-
mistic, ambitious plan for innovating truer representative neural
network-inspired machine emulations of human consciousness
and cognition, elusive pinnacle goals of many cognitive, semiotic,
and cybernetic scientists (Cardon 2006; Clark 2012; 2014; 2015;
Kaipa et al. 2010; McShea 2013). Their machine learning-based
agenda, possibly requiring future generations of pioneering
hybrid neuromorphic computing architectures and other sorts of
technologies to be fully attained (Lande 1998; Indiveri & Liu
2015; Schuller & Stevens 2015), relies on implementing sets of
data-/theory-established “core ingredients” typical of natural
human intelligence and development (cf. Bengio 2016; Meltzoff
et al. 2009; Thomaz & Cakmak 2013; Weigmann 2006). Such
core ingredients, including (1) intuitive causal physics and psy-
chology, (2) compositionality and learning-to-learn, and (3) fast
efficient real-time gradient-descent deep learning and thinking,

will certainly endow contemporary state-of-the-art machines
with greater human-like cognitive qualities. But, in Lake et al.’s
efforts to create a standard of human-like machine learning and
thinking, they awkwardly, and perhaps ironically, erect barriers
to realizing ideal human simulation by ignoring what is also
very human – variations in cognitive-emotional neural network
structure and function capable of giving rise to non-normative
(or unique) personalities and, therefore, dynamic expression of
human intelligences and identities (Clark 2012; 2015; in press-a;
in press-b; in press-c). Moreover, this same, somewhat counterin-
tuitive, problem in the authors’ otherwise rational approach dan-
gerously leaves unaddressed the major ethical and security issues
of “free-willed” personified artificial sentient agents, often popu-
larized by fantasists and futurists alike (Bostrom 2014; Briegel
2012; Davies 2016; Fung 2015).

Classic interpretations of perfect humanness arising from the fal-
libility of humans (e.g., Clark 2012; Nisbett & Ross 1980; Parker &
McKinney 1999; Wolfram 2002) appreciably impact the technical
feasibility and socio-cultural significance of building and deploying
human-emulating personified machines under both nonsocial and
social constraints. Humans, as do all sentient biological entities, fall
within a fuzzy organizational and operational template that bounds
emergence of phylogenic, ontogenic, and sociogenic individuality
(cf. Fogel & Fogel 1995; Romanes 1884). Extreme selected varia-
tions in individuality, embodied here by modifiable personality and
its link to mind, can greatly elevate or diminish human expression,
depending on pressures of situational contexts. Examples may
include the presence or absence of resoluteness, daring, agile delib-
eration, creativity, and meticulousness essential to achieving match-
less, unconventional artistic and scientific accomplishments. Amid
even further examples, they may also include the presence or
absence of empathy, morality, or ethics in response to severe
human plight and need. Regardless, to completely simulate the
range of human intelligence, particularly solitary to sociable and
selfish to selfless tendencies critical for now-nascent social-like
human-machine and machine-machine interactions, scientists and
technologists must account for, and better understand, personality
trait formation and development in autonomous artificial technolo-
gies (Cardon 2006; Clark 2012; 2015; Kaipa et al. 2010; McShea
2013). These kinds of undertakings will help yield desirable insights
into the evolution of technology-augmented human nature and,
perhaps more importantly, will inform best practices when estab-
lishing advisable failsafe contingencies against unwanted serendip-
itous or designed human-like machine behavior.

Notably, besides their described usefulness for modeling
intended artificial cognitive faculties, Lake et al.’s core ingredients
provide systematic concepts and guidelines necessary to begin
approximating human-like machine personalities, and to probe
genuine ethological, ecological, and evolutionary consequences
of those personalities for both humans and machines. However,
similar reported strategies for machine architectures, algorithms,
and performance demonstrate only marginal success when used as
protocols to reach nearer cognitive-emotional humanness in
trending social robot archetypes (Arbib & Fellous 2004; Asada
2015; Berdahl 2010; Di & Wu 2015; Han et al. 2013; Hiolle
et al. 2014; Kaipa et al. 2010; McShea 2013; Read et al. 2010;
Thomaz & Cakmak 2013; Wallach et al. 2010; Youyou et al.
2015), emphasizing serious need for improved adaptive quasi-
model-free/-based neural nets, trainable distributed cognition-
emotion mapping, and artificial personality trait parameterization.
The best findings from such work, although far from final reduc-
tion-to-practice, arguably involve the appearance of crude or
primitive machine personalities and identities from socially
learned intra-/interpersonal relationships possessing cognitive-
emotional valences. Valence direction and magnitude often
depend on the learner machine’s disposition toward response
priming/contagion, social facilitation, incentive motivation, and
local/stimulus enhancement of observable demonstrator behavior
(i.e., human, cohort-machine, and learner-machine behavior).
The resulting self-/world discovery of the learner machine,
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analogous to healthy/diseased or normal/abnormal human phenom-
ena acquired during early formative (neo)Piagetian cognitive-emo-
tional periods (cf. Nisbett & Ross 1980; Parker & McKinney 1999;
Zentall 2013), reciprocally shapes the potential humanness of
reflexive/reflective machine actions through labile interval-delim-
ited self-organizing traits consistent with natural human personali-
ties, including, but not restricted to, conscientiousness, openness,
emotional stability, agreeableness, and extraversion/introversion.

Even simplistic artificial cognitive-emotional profiles and person-
alities thus effect varying control over acquisition and lean of
machine domain-general/-specific knowledge, perception and
expression of flat or excessive machine affect, and rationality and
use of inferential machine attitudes/opinions/beliefs (Arbib &
Fellous 2004; Asada 2015; Berdahl 2010; Cardon 2006; Davies
2016; Di & Wu 2015; Han et al. 2013; Hiolle et al. 2014; Kaipa
et al. 2010; McShea 2013; Read et al. 2010; Wallach et al. 2010;
Youyou et al. 2015). And, by favoring certain artificial personality
traits, such as openness, a learner machine’s active and passive ped-
agogical experiences may be radically directed by the quality of
teacher-student rapport (e.g., Thomaz & Cakmak 2013), enabling
opportunities for superior nurturing and growth of distinctive,
well-adjusted thoughtful machine behavior while, in part, restricting
harmful rogue machine behavior, caused by impoverished learning
environments and predictable pathological Gödel-type incomplete-
ness/inconsistency for axiomatic neuropsychological systems (cf.
Clark & Hassert 2013). These more-or-less philosophical consider-
ations, along with the merits of Lake et al.’s core ingredients for
emerging artificial non-normative (or unique) personalities, will
bear increasing technical and sociocultural relevance as the
Human Brain Project, the Blue Brain Project, and related connec-
tome missions drive imminent neuromorphic hardware research
and development toward precise mimicry of configurable/computa-
tional soft-matter variations in human nervous systems (cf. Calimera
et al. 2013).

Children begin with the same start-up
software, but their software updates are
cultural
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Abstract: We propose that early in ontogeny, children’s core cognitive
abilities are shaped by culturally dependent “software updates.” The role
of sociocultural inputs in the development of children’s learning is
largely missing from Lake et al.’s discussion of the development of
human-like artificial intelligence, but its inclusion would help move
research even closer to machines that can learn and think like humans.

Lake et al. draw from research in both artificial intelligence (AI)
and cognitive development to suggest a set of core abilities neces-
sary for building machines that think and learn like humans. We
share the authors’ view that children have a set of core cognitive
abilities for learning and that these abilities should guide develop-
ment in AI research. We also agree with the authors’ focus on
findings from theory theory research and their characterization
of its principles as “developmental start-up software” that is
adapted later in ontogeny for social learning. What is missing
from this discussion, however, is the recognition that children’s
developmental start-up software is shaped by their culture-spe-
cific social environment. Children’s early and ontogenetically per-
sistent experiences with their cultural environment affect what
learning “programs” children develop and have access to, particu-
larly in the case of social learning.

Research suggests that from early infancy, children display a core
set of abilities that shape their reasoning about the world, including
reasoning about both inanimate objects (intuitive physics [e.g.,
Spelke 1990]) and animate social beings (intuitive psychology [e.g.,
Dennett 1987; Meltzoff & Moore 1995]). Although the early onset
of these abilities provides evidence that they may be universal,
little research has examined their development in non-WEIRD
(Western educated industrialized rich democratic) (Henrich et al.
2010) cultures (Legare & Harris, 2016). Moreover, research that
has examined children’s intuitive theories in different cultural set-
tings has suggested the potential for both cross-cultural continuity
and variation in their development. Take, for example, the develop-
ment of children’s theory of mind, a component of intuitive psychol-
ogy. A large collection of research comparing the development of
children’s understanding of false belief in the United States,
China, and Iran indicates that although typically developing children
in all cultures show an improvement in false belief understanding
over the course of ontogeny, the timing of this improvement
differs widely—and such variability is potentially related to different
sociocultural inputs (Davoodi et al. 2016; Liu et al. 2008; Shahaeian
et al. 2011). Thus, children’s social environmentsmay be shaping the
development of these core abilities, “reprogramming” and updating
their developmental start-up software.
To illustrate why considering the principles derived from theory

theory are important for guiding AI development, Lake et al.
point to AI’s lack of human-like intuitive psychology as a key
reason for why humans outperform AI. In their discussion of
humans’ superior performance in the Frostbite challenge, the
authors highlight humans’ ability to build on skills gained
through the observation of an expert player,which requires rea-
soning about the expert player’s mental state. AI can also draw
on observations of expert players, but requires substantially
greater input to achieve similar levels of performance. Humans’
intuitive psychology and their corresponding ability to reason
about others’ mental states is just one element of why humans
may be outperforming computers in this task. This situation also
draws on humans’ ability to learn by observing others and, like
the development of false-belief understanding, children’s ability
to learn through observation as well as through verbal testimony,
which is heavily influenced by sociocultural inputs (Harris 2012).
Culturally specific ethno-theories of how children learn (Clegg

et al. 2017; Corriveau et al. 2013; Harkness et al. 2007; Super &
Harkness 2002) and the learning opportunities to which children
have access (Kline 2015; Rogoff 2003) shape their ability to learn
through observation. As early as late infancy, sociocultural inputs
such as how parents direct children’s attention, or the typical struc-
ture of parent-child interaction, may lead to differences in the way
children attend to events for the purpose of observational learning
(Chavajay & Rogoff 1999). By pre-school, children from non-
WEIRD cultures where observational learning is expected and
socialized outperform children from WEIRD cultures in observa-
tional learning tasks (Correa-Chávez & Rogoff 2009; Mejía-Arauz
et al. 2005). Recent research also suggests that children from differ-
ent cultural backgrounds attend to different types of information
when engaging in observational learning. For example, Chinese-
American children are more sensitive to whether there is consensus
about a behavior or information than Euro-American children (Cor-
riveau & Harris 2010; Corriveau et al. 2013; DiYanni et al. 2015).
Such cultural differences in attending to social information in obser-
vational learning situations persist into adulthood (Mesoudi et al.
2015). Therefore, although the developmental start-up software
children begin with may be universal, early in development, child-
ren’s “software updates” may be culturally dependent. Over time,
these updates may even result in distinct operating systems.
The flexibility of children’s core cognitive abilities to be shaped

by sociocultural input is what makes human learning unique
(Henrich 2015). The role of this input is largely missing from
Lake et al.’s discussion of creating human-like AI, but its inclusion
would help move research even closer to machines that can learn
and think like humans.
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Abstract: Lake et al. underrate both the promise and the limitations of
contemporary deep learning techniques. The promise lies in combining
those techniques with broad multisensory training as experienced by
infants and children. The limitations lie in the need for such systems to
possess functional subsystems that generate, monitor, and switch goals
and strategies in the absence of human intervention.

Lake et al. present a credible case for why natural intelligence
requires the construction of compositional, causal generative
models that incorporate intuitive psychology and physics.
Several of their arguments (e.g., for compositionality and theory
construction and for learning from limited experience) echo argu-
ments that have been made throughout the history of cognitive
science (e.g., Fodor & Pylyshyn 1988). Indeed, in the context of
Lake et al.’s criticisms, the closing remarks of Fodor and Pyly-
shyn’s seminal critique of 1980s-style connectionism make sober-
ing reading: “some learning is a kind of theory construction.…We
seem to remember having been through this argument before.
We find ourselves with a gnawing sense of deja vu” (1988,
p. 69). It would appear that cognitive science has advanced little
in the last 30 years with respect to the underlying debates.

Yet Lake et al. underrate both the promise and the limitations
of contemporary deep learning (DL) techniques with respect to
natural and artificial intelligence. Although contemporary DL
approaches to, say, learning and playing Atari games undoubtedly
employ psychologically unrealistic training regimes, and are
undoubtedly inflexible with respect to changes to the reward/
goal structure, to fixate on these limitations overlooks the
promise of such approaches. It is clear the DL nets are not nor-
mally trained with anything like the experiences had by the devel-
oping child, whose learning is based on broad, multisensory
experience and is cumulative, with new motor and cognitive
skills building on old (Vygotsky 1978). Until DL nets are trained
in this way, it is not reasonable to critique the outcomes of such
approaches for unrealistic training regimes of, for example,
“almost 500 times as much experience as the human received”
(target article, sect. 3.2, para. 4). That 500 times as much experi-
ence neglects the prior experience that the human brought to the
task. DL networks. as currently organised, require that much
experience precisely because they bring nothing but a learning
algorithm to the task.

A more critical question is whether contemporary DL
approaches might, with appropriate training, be able to acquire
intuitive physics – the kind of thing an infant learns through his
or her earliest interactions with the world (that there are solids
and liquids, and that solids can be grasped and that some can be
picked up, but that they fall when dropped, etc.). Similarly, can
DL acquire intuitive psychology through interaction with other
agents? And what kind of input representations and motor abilities
might allow DL networks to develop representational structures
that support reuse across tasks? The promise of DL networks
(and at present it remains a promise) is that, with sufficiently
broad training, they may support the development of systems
that capture intuitive physics and intuitive psychology. To
neglect this possibility is to see the glass as half empty, rather
than half full.

The suggestion is not simply that training an undifferentiated
DL network with the ordered multisensory experiences of a devel-
oping child will automatically yield an agent with natural

intelligence. As Lake et al. note, gains come from combining DL
with reinforcement learning (RL) and Monte-Carlo Tree Search
to support extended goal-directed activities (such as playing Atari
games) and problem solving (as in the game of Go). These exten-
sions are of particular interest because they parallel cognitive psy-
chological accounts of more complex cognition. More specifically,
accounts of behaviour generation and regulation have long distin-
guished between automatic and deliberative behaviour. Thus, the
contention scheduling/supervisory system theory of Norman and
Shallice (1986) proposes that one system – the contention schedul-
ing system – controls routine, overlearned, or automatic behaviour,
whereas a second system – the supervisory system –may bias or
modulate the contention scheduling system in non-routine situa-
tions where deliberative control is exercised. Within this account
the routine system may plausibly employ a DL-type network com-
bined with (a hierarchical variant of) model-free reinforcement
learning, whereas the non-routine system is more plausibly con-
ceived of in terms of a model-based system (cf. Daw et al. 2005).

Viewing DL-type networks as models of the contention sched-
uling system suggests that their performance should be compared
to those aspects of expert performance that are routinized or over-
learned. From this perspective, the limits of DL-type networks
are especially informative, as they indicate which cognitive func-
tions cannot be routinized and should be properly considered as
supervisory. Indeed, classical model-based RL is impoverished
compared with natural intelligence. The evidence from patient
and imaging studies suggests that the non-routine system is not
an undifferentiated whole, as might befit a system that simply per-
forms Monte-Carlo Tree Search. The supervisory system appears
to perform a variety of functions, such as goal generation (to
create one’s own goals and to function in real domains outside
of the laboratory), strategy generation and evaluation (to create
and evaluate potential strategies that might achieve goals), moni-
toring (to detect when one’s goals are frustrated and to thereby
trigger generation of new plans/strategies or new goals), switching
(to allow changing goals), response inhibition (to prevent selection
of pre-potent actions which may conflict with one’s high-level
goals), and perhaps others. (See Shallice & Cooper [2011] for
an extended review of relevant evidence and Fox et al. [2013]
and Cooper [2016], for detailed suggestions for the potential orga-
nisation of higher-level modulatory systems.) These functions
must also support creativity and autonomy, as expressed by natu-
rally intelligent systems. Furthermore, “exploration” is not
unguided as in the classical exploration/exploitation trade-off of
RL. Natural intelligence appears to combine the largely reactive
perception-action cycle of RL with a more active action-percep-
tion cycle, in which the cognitive system can act and deliberatively
explore in order to test hypotheses.

To achieve natural intelligence, it is likely that a range of super-
visory functions will need to be incorporated into the model-based
system, or as modulators of a model-free system. Identifying the
component functions and their interactions, that is, identifying
the functional architecture (Newell 1990), will be critical if we
are to move beyond Lake et al.’s “Character” and “Frostbite” chal-
lenges, which remain highly circumscribed tasks that draw upon
limited world knowledge.

Causal generative models are just a start
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Abstract: Human reasoning is richer than Lake et al. acknowledge, and
the emphasis on theories of how images and scenes are synthesized is
misleading. For example, the world knowledge used in vision
presumably involves a combination of geometric, physical, and other
knowledge, rather than just a causal theory of how the image was
produced. In physical reasoning, a model can be a set of constraints
rather than a physics engine. In intuitive psychology, many inferences
proceed without detailed causal generative models. How humans
reliably perform such inferences, often in the face of radically
incomplete information, remains a mystery.

We entirely agree with the central thrust of the article. But a
broader view of what a “model” is, is needed.

In most of the examples discussed in the target article, a
“model” is a generative system that synthesizes a specified
output. For example, the target article discusses a system built
by Lake et al. (2015a) that learns to recognize handwritten char-
acters from one or two examples, by modeling the sequence of
strokes that produced them. The result is impressive, but the
approach – identifying elements from a small class of items
based on a reconstruction of how something might be generated –
does not readily generalize in many other situations. Consider, for
example, how one might recognize a cat, a cartoon of a cat, a
painting of a cat, a marble sculpture of a cat, or a cloud that
happens to look like a cat. The causal processes that generated
each of these are very different; and yet a person familiar with
cats will recognize any of these depictions, even if they know
little of the causal processes underlying sculpture or the formation
of clouds. Conversely, the differences between the causal pro-
cesses that generate a cat and those that generate a dog are
understood imperfectly, even by experts in developmental
biology, and hardly at all by laypeople. Yet even children can
readily distinguish dogs from cats. Likewise, where children
learn to recognize letters significantly before they can write
them at all well,1 it seems doubtful that models of how an
image is synthesized, play any necessary role in visual recognition
even of letters, let alone of more complex entities. Lake et al.’s
results are technically impressive, but may tell us little about
object recognition in general.

The discussion of physical reasoning here, which draws on
studies such as Battaglia et al. (2013), Gerstenberg et al. (2015),
and Sanborn et al. (2013), may be similarly misleading. The
target article argues that the cognitive processes used for human
physical reasoning are “intuitive physics engines,” similar to the
simulators used in scientific computation and computer games.
But, as we have argued elsewhere (Davis & Marcus 2014;
2016), this model of physical reasoning is much too narrow,
both for AI and for cognitive modeling.

First, simulation engines require both a precise predictive theory
of the domain and a geometrically and physically precise descrip-
tion of the situation. Human reasoners, by contrast, can deal with
information that is radically incomplete. For example, if you are car-
rying a number of small creatures in a closed steel box, you can
predict that as long as the box remains completely closed, the crea-
tures will remain inside. This prediction can be made without
knowing anything about the creatures and the way they move,
without knowing the initial positions or shapes of the box or the
creatures, and without knowing the trajectory of the box.

Second, simulation engines predict how a system will develop
by tracing its state in detail over a sequence of closely spaced
instances. For example, Battaglia et al. (2013) use an existing
physics engine to model how humans reason about an unstable
tower of blocks collapsing to the floor. The physics engine gener-
ates a trace of the exact positions, velocities of every block, and the
forces between them, at a sequence of instants a fraction of a
second apart. There is no evidence that humans routinely gener-
ate comparably detailed traces or even that they are capable of
doing so. Conversely, people are capable of predicting character-
istics of an end state for problems where it is impossible to predict
the intermediate states in detail, as the example of the creatures in
the box illustrates.

Third, there is extensive evidence that in many cases where the
actual physics is simple, humans make large, systematic errors.
For example, a gyroscope or a balance beam constructed of
solid parts is governed by the identical physics as the falling
tower of blocks studied in Battaglia et al. (2013); the physical
interactions and their analysis are much simpler for these than
for the tower of blocks, and the physics engine that Battaglia
et al. used in their studies will handle the case of a gyroscope or
a balance beam without difficulty. But here, the model is “too
good” relative to humans. Human subjects often make errors in
predicting the behavior of a balance beam (Siegler 1976), and
most people find the behavior of a gyroscope mystifying.
Neither result follows from the model.
Intuitive psychology goes even further beyond what can be

explained by sorts of generative models of action choice, discussed
in the target article. One’s knowledge of the state of another
agent’s mind and one’s ability to predict their action are necessar-
ily extremely limited; nonetheless, powerful psychological reason-
ing can be carried out. For example, if you see a person pick up a
telephone and dial, it is a good guess that they he or she is plan-
ning to talk to someone. To do so, one does not need a full
causal model of whom they want to talk to, what they will say,
or what their goal is in calling. In this instance (and many
others), there seems to be a mismatch between the currency of
generative models and the sorts of inferences that humans can
readily make.
So whereas we salute Lake et al.’s interest in drawing inferences

from small amounts of data, and believe as they do that rich
models are essential to complex reasoning, we find their view of
causal models to be too parochial. Reasoning in humans, and in
general artificial intelligence, requires bringing to bear knowledge
across an extraordinarily wide range of subjects, levels of abstrac-
tion, and degrees of completeness. The exclusive focus on causal
generative models is unduly narrow.

NOTE
1. This may be less true with respect to Chinese and other large char-

acter sets, in which practicing drawing the characters is an effective way of
memorizing them (Tan et al. 2005).

Thinking like animals or thinking like
colleagues?
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Abstract: We comment on ways in which Lake et al. advance our
understanding of the machinery of intelligence and offer suggestions.
The first set concerns animal-level versus human-level intelligence. The
second concerns the urgent need to address ethical issues when
evaluating the state of artificial intelligence.

Lake et al. present an insightful survey of the state of the art in
artificial intelligence (AI) and offer persuasive proposals for feasi-
ble future steps. Their ideas of “start-up software” and tools for
rapid model learning (sublinguistic “compositionality” and “learn-
ing-to-learn”) help pinpoint the sources of general, flexible intelli-
gence. Their concrete examples using the Character Challenge
and Frostbite Challenge forcefully illustrate just how behaviorally
effective human learning can be compared with current achieve-
ments in machine learning. Their proposal that such learning is
the result of “metacognitive processes” integrating model-based
and model-free learning is tantalizingly suggestive, pointing
toward novel ways of explaining intelligence. So, in a sympathetic
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spirit, we offer some suggestions. The first set concerns casting a
wider view of explananda and, hence, potential explanantia
regarding intelligence. The second set concerns the need to con-
front ethical concerns as AI research advances.

Lake et al.’s title speaks of “thinking like humans” but most of
the features discussed—use of intuitive physics, intuitive psychol-
ogy, and relying on “models”—are features of animal thinking as
well. Not just apes or mammals, but also birds and octopuses
and many other animals have obviously competent expectations
about causal links, the reactions of predators, prey and conspecifics,
and must have something like implicit models of the key
features in their worlds—their affordances, to use Gibson’s
(1979) term.

Birds build species-typical nests they have never seen built,
improving over time, and apes know a branch that is too weak
to hold them. We think the authors’ term intuitive physics
engine is valuable because unlike “folk physics,” which suggests
a theory, it highlights the fact that neither we, nor animals in
general, need to understand from the outset the basic predictive
machinery we are endowed with by natural selection. We
humans eventually bootstrap this behavioral competence into
reflective comprehension, something more like a theory and
something that is probably beyond language-less animals.

So, once sophisticated animal-level intelligence is reached,
there will remain the all-important step of bridging the gap to
human-level intelligence. Experiments suggest that human chil-
dren differ from chimpanzees primarily with respect to social
knowledge (Herrmann et al. 2007; 2010). Their unique forms of
imitation and readiness to learn from teachers suggest means by
which humans can accumulate and exploit an “informational com-
monwealth” (Kiraly et al. 2013; Sterelny 2012; 2013). This is most
likely part of the story of how humans can become as intelligent as
they do. But the missing part of that story remains internal mech-
anisms, which Lake et al. can help us focus on. Are the unique
social skills developing humans deploy because of enriched
models (“intuitive psychology” say), novel models (ones with prin-
ciples of social emulation and articulation), or more powerful abil-
ities to acquire and enrich models (learning-to-learn)? The answer
probably appeals to some combination. But we suggest that con-
necting peculiarly human ways of learning from others to Lake
et al.’s “learning-to-learn”mechanisms may be particularly fruitful
for fleshing out the latter – and ultimately illuminating to the
former.

The step up to human-style comprehension carries moral impli-
cations that are not mentioned in Lake et al.’s telling. Even the
most powerful of existing AIs are intelligent tools, not colleagues,
and whereas they can be epistemically authoritative (within limits
we need to characterize carefully), and hence will come to be
relied on more and more, they should not be granted moral
authority or responsibility because they do not have skin in the
game: they do not yet have interests, and simulated interests are
not enough. We are not saying that an AI could not be created
to have genuine interests, but that is down a very long road
(Dennett 2017; Hurley et al. 2011). Although some promising
current work suggests that genuine human consciousness
depends on a fundamental architecture that would require
having interests (Deacon 2012; Dennett 2013), long before that
day arrives, if it ever does, we will have AIs that can communicate
with natural language with their users (not collaborators).

How should we deal, ethically, with these pseudo-moral agents?
One idea, inspired in part by recent work on self-driving cars
(Pratt 2016), is that instead of letting them be autonomous, they
should be definitely subordinate: co-pilots that help but do not
assume responsibility for the results. We must never pass the
buck to the machines, and we should take steps now to ensure
that those who rely on them recognize that they are strictly
liable for any harm that results from decisions they make with
the help of their co-pilots. The studies by Dietvorst et al. (2015;
2016; see Hutson 2017) suggest that people not only tend to dis-
trust AIs, but also want to exert control, and hence responsibility,

over the results such AIs deliver. One way to encourage this is to
establish firm policies of disclosure of all known gaps and inabili-
ties in AIs (much like the long lists of side effects of medications).
Furthermore, we should adopt the requirement that such lan-
guage-using AIs must have an initiation period in which their
task is to tutor users, treating them as apprentices and not
giving any assistance until the user has established a clear level
of expertise. Such expertise would not be in the fine details of
the AIs’ information, which will surely outstrip any human
being’s knowledge, but in the limitations of the assistance on
offer and the responsibility that remains in the hands of the
user. Going forward, it is time for evaluations of the state of AI
to include consideration of such moral matters.

Evidence from machines that learn and think
like people

doi:10.1017/S0140525X17000139, e264

Kenneth D. Forbusa and Dedre Gentnerb
aDepartment of Computer Science, Northwestern University, Evanston, IL
60208; bDepartment of Psychology, Northwestern University, Evanston, IL
60208.
forbus@northwestern.edu gentner@northwestern.edu
http://www.cs.northwestern.edu/~forbus/
http://groups.psych.northwestern.edu/gentner/

Abstract: We agree with Lake et al.’s trenchant analysis of deep learning
systems, including that they are highly brittle and that they need vastly
more examples than do people. We also agree that human cognition
relies heavily on structured relational representations. However, we
differ in our analysis of human cognitive processing. We argue that (1)
analogical comparison processes are central to human cognition; and (2)
intuitive physical knowledge is captured by qualitative representations,
rather than quantitative simulations.

Capturing relational capacity. We agree with Lake et al. that
structured relational representations are essential for human cog-
nition. But that raises the question of how such representations
are acquired and used. There is abundant evidence from both
children and adults that structure mapping (Gentner 1983) is a
major route to acquiring and using knowledge. For example, phys-
icists asked to solve a novel problem spontaneously use analogies
to known systems (Clement 1988), and studies of working micro-
biology laboratories reveal that frequent use of analogies is a major
determinant of success (Dunbar 1995). In this respect, children
are indeed like little scientists. Analogical processes support child-
ren’s learning of physical science (Chen & Klahr 1999; Gentner
et al. 2016) and mathematics (Carey 2009; Mix 1999; Richland
& Simms 2015). Analogy processes pervade everyday reasoning
as well. People frequently draw inferences from analogous situa-
tions, sometimes without awareness of doing so (Day &
Gentner 2007).

Moreover, computational models of structure mapping’s
matching, retrieval, and generalization operations have been
used to simulate a wide range of phenomena, including geometric
analogies, transfer learning during problem solving, and moral
decision making (Forbus et al. 2017). Simulating humans on
these tasks requires between 10 and 100 relations per example.
This is a significant gap. Current distributed representations
have difficulty handling even one or two relations.

Even visual tasks, such as character recognition, are more com-
pactly represented by a network of relationships and objects than
by an array of pixels, which is why human visual systems compute
edges (Marr 1983; Palmer 1999). Further, the results from adver-
sarial training indicate that deep learning systems do not construct
human-like intermediate representations (Goodfellow et al. 2015;
see also target article). In contrast, there is evidence that a struc-
tured representation approach can provide human-like visual
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processing. For example, a model that combines analogy with
visual processing of relational representations has achieved
human-level performance on Raven’s Progressive Matrices test
(Lovett & Forbus 2017). Using analogy over relational representa-
tions may be a superior approach even for benchmark machine
learning tasks. For example, on the link plausibility task, in which
simple knowledge bases (Freebase, WordNet) are analyzed so
that the plausibility of new queries can be estimated (e.g., Is
Barack Obama Kenyan?), a combination of analogy and structured
logistic regression achieved state-of-the-art performance, with
orders of magnitude fewer training examples than distributed rep-
resentation systems (Liang & Forbus 2015). Because structure
mapping allows the use of relational representations, the system
also provided explanations, the lack of which is a significant draw-
back of distributed representations.
Causality and qualitative models. Lake et al. focus on Bayesian

techniques and Monte Carlo simulation as their alternative expla-
nation for how human cognition works. We agree that statistics are
important, but they are insufficient. Specifically, we argue that
analogy provides exactly the sort of rapid learning and reasoning
that human cognition exhibits. Analogy provides a means of trans-
ferring prior knowledge. For example, the Companion cognitive
architecture can use rich relational representations and analogy
to perform distant transfer. Learning games with a previously
learned analogous game led to more rapid learning than learning
without such an analog (Hinrichs & Forbus 2011). This and many
other experiments suggest that analogy not only can explain
human transfer learning, but also can provide new techniques
for machine learning.

Our second major claim is that qualitative representations – not
quantitative simulations – provide much of the material of our
conceptual structure, especially for reasoning about causality
(Forbus & Gentner 1997). Human intuitive knowledge concerns
relationships such as “the higher the heat, the quicker the water
will boil,” not the equations of heat flow. Qualitative representa-
tions provide symbolic, relational representations of continuous
properties and an account of causality organized around processes
of change. They enable commonsense inferences to be made with
little information, using qualitative mathematics. Decades of suc-
cessful models have been built for many aspects of intuitive
physics, and such models have also been used to ground scientific
and engineering reasoning (Forbus 2011). Moreover, qualitative
models can explain aspects of social reasoning, including blame
assignment (Tomai & Forbus 2008) and moral decision making
(Dehghani et al. 2008), suggesting that they are important in intu-
itive psychology as well.

We note two lines of qualitative reasoning results that are par-
ticularly challenging for simulation-based accounts. First, qualita-
tive representations provide a natural way to express some aspects
of natural language semantics, for example, “temperature
depends on heat” (McFate & Forbus 2016). This has enabled
Companions to learn causal models via reading natural language
texts, thereby improving their performance in a complex strategy
game (McFate et al. 2014). Second, qualitative representations
combined with analogy been used to model aspects of conceptual
change. For example, using a series of sketches to depict motion, a
Companion learns intuitive models of force. Further, it progresses
from simple to complex models in an order that corresponds to
the order found in children (Friedman et al. 2010). It is hard to
see how a Monte Carlo simulation approach would capture
either the semantics of language about processes or the findings
of the conceptual change literature.

Although we differ from Lake et al. in our view of intuitive
physics and the role of analogical processing, we agree that
rapid computation over structured representations is a major
feature of human cognition. Today’s deep learning systems are
interesting for certain applications, but we doubt that they are
on a direct path to understanding human cognition.

What can the brain teach us about building
artificial intelligence?
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Abstract: Lake et al. offer a timely critique on the recent accomplishments
in artificial intelligence from the vantage point of human intelligence and
provide insightful suggestions about research directions for building more
human-like intelligence. Because we agree with most of the points they
raised, here we offer a few points that are complementary.

The fact that “airplanes do not flap their wings” is often offered as
a reason for not looking to biology for artificial intelligence (AI)
insights. This is ironic because the idea that flapping is not
required to fly, could easily have originated from observing
eagles soaring on thermals. The comic strip in Figure 1 offers a
humorous take on the current debate in AI. A flight researcher
who does not take inspiration from birds defines an objective
function for flight and ends up creating a catapult. Clearly, a cat-
apult is an extremely useful invention. It can propel objects
through the air, and in some cases, it can even be a better alterna-
tive to flying. Just as researchers who are interested in building
“real flight” would be well advised to pay close attention to the dif-
ferences between catapult flight and bird flight, researchers who
are interested in building “human-like intelligence” or artificial
general intelligence (AGI) would be well advised to pay attention
to the differences between the recent successes of deep learning
and human intelligence. We believe the target article delivers on
that front, and we agree with many of its conclusions.
Better universal algorithms or more inductive biases? Learning

and inference are instances of optimization algorithms. If we could
derive a universal optimization algorithm that works well for all
data, the learning and inference problems for building AGI
would be solved as well. Researchers who work on assumption-
free algorithms are pushing the frontier on this question.
Exploiting inductive biases and the structure of the AI problem

makes learning and inference more efficient. Our brains show
remarkable abilities to perform a wide variety of tasks on data
that look very different. What if all of these different tasks and
data have underlying similarities? Our view is that biological evo-
lution, by trial and error, figured out a set of inductive biases that
work well for learning in this world, and the human brain’s effi-
ciency and robustness derive from these biases. Lake et al. note
that many researchers hope to overcome the need for inductive
biases by bringing biological evolution into the fold of the learning
algorithms. We point out that biological evolution had the advan-
tage of using building blocks (proteins, cells) that obeyed the laws
of the physics of the world in which these organisms were evolving
to excel. In this way, assumptions about the world were implicitly
baked into the representations that evolution used. Trying to
evolve intelligence without assumptions might therefore be a sig-
nificantly harder problem than biological evolution. AGI has one
existence proof – our brains. Biological evolution is not an exis-
tence proof for artificial universal intelligence.
At the same time, we think a research agenda for building AGI

could be synergistic with the quest for better universal algorithms.
Our strategy is to build systems that strongly exploit inductive
biases, while keeping open the possibility that some of those
assumptions can be relaxed by advances in optimization
algorithms.
What kind of generative model is the brain? Neuroscience can

help, not just cognitive science. Lake et al. offered several com-
pelling arguments for using cognitive science insights. In addition
to cognitive science, neuroscience data can be examined to obtain
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clues about what kind of generative model the brain implements
and how this model differs frommodels being developed in the AI
community.

For instance, spatial lateral connections between oriented
features are a predominant feature of the visual cortex and are
known to play a role in enforcing contour continuity. However,
lateral connections are largely ignored in current generative
models (Lee 2015). Another example is the factorization of
contours and surfaces. Evidence indicates that contours and sur-
faces are represented in a factored manner in the visual cortex
(Zhou et al. 2000), potentially giving rise to the ability of
humans to imagine and recognize objects with surface
appearances that are not prototypical – like a blanket made of
bananas or a banana made of blankets. Similarly, studies on top-
down attention demonstrate the ability of the visual cortex to
separate out objects even when they are highly overlapping and
transparent (Cohen & Tong 2015). These are just a handful of
examples from the vast repository of information on cortical
representations and inference dynamics, all of which could be
used to build AGI.
The conundrum of “human-level performance”: Benchmarks

for AGI.We emphasize the meaninglessness of “human-level per-
formance,” as reported in mainstream AI publications, and then
use as a yardstick to measure our progress toward AGI. Take
the case of the DeepQ network playing “breakout” at a “human
level” (Mnih et al. 2015). We found that even simple changes to
the visual environment (as insignificant as changing the bright-
ness) dramatically and adversely affect the performance of the
algorithm, whereas humans are not affected by such perturbations
at all. At this point, it should be well accepted that almost any nar-
rowly defined task can be “solved” with brute force data and com-
putation and that any use of “human-level” as a comparison should
be reserved for benchmarks that adhere to the following princi-
ples: (1) learning from few examples, (2) generalizing to distribu-
tions that are different from the training set, and (3) generalizing
to new queries (for generative models) and new tasks (in the case
of agents interacting with an environment).
Message passing-based algorithms for probabilistic models.

Although the article makes good arguments in favor of structured
probabilistic models, it is surprising that the authors mentioned only
Markov chain Monte Carlo (MCMC) as the primary tool for infer-
ence. Although MCMC has asymptotic guarantees, the speed of
inference in many cortical areas is more consistent with message
passing (MP)-like algorithms, which arrive at maximum a posteriori
solutions using only local computations. Despite lacking theoretical
guarantees, MP has been known to work well in many practical
cases, and recently we showed that it can be used for learning of
compositional features (Lázaro-Gredilla et al. 2016). There is
growing evidence for the use of MP-like inference in cortical areas
(Bastos et al. 2012; George & Hawkins 2009), and MP could offer a
happy medium where inference is fast, as in neural networks,
while retaining MCMC’s capability for answering arbitrary queries
on the model.

Building brains that communicate like
machines

doi:10.1017/S0140525X17000152, e266
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Abstract: Reverse engineering human cognitive processes may improve
artificial intelligence, but this approach implies we have little to learn
regarding brains from human-engineered systems. On the contrary,
engineered technologies of dynamic network communication have many
features that highlight analogous, poorly understood, or ignored aspects
of brain and cognitive function, and mechanisms fundamental to these
technologies can be usefully investigated in brains.

Lake et al. cogently argue that artificial intelligence (AI) machines
would benefit from more “reverse engineering” of the human brain
and its cognitive systems. However, it may be useful to invert this
logic and, in particular, to use basic principles of machine commu-
nication to provide a menu of analogies and, perhaps, mechanisms
that could be investigated in human brains and cognition.

We should consider that one of the missing components in deep
learning models of cognition – and of most large-scale models of
brain and cognitive function – is an understanding of how signals
are selectively routed to different destinations in brains
(Graham 2014; Graham and Rockmore 2011).

Given that brain cells themselves are not motile enough to
selectively deliver messages to their destination (unlike cells in
the immune system, for example), there must be a routing proto-
col of some kind in neural systems to accomplish this. This proto-
col should be relatively fixed in a given species and lineage, and
have the ability to be scaled up over development and evolution.

Turning to machine communication as a model, each general
technological strategy has its advantages and ideal operating con-
ditions (grossly summarized here for brevity):

Circuit switched (traditional landline telephony): high
throughput of dense real-time signals

Message switched (postal mail): multiplexed, verifiable,
compact addresses

Packet switched (Internet): dynamic routing, sparse connec-
tivity, fault tolerance, scalability

We should expect that brains adopt analogous – if not homolo-
gous – solutions when conditions require. For example, we would
expect something like circuit switching in somatosensory and
motor output systems, which tend to require dense, real-time
communication. However, we would expect a dynamic, possibly
packet-switched system in the visual system, given limited
windows of attention and acuity and the need for spatial remap-
ping, selectivity, and invariance (Olshausen et al. 1993; Poggio
1984; Wiskott 2006; Wiskott and von der Malsburg 1996).

Figure 1 (George). A humorous take on the current debate in artificial intelligence.

Commentary/Lake et al.: Building machines that learn and think like people

BEHAVIORAL AND BRAIN SCIENCES, 40 (2017) 37
https://doi.org/10.1017/S0140525X16001837
Downloaded from https://www.cambridge.org/core. Harvard University, on 11 Nov 2017 at 04:55:27, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

mailto:graham@hws.edu
http://people.hws.edu/graham
https://doi.org/10.1017/S0140525X16001837
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


There couldbehybrid routing architectures atwork in brains and
several that act concurrently (consider by way of analogy that it was
possible until recently for a single human communicator to use the
three switching protocols described above simultaneously). Indi-
vidual components of a given routing system could also be selec-
tively employed in brains. For example, Fornito et al. (2016)
proposed a mechanism of deflection routing (which is used to
reroute signals around damaged or congested nodes), to explain
changes in functional connectivity following focal lesions.

Nevertheless, functional demands in human cognitive systems
appear to require a dynamic mechanism that could resemble a
packet-switched system (Schlegel et al. 2015). As Lake et al. note,
the abilities of brains to (1) grow and develop over time and (2) flex-
ibly, creatively, and quickly adapt to new events are essential to their
function. Packet switching as a general strategy may be more com-
patible with these requirements than alternative architectures.

In terms of growth, the number of Internet hosts – each of which
can potentially communicate with any other within milliseconds –
has increased without major disruption over a few decades, to
surpass thenumberofneurons in the cortex ofmanyprimates includ-
ing the macaque (Fasolo 2011). This growth has also been much
faster than the growth of the message-switched U.S. Postal Service
(Giambene 2005; U.S. Postal Service 2016). Cortical neurons, like
Internet hosts, are separated by relatively short network distances,
and have the potential for communication along many possible
routes within milliseconds. Communication principles that allowed
for the rapid rise and sustained development of the packet-switched
Internet may provide insights relevant to understanding how evolu-
tion and development conspire to generate intelligent brains.

In terms of adapting quickly to new situations, Lake et al. point
out that a fully trained artificial neural network generally cannot
take on new or different tasks without substantial retraining and
reconfiguration. Perhaps this is not so much a problem of compu-
tation, but rather one of routing: in neural networks, one com-
monly employs a fixed routing system, all-to-all connectivity
between layers, and feedback only between adjacent layers.
These features may make such systems well suited to learning a
particular input space, but ill suited to flexible processing and effi-
cient handling of new circumstances. Although a packet-switched
routing protocol would not necessarily improve current deep
learning systems, it may be better suited to modeling approaches
that more closely approximate cortical networks’ structure and
function. Unlike most deep learning networks, the brain appears
to largely show dynamic routing, sparse connectivity, and feed-
back among many hierarchical levels. Including such features in
computational models may better approximate and explain biolog-
ical function, which could in turn spawn better AI.

Progress in understanding routing in the brain is already being
made through simulations of dynamic signal flow on brain-like net-
works and in studies of brains themselves. Mišic ́ et al. (2014) have
investigated howMarkovian queuing networks (a form of message-
switched architecture) with primate brain-like connectivity could
take advantage of small-world and rich-club topologies. Comple-
menting this work, Sizemore et al. (2016) have shown that the
abundance of weakly interconnected brain regions suggests a
prominent role for parallel processing, which would be well
suited to dynamic routing. Using algebraic topology, Sizemore
et al. (2016) provide evidence that human brains show loops of
converging or diverging signal flow (see also Granger 2006). In
terms of neurophysiology, Briggs and Usrey (2007) have shown
that corticothalamic networks can pass signals in a loop in just 37
milliseconds. Such rapid feedback is consistent with the notion
that corticothalamic signals could function like the “ack” (acknowl-
edgment) system used on the Internet to ensure packet delivery
(Graham 2014; Graham and Rockmore 2011).

In conclusion, it is suggested that an additional “core ingredient
of human intelligence” is dynamic information routing of a kind
that may mirror the packet-switched Internet, and cognitive scien-
tists and computer engineers alike should be encouraged to inves-
tigate this possibility.

The importance of motivation and emotion
for explaining human cognition
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Abstract: Lake et al. discuss building blocks of human intelligence that are
quite different from those of artificial intelligence. We argue that a theory
of human intelligence has to incorporate human motivations and emotions.
The interaction of motivation, emotion, and cognition is the real strength of
human intelligence and distinguishes it from artificial intelligence.

Lake et al. applaud the advances made in artificial intelligence
(AI), but argue that future research should focus on the most
impressive form of intelligence, namely, natural/human intelli-
gence. In brief, the authors argue that AI does not resemble
human intelligence. The authors then discuss the building
blocks of human intelligence, for example, developmental start-
up software including intuitive physics and intuitive psychology,
and learning as a process of model building based on composition-
ality and causality, and they stress that “people never start
completely from scratch” (sect. 3.2, last para.)
We argue that a view of human intelligence that focuses solely

on cognitive factors misses crucial aspects of human intelligence.
In addition to cognition, a more complete view of human intelli-
gence must incorporate motivation and emotion, a viewpoint
already stated by Simon: “Since in actual human behavior
motive and emotion are major influences on the course of cogni-
tive behavior, a general theory of thinking and problem solving
must incorporate such influences” (Simon 1967, p. 29; see also
Dörner & Güss 2013).
Incorporating motivation (e.g., Maslow 1954; Sun 2016) in

computational models of human intelligence can explain where
goals come from. Namely, goals come from specific needs, for
example, from existential needs such as hunger or pain avoidance;
sexual needs; the social need for affiliation, to be together with
other people; the need for certainty related to unpredictability
of the environment; and the need for competence related to inef-
fective coping with problems (Dörner 2001; Dörner & Güss
2013). Motivation can explain why a certain plan has priority
and why it is executed, or why a certain action is stopped. Lake
et al. acknowledge the role of motivation in one short paragraph
when they state: “There may also be an intrinsic drive to reduce
uncertainty and construct models of the environment” (sect.
4.3.2, para. 4). This is right. However, what is almost more impor-
tant is the need for competence, which drives people to explore
new environments. This is also called diversive exploration
(e.g., Berlyne 1966). Without diversive exploration, mental
models could not grow, because people would not seek new
experiences (i.e., seek uncertainty to reduce uncertainty
afterward).
Human emotion is probably the biggest difference between

people and AI machines. Incorporating emotion into computa-
tional models of human intelligence can explain some aspects
that the authors discuss as “deep learning” and “intuitive
psychology.” Emotions are shortcuts. Emotions are the frame-
work in which cognition happens (e.g., Bach 2009; Dörner
2001). For example, not reaching an important goal can make a
person angry. Anger then characterizes a specific form of
perception, planning, decision making, and behavior. Anger
means high activation, quick and rough perception, little planning
and deliberation, and making a quick choice. Emotions modulate
human behavior; the how of the behavior is determined by the
emotions.

Commentary/Lake et al.: Building machines that learn and think like people

38 BEHAVIORAL AND BRAIN SCIENCES, 40 (2017)
https://doi.org/10.1017/S0140525X16001837
Downloaded from https://www.cambridge.org/core. Harvard University, on 11 Nov 2017 at 04:55:27, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

mailto:dguess@unf.edu
mailto:dietrich.doerner@uni-bamberg.de
https://www.unf.edu/bio/N00174812
https://www.uni-bamberg.de/trac/senior-researchers/doerner
https://doi.org/10.1017/S0140525X16001837
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


In other situations, emotions can trigger certain cognitive pro-
cesses. In some problem situations, for example, a person would
get an “uneasy” feeling when all solution attempts do not result in
a solution. This uneasiness can be the start of metacognition. The
person will start reflecting on his or her own thinking: “What did I
do wrong? What new solution could I try?” In this sense, human
intelligence controls itself, reprogramming its own programs.

And what is the function of emotions? The function of emotions
is to adjust behavior to the demands of the current situation.
Perhaps emotions can partly explain why humans learn “rich
models from sparse data” (sect. 4.3, para. 1), as the authors state.
A child observing his or her father smiling and happy when watch-
ing soccer does not need many trials to come to the conclusion that
soccer must be something important that brings joy.

In brief, a theory or a computational model of human intelli-
gence that focuses solely on cognition is not a real theory of
human intelligence. As the authors state, “Our machines need
to confront the kinds of tasks that human learners do.” This
means going beyond the “simple” Atari game Frostbite. In Frost-
bite, the goal was well defined (build an igloo). The operations and
obstacles were known (go over ice floes without falling in the
water and without being hit by objects/animals). The more
complex, dynamic, and “real” such tasks become – as has been
studied in the field of Complex Problem Solving or Dynamic
Decision Making (e.g., Funke 2010; Güss Tuason & Gerhard
2010), the more human behavior will show motivational, cogni-
tive, and emotional processes in their interaction. This interaction
of motivation, cognition, and emotion, is the real strength of
human intelligence compared with artificial intelligence.

Building on prior knowledge without
building it in
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Abstract: Lake et al. propose that people rely on “start-up software,”
“causal models,” and “intuitive theories” built using compositional
representations to learn new tasks more efficiently than some deep neural
network models. We highlight the many drawbacks of a commitment to
compositional representations and describe our continuing effort to
explore how the ability to build on prior knowledge and to learn new
tasks efficiently could arise through learning in deep neural networks.

Lake et al. have laid out a perspective that builds on earlier work
within the structured/explicit probabilistic cognitive modeling
framework. They have identified several ways in which humans
with existing domain knowledge can quickly acquire new
domain knowledge and deploy their knowledge flexibly. Lake
et al. also make the argument that the key to understanding
these important human abilities is the use of “start-up software,”
“causal models,” and “intuitive theories” that rely on a composi-
tional knowledge representation of the kind advocated by, for
example, Fodor and Pylyshyn (1988).

We agree that humans can often acquire new domain knowl-
edge quickly and can often generalize this knowledge to new
examples and use it in flexible ways. However, we believe that
human knowledge acquisition and generalization can be under-
stood without building in a commitment to domain-specific
knowledge structures or compositional knowledge representation.
We therefore expect that continuing our longstanding effort to

understand how human abilities can emerge without assuming
special start-up software will be most helpful in explicating the
nature of human cognition.

The explicit compositional approach of Lake et al. is limited
because it downplays the often complex interactions between the
multitude of contextual variables in the task settings in which the
representation is used. Avoiding a commitment to symbolic com-
positionality increases one’s flexibility to respond to sometimes
subtle influences of context and allows for the possibility of more
robust learning across contexts. The recent startling improvements
in computer vision (Krizhevsky et al. 2012), machine translation
(Johnson et al. 2016), and question answering (Weston et al.
2015a) were possible, precisely because they avoided these limita-
tions by foregoing symbolic compositionality altogether.

Although Lake et al. seek to take the computational-level “high
ground” (Marr 1982), their representational commitments also
constrain the inferential procedures on which they rely. Their
modeling work relies on the use of combinatorially explosive
search algorithms. This approach can be effective in a specific
limited domain (such as Omniglot), precisely because the
startup software can be hand selected by the modeler to match
the specific requirements of that specific domain. However,
their approach avoids the hard question of where this startup soft-
ware came from. Appeals to evolution, although they may be plau-
sible for some tasks, seem out of place in domains of recent
human invention such as character-based writing systems. Also,
because many naturalistic learning contexts are far more open
ended, combinatorial search is not a practical algorithmic strategy.
Here, the gradient-based methods of neural networks have
proven far more effective (see citations above).

We believe learning research will be better off taking a domain
general approach wherein the startup software used when one
encounters a task as an experienced adult human learner is the
experience and prior knowledge acquired through a domain
general learning process.

Most current deep learning models, however, do not build on
prior experience. For example, the network in Mnih et al.
(2013) that learns Atari games was trained from scratch on each
new problem encountered. This is clearly not the same as
human learning, which builds cumulatively on prior learning.
Humans learn complex skills in a domain after previously learning
simpler ones, gradually building structured knowledge as they
learn. In games like Chess or Go, human learners can receive
feedback not only on the outcome of an entire game – did the
learner succeed or fail? – but also on individual steps in an
action sequence. This sort of richer feedback can easily be incor-
porated into neural networks, and doing so can enhance learning
(Gülçehre and Bengio 2016).

An important direction is to explore how humans learn from a
rich ensemble of multiple, partially related tasks. The steps of a
sequential task can be seen as mutually supporting subtasks, and
a skill, such as playing chess can be seen as a broad set of related
tasks beyond selecting moves: predicting the opponent’s moves,
explaining positions, and so on. One reason humans might be
able to learn from fewer games than a neural network trained on
playing chess as a single integrated task is that humans receive feed-
back on many of these tasks throughout learning, and this both
allows more feedback from a single experience (e.g., both an emo-
tional reward for capturing a piece and an explanation of the tactic
from a teacher) and constrains the representations that can emerge
(they must support all of these related subtasks). Such constraints
amount to extracting shared principles that allow for accelerated
learning when encountering other tasks that use them. One
example is training a recurrent network on translation tasks
between multiple language pairs, which can lead to zero-shot (no
training necessary) generalization, to translation between unseen
language pairs (Johnson et al. 2016). Just as neural networks can
exhibit rulelike behavior without building in explicit rules, we
believe that they may not require a compositional, explicitly sym-
bolic form of reasoning to produce human-like behavior.
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Indeed, recent work on meta-learning (or learning-to-learn) in
deep learning models provides a base for making good on this
claim (Bartunov and Vetrov 2016; Santoro et al. 2016; Vinyals
et al. 2016). The appearance of rapid learning (e.g., one-shot clas-
sification) is explained as slow, gradient-based learning on a meta-
problem (e.g., repeatedly solving one-shot classification problems
drawn from a distribution). Although the meta-tasks used in these
first attempts only roughly reflect the training environment that
humans face (we probably do not face explicit one-shot classifica-
tion problems that frequently), the same approach could be used
with meta-tasks that are extremely common as a result of sociocul-
tural conventions, such as “follow written instructions,” “incorpo-
rate comments from a teacher,” and “give a convincing
explanation of your behavior.”

Fully addressing the challenges Lake et al. pose – rather than
building in compositional knowledge structures that will ulti-
mately prove limiting – is a long-term challenge for the science
of learning. We expect meeting this challenge to take time, but
that the time and effort will be well spent. We would be
pleased if Lake et al. would join us in this effort. Their participa-
tion would help accelerate progress toward a fuller understanding
of how advanced human cognitive abilities arise when humans are
immersed in the richly structured learning environments that
have arisen in human cultures and their educational systems.

Building machines that adapt and compute
like brains
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Abstract: Buildingmachines that learn and think like humans is essential not
only for cognitive science, but also for computational neuroscience, whose
ultimate goal is to understand how cognition is implemented in biological
brains. A new cognitive computational neuroscience should build
cognitive-level and neural-level models, understand their relationships, and
test both types of models with both brain and behavioral data.

Lake et al.’s timely article puts the recent exciting advances with
neural network models in perspective, and usefully highlights the
aspects of human learning and thinking that these models do not
yet capture. Deep convolutional neural networks have conquered
pattern recognition. They can rapidly recognize objects as humans
can, and their internal representations are remarkably similar to
those of the human ventral stream (Eickenberg et al. 2016;
Güçlü & van Gerven 2015; Khaligh-Razavi & Kriegeskorte 2014;
Yamins et al. 2014). However, even at a glance, we understand
visual scenes much more deeply than current models. We bring
complex knowledge and dynamic models of the world to bear on
the sensory data. This enables us to infer past causes and future
implications, with a focus on what matters to our behavioral
success. How can we understand these processes mechanistically?

The top-down approach of cognitive science is one required
ingredient. Human behavioral researchers have an important
role in defining the key challenges for model engineering by intro-
ducing tasks where humans still outperform the best models.
These tasks serve as benchmarks, enabling model builders to
measure progress and compare competing approaches. Cognitive
science introduced task-performing computational models of cog-
nition. Task-performing models are also essential for neuroscience,
whose theories cannot deliver explicit accounts of intelligence
without them (Eliasmith & Trujillo 2014). The current construc-
tive competition between modeling at the cognitive level and mod-
eling at the neural level is inspiring and refreshing. We need both

levels of description to understand, and to be able to invent, intel-
ligent machines and computational theories of human intelligence.
Pattern recognition was a natural first step toward understand-

ing human intelligence. This essential component mechanism has
been conquered by taking inspiration from the brain. Machines
could not do core object recognition (DiCarlo et al. 2012) until
a few years ago (Krizhevsky et al. 2012). Brain-inspired neural net-
works gave us machines that can recognize objects robustly under
natural viewing conditions. As we move toward higher cognitive
functions, we might expect that it will continue to prove fruitful
to think about cognition in the context of its implementation in
the brain. To understand how humans learn and think, we need
to understand how brains adapt and compute.
A neural network model may require more time to train than

humans. This reflects the fact that current models learn from
scratch. Cognitive models, like Bayesian program learning (Lake
et al. 2015a), rely more strongly on built-in knowledge. Their
inferences require realistically small amounts of data, but unreal-
istically large amounts of computation, and, as a result, their high-
level feats of cognition do not always scale to complex real-world
challenges. To explain human cognition, we must care about effi-
cient implementation and scalability, in addition to the goals of
computation. Studying the brain can help us understand the rep-
resentations and dynamics that support the efficient implementa-
tion of cognition (e.g., Aitchison & Lengyel 2016).
The brain seamlessly merges bottom-up discriminative and top-

down generative processes into a rapidly converging process of
inference that combines the advantages of both: the rapidity of dis-
criminative inference and the flexibility and precision of generative
inference (Yildirim et al. 2015). The brain’s inference process
appears to involve recurrent cycles of message passing at multiple
scales, from local interactions within an area to long-range interac-
tions between higher- and lower-level representations.
As long as major components of human intelligence are out of

the reach of machines, we are obviously far from understanding
the human brain and cognition. As more and more component
tasks are conquered by machines, the question of whether they
do it “like humans” will come to the fore. How should we define
“human-like” learning and thinking? In cognitive science, the
empirical support for models comes from behavioral data. A
model must not only reach human levels of task performance,
but also predict detailed patterns of behavioral responses (e.g.,
errors and reaction times on particular instances of a task).
However, humans are biological organisms, and so “human-
like” cognition should also involve the same brain representa-
tions and algorithms that the human brain employs. A good
model should somehow match the brain’s dynamics of informa-
tion processing.
Measuring the similarity of processing dynamics between a

model and a brain has to rely on summary statistics of the activity
and may be equally possible for neural and cognitive models. For
neural network models, a direct comparison may seem more trac-
table. We might map the units of the model onto neurons in the
brain. However, even two biological brains of the same species
will have different numbers of neurons, and any given neuron
may be idiosyncratically specialized, and may not have an exact
match in the other brain. For either a neural or a cognitive
model, we may find ways to compare the internal model represen-
tations to representations in brains (e.g., Kriegeskorte & Diedrich-
sen 2016; Kriegeskorte et al. 2008). For example, one could test
whether the visual representation of characters in high-level
visual regions reflects the similarity predicted by the generative
model of character perception proposed by Lake et al. (2015a).
The current advances in artificial intelligence re-invigorate the

interaction between cognitive science and computational neurosci-
ence. We hope that the two can come together and combine their
empirical and theoretical constraints, testing cognitive and neural
models with brain and behavioral data. An integrated cognitive com-
putational neuroscience might have a shot at the task that seemed
impossible a few years ago: understanding how the brain works.
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Will human-like machines make human-like
mistakes?
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Abstract: Although we agree with Lake et al.’s central argument, there are
numerous flaws in the way people use causal models. Our models are often
incorrect, resistant to correction, and applied inappropriately to new
situations. These deficiencies are pervasive and have real-world
consequences. Developers of machines with similar capacities should
proceed with caution.

Lake et al. present a compelling case for why causal model-build-
ing is a key component of human learning, and we agree that
beliefs about causal relations need to be captured by any convinc-
ingly human-like approach to artificial intelligence (AI). Knowl-
edge of physical relations between objects and psychological
relations between agents brings huge advantages. It provides a
wealth of transferable information that allows humans to quickly
apprehend a new situation. As such, combining the computational
power of deep-neural networks with model-building capacities
could indeed bring solutions to some of the world’s most pressing
problems. However, as advantageous as causal model-building
might be, it also brings problems that can lead to flawed learning
and reasoning. We therefore ask, would making machines
“human-like” in their development of causal models also make
those systems flawed in human-like ways?

Applying a causal model, especially one based on intuitive under-
standing, is essentially a gamble. Even though we often feel like we
understand the physical and psychological relations surrounding us,
our causal knowledge is almost always incomplete and sometimes
completely wrong (Rozenblit & Keil 2002). These errors may be
an inevitable part of the learning process by which models are
updated based on experience. However, there are many examples
in which incorrect causal models persist, despite strong counterevi-
dence. Take the supposed link between immunisation and autism.
Despite the science and the author of the original vaccine-autism
connection being widely and publicly discredited, many continue
to believe that immunisation increases the risk of autism and their
refusal to immunise has decreased thepopulation’s immunity to pre-
ventable diseases (Larson et al. 2011; Silverman & Hendrix 2015).

Failures to revise false causal models are far from rare. In fact,
they seem to be an inherent part of human reasoning. Lewandow-
sky and colleagues (2012) identify numerous factors that increase
resistance to belief revision, including several that are societal-
level (e.g., biased exposure to information) or motivational (e.g.,
vested interest in retaining a false belief). Notwithstanding the sig-
nificance of these factors (machines too can be influenced by
biases in data availability and the motives of their human develop-
ers), it is noteworthy that people still show resistance to updating
their beliefs even when these sources of bias are removed, espe-
cially when new information conflicts with the existing causal
model (Taylor & Ahn 2012).

Flawed causal models can also be based on confusions that are
less easily traced to specific falsehoods. Well-educated adults reg-
ularly confuse basic ontological categories (Chi et al. 1994), dis-
tinctions between mental, biological, and physical phenomena
that are fundamental to our models of the world and typically
acquired in childhood (Carey 2011). A common example is the
belief that physical energy possesses psychological desires and
intentions – a belief that even some physics students appear to
endorse (Svedholm & Lindeman 2013). These errors affect both
our causal beliefs and our choices. Ontological confusions have

been linked to people’s acceptance of alternative medicine, poten-
tially leading an individual to choose an ineffective treatment over
evidence-based treatments, sometimes at extreme personal risk
(Lindeman 2011).

Causal models, especially those that affect beliefs about treat-
ment efficacy, can even influence physiological responses to
medical treatments. In this case, known as the placebo effect,
beliefs regarding a treatment can modulate the treatment
response, positively or negatively, independently of whether a
genuine treatment is delivered (Colagiuri et al. 2015). The
placebo effect is caused by a combination of expectations driven
by causal beliefs and associative learning mechanisms that are
more analogous to the operations of simple neural networks. Asso-
ciative learning algorithms, of the kind often used in neural net-
works, are surprisingly susceptible to illusory correlations, for
example, when a treatment actually has no effect on a medical
outcome (Matute et al. 2015). Successfully integrating two differ-
ent mechanisms for knowledge generation (neural networks and
causal models), when each individually may be prone to bias, is
an interesting problem, not unlike the challenge of understanding
the nature of human learning. Higher-level beliefs interact in
numerous ways with basic learning and memory mechanisms,
and the precise nature and consequences of these interactions
remain unknown (Thorwart & Livesey 2016).

Even when humans hold an appropriate causal model, they often
fail to use it.When facing a new problem, humans often erroneously
draw upon models that share superficial properties with the current
problem, rather than those that sharekey structural relations (Gick&
Holyoak 1980). Even professional management consultants, whose
job it is to use their prior experiences to help businesses solve
novel problems, often fail to retrieve the most relevant prior experi-
ence to the newproblem (Gentner et al. 2009). It is unclear whether
an artificial system that possesses mental modelling capabilities
would suffer the same limitations. On the one hand, they may be
caused by human processing limitations. For example, effective
model-based decision-making is associated with capacities for learn-
ing and transferring abstract rules (Donet al. 2016), and for cognitive
control (Otto et al. 2015), which may potentially be far more power-
ful in future AI systems.On the other hand, the power of neural net-
works lies precisely in their ability to encode rich featural and
contextual information. Given that experience with particular
causal relations is likely to correlate with experience of more super-
ficial features, a more powerful AI model generator may still suffer
similar problems when faced with the difficult decision of which
model to apply to a new situation.

Would human-like AI suffer human-like flaws, whereby recalci-
trant causal models lead to persistence with poor solutions, or
novel problems activate inappropriate causal models? Developers
of AI systems should proceed with caution, as these properties of
human causal modelling produce pervasive biases, and may be
symptomatic of the use of mental models rather than the limita-
tions on human cognition. Monitoring the degree to which AI
systems show the same flaws as humans will be invaluable for
shedding light on why human cognition is the way it is and, it is
hoped, will offer some solutions to help us change our minds
when we desperately need to.

Benefits of embodiment

doi:10.1017/S0140525X17000206, e271
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Abstract: Physical competence is acquired through animals’ embodied
interaction with their physical environments, and psychological
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competence is acquired through situated interaction with other agents.
The acquired neural models essential to these competencies are implicit
and permit more fluent and nuanced behavior than explicit models. The
challenge is to understand how such models are acquired and used to
control behavior.

The target article argues for the importance of “developmental
start-up software” (sects. 4.1 and 5.1), but neglects the nature of
that software and how it is acquired. The embodied interaction
of an organism with its environment, provides a foundation for
its understanding of “intuitive physics” and physical causality.
Animal nervous systems control their complex physical bodies in
their complex physical environments in real time, and this compe-
tence is a consequence of innate developmental processes and,
especially in more complex species, subsequent developmental
processes that fine-tune neural control, such as prenatal and post-
natal “motor babbling” (non-goal-directed motor activity) (Meltz-
off & Moore 1997). Through these developmental processes,
animals acquire a non-conceptual understanding of their bodies
and physical environments, which provides a foundation for
higher-order imaginative and conceptual physical understanding.

Animals acquire physical competence through interaction with
their environments (both phylogenetic through evolution and
ontogenetic through development), and robots can acquire phys-
ical competence similarly, for example, through motor babbling
(Mahoor et al. 2016), and this is one goal of epigenetic and devel-
opmental robotics (Lungarella et al. 2003). In principle, compara-
ble competence can be acquired by simulated physical agents
behaving in simulated physical environments, but it is difficult
to develop sufficiently accurate physical simulations so that
agents acquire genuine physical competence (i.e., competence
in the real world, not some simulated world). It should be possible
to transfer physical competence from one agent to others that are
sufficiently similar physically, but the tight coupling of body and
nervous system suggests that physical competence will remain
tied to a “form of life.”

Animals are said to be situated because cognition primarily
serves behavior, and behavior is always contextual. For most
animals, situatedness involves interaction with other animals; it
conditions the goals, motivations, and other factors that are caus-
ative in an animal’s own behavior, and can be projected onto other
agents, providing a foundation for “intuitive psychology.” Psycho-
logical competence is grounded in the fact that animals are situ-
ated physical agents with interests, desires, goals, fears, and so
on. Therefore, they have a basis for non-conceptual understanding
of other agents (through imagination, mental simulation, projec-
tion, mirror neurons, etc.). In particular, they can project their
experience of psychological causality onto other animals. This psy-
chological competence is acquired through phylogenetic and
ontogenetic adaptation.

The problem hindering AI systems from acquiring psychologi-
cal competence is that most artificial agents do not have interests,
desires, goals, fears, and so on that they can project onto others or
use as a basis for mental simulation. For example, computer vision
systems do not “care” in any significant way about the images they
process. Because we can be injured and die, because we can feel
fear and pain, we perceive immediately (i.e., without the media-
tion of conceptual thought) the significance of a man being
dragged by a horse, or a family fleeing a disaster (Lake et al.,
Fig. 6). Certainly, through artificial evolution and reinforcement
learning, we can train artificial agents to interact competently
with other (real or simulated) agents, but because they are a dif-
ferent form of life, it will be difficult to give them the same
cares and concerns as we have and that are relevant to many of
our practical applications.

The target article does not directly address the important dis-
tinction between explicit and implicit models. Explicit models
are the sort scientists construct, generally in terms of symbolic
(lexical-level) variables; we expect to be able to understand explicit
models conceptually, to communicate them in language, and to
reason about them discursively (including mathematically).

Implicit models are the sort that neural networks construct, gen-
erally in terms of large numbers of sub-symbolic variables,
densely interrelated. Implicit models often allow an approximate
emergent symbolic description, but such descriptions typically
capture only the largest effects and interrelationships implicit in
the sub-symbolic model. Therefore, they may lack the subtlety
and context sensitivity of implicit models, which is why it is diffi-
cult, if not impossible, to capture expert behavior in explicit
rules (Dreyfus & Dreyfus 1986). Therefore, terms such as “intui-
tive physics,” “intuitive psychology,” and “theory of mind” are mis-
leading because they connote explicit models, but implicit models
(especially those acquired by virtue of embodiment and situated-
ness) are more likely to be relevant to the sorts of learning dis-
cussed in the target article. It is less misleading to refer to
competencies, because humans and other animals can use their
physical and psychological understanding to behave competently
even in the absence of explicit models.
The target article shows the importance of hierarchical compo-

sitionality to the physical competence of humans and other animals
(sect. 4.2.1); therefore, it is essential to understand how hierarchi-
cal structure is represented in implicit models. Recognizing the
centrality of embodiment can help, for our bodies are hierarchi-
cally articulated and our physical environments are hierarchically
structured. The motor affordances of our bodies provide a basis
for non-conceptual understanding of the hierarchical structure of
objects and actions. However, it iss important to recognize that
hierarchical decompositions need not be unique; they may be
context dependent and subject to needs and interests, and a holis-
tic behavior may admit multiple incompatible decompositions.
The target article points to the importance of simulation-based

and imagistic inference (sect. 4.1.1). Therefore, we need to under-
stand how they are implemented through implicit models. Fortu-
nately, neural representations, such as topographic maps, permit
analog transformations, which are better than symbolic digital
computation for simulation-based and imagistic inference. The
fact of neural implementation can reveal modes of information
processing and control beyond the symbolic paradigm.
Connectionism consciously abandoned the explicit models of

symbolic AI and cognitive science in favor of implicit, neural
network models, which had a liberating effect on cognitive
modeling, AI, and robotics. With 20-20 hindsight, we know
that many of the successes of connectionism could have been
achieved through existing statistical methods (e.g., Bayesian
inference), without any reference to the brain, but they were
not. Progress had been retarded by the desire for explicit,
human-interpretable models, which connectionism abandoned
in favor of neural plausibility. We are ill advised to ignore the
brain again.

Understand the cogs to understand cognition
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Abstract: Lake et al. suggest that current AI systems lack the inductive
biases that enable human learning. However, Lake et al.’s proposed
biases may not directly map onto mechanisms in the developing brain. A
convergence of fields may soon create a correspondence between
biological neural circuits and optimization in structured architectures,
allowing us to systematically dissect how brains learn.
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The target article by Lake et al. beautifully highlights limitations of
today’s artificial intelligence (AI) systems relative to the perfor-
mance of human children and adults. Humans demonstrate
uptake and generalization of concepts in the domains of intuitive
physics and psychology, decompose the world into reusable parts,
transfer knowledge across domains, and reason using models of
the world. As Lake et al. emphasize, and as is a mathematical
necessity (Ho & Pepyne 2002), humans are not generic, universal
learning systems: they possess inductive biases that constrain and
guide learning for species-typical tasks.

However, the target article’s characterization of these inductive
biases largely overlooks how they may arise in the brain and how
they could be engineered into artificial systems. Their particular
choice of inductive biases, though supported by psychological
research (see Blumberg [2005] for a critique), is in some ways
arbitrary or idiosyncratic: It is unclear whether these capabilities
are the key ones that enable human cognition, unclear whether
these inductive biases correspond to separable “modules” in any
sense, and, most importantly, unclear how these inductive
biases could actually be built. For example, the cognitive level
of description employed by Lake et al. gives little insight into
whether the systems underlying intuitive psychology and physics
comprise overlapping mechanisms. An alternative and plausible
view holds that both systems may derive from an underlying
ability to make sensory predictions, conditioned on the effects
of actions, which could be bootstrapped through, for example,
motor learning. With present methods and knowledge, it is any-
body’s guess which of these possibilities holds true: an additional
source of constraint and inspiration seems needed.

Lake et al. seem to view circuit and systems neuroscience as
unable to provide strong constraints on the brain’s available com-
putational mechanisms – perhaps in the same way that transistors
place few meaningful constraints on the algorithms that may run
on a laptop. However, the brain is not just a hardware level on
which software runs. Every inductive bias is a part of the
genetic and developmental makeup of the brain. Indeed,
whereas neuroscience has not yet produced a sufficiently well-
established computational description to decode the brain’s
inductive biases, we believe that this will change soon. In particu-
lar, neuroscience may be getting close to establishing a more
direct correspondence between neural circuitry and the optimiza-
tion algorithms and structured architectures used in deep learn-
ing. For example, many inductive biases may be implemented
through the precise choice of cost functions used in the optimiza-
tion of the connectivity of a neuronal network. But to identify
which cost function is actually being optimized in a cortical
circuit, we must first know how the circuit performs optimization.
Recent work is starting to shed light on this question (Guergiuev
et al. 2016), and to do so, it has been forced to look deeply not only
at neural circuits, but also even at how learning is implemented at
the subcellular level. Similar opportunities hold for crossing
thresholds in our understanding of the neural basis of other key
components of machine learning agents, such as structured infor-
mation routing, memory access, attention, hierarchical control,
and decision making.

We argue that the study of evolutionarily conserved neural
structures will provide a means to identify the brain’s true, funda-
mental inductive biases and how they actually arise. Specifically,
we propose that optimization, architectural constraints, and “boot-
strapped cost functions”might be the basis for the development of
complex behavior (Marblestone et al. 2016). There are many
potential mechanisms for gradient-based optimization in cortical
circuits, and many ways in which the interaction of such mecha-
nisms with multiple other systems could underlie diverse forms
of structured learning like those hypothesized in Lake et al. Fun-
damental neural structures are likely tweaked and re-used to
underpin different kinds of inductive biases across animal
species, including humans. Within the lifetime of an animal, a
developmentally orchestrated sequence of experience-dependent
cost functions may provide not just a list of inductive biases, but a

procedure for sequentially unfolding inductive biases within brain
systems to produce a fully functional organism.

A goal for both AI and neuroscience should be to advance both
fields to the point where they can have a useful conversation about
the specifics. To do this, we need not only to build more human-
like inductive biases into our machine learning systems, but also to
understand the architectural primitives that are employed by the
brain to set up these biases. This has not yet been possible because
of the fragmentation and incompleteness of our neuroscience
knowledge. For neuroscience to ask questions that directly
inform the computational architecture, it must first cross more
basic thresholds in understanding. To build a bridge with the
intellectual frameworks used in machine learning, it must estab-
lish the neural underpinnings of optimization, cost functions,
memory access, and information routing. Once such thresholds
are crossed, we will be in a position – through a joint effort of neu-
roscience, cognitive science, and AI – to identify the brain’s actual
inductive biases and how they integrate into a single developing
system.

Social-motor experience and perception-
action learning bring efficiency to machines
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Abstract: Lake et al. proposed a way to build machines that learn as fast as
people do. This can be possible only if machines follow the human
processes: the perception-action loop. People perceive and act to
understand new objects or to promote specific behavior to their
partners. In return, the object/person provides information that induces
another reaction, and so on.

The authors of the target article stated, “the interaction between
representation and previous experience may be key to building
machines that learn as fast as people do” (sect. 4.2.3, last para.)
To design such machines, they should function as humans do.
But a human acts and learns based on his or her social-MOTOR
experience. Three main pieces of evidence can demonstrate our
claim:

First, any learning or social interacting is based on social motor
embodiment. In the field of human movement sciences, many
pieces of evidence indicate that we are all influenced by the
motor behavior of the one with whom we are interacting (e.g.,
Schmidt & Richardson 2008). The motor behavior directly
expresses the state of mind of the partner (Marin et al. 2009).
For example, if someone is shy, this state of mind will be directly
embodied in her or his entire posture, facial expressions, gaze, and
gestures. It is in the movement that we observe the state of mind
of the other “interactant.” But when we are responding to that shy
person, we are influenced in return by that behavior. Obviously we
can modify intentionally our own motor behavior (to ease the
interaction with him or her). But in most cases we are not
aware of the alterations of our movements. For example, when
an adult walks next to a child, they both unintentionally synchron-
ize their stride length to each other (implying they both modify
their locomotion to walk side-by-side). Another example in
mental health disorders showed that an individual suffering
from schizophrenia does not interact “motorly” the same way as
a social phobic (Varlet et al. 2014). Yet, both pathologies
present motor impairment and social withdrawal. But what char-
acterizes their motor differences is based on the state of mind of
the patients. In our example, the first patient presents attentional
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impairment, whereas the other suffers from social inhibition. If,
however, a healthy participant is engaged in a social-motor syn-
chronization task, both participants (the patient and the healthy
subject) unintentionally adjust their moves (Varlet et al. 2014).

This study demonstrates that unconscious communication is
sustained even though the patients are suffering from social inter-
action disorders. We can then state that mostly low-level treat-
ments of sensorimotor flows are involved in this process.
Consequently, machines/robots should be embedded with com-
putational models, which tackles the very complex question of
adapting to the human world using sensorimotor learning.

We claim that enactive approaches of this type will drastically
reduce the complexity of future computational models. Methods
of this type are indeed supported by recent advances in the
human brain mirroring system and theories based on motor reso-
nance (Meltzoff 2007). In this line of thinking, computational
models have been built and used to improve human robot inter-
action and communication, in particular through the notion of
learning by imitation (Breazeal & Scassellati 2002; Lopes &
Santos-Victor 2007). Furthermore, some studies embedded
machines with computational models using an adequate
action-perception loop and showed that some complex social com-
petencies such as immediate imitation (present in early human
development) could emerge through sensorimotor ambiguities
as proposed in Gaussier et al. (1998), Nagai et al. (2011), and
Braud et al. (2014).

This kind of model allows future machines to better generalize
their learning and to acquire new social skills. In other recent
examples, using a very simple neural network providing minimal
sensorimotor adaptation capabilities to the robot, unintentional
motor coordination could emerge during an imitation game (of
a simple gesture) with a human (Hasnain et al. 2012; 2013). An
extension of this work demonstrated that a robot could quickly
and “online” learn more complex gestures and synchronize its
behavior to the human partner based on the same sensorimotor
approach (Ansermin et al. 2016).

Second, even to learn (or understand) what a simple object is,
people need to act on it (O’Regan 2011). For example, if we do
not know what a “chair” is, we will understand its representation
by sitting on it, touching it. The definition is then easy: A chair is
an object on which we can sit, regardless of its precise shape.
Now, if we try to define its representation before acting, it
becomes very difficult to describe it. This requires determining
the general shape, number of legs, with or without arms or
wheels, texture, and so on. Hence, when programming a
machine, this latter definition brings a high computational cost
that drastically slows down the speed of the learning (and pushes
away the idea of learning as fast as humans do). In that case, the
machines/robots should be able to learn directly by acting and per-
ceiving the consequences of their actions on the object/person.

Finally, from a more low-level aspect, even shape recognition is
strongly connected to our motor experience. Viviani and Stucchi
(1992) demonstrated that when they showed a participant a
point light performing a perfect circle, as soon as this point
slowed down at the upper and lower parts of this circle, the par-
ticipant did not perceive the trajectory as a circle any longer,
but as an ellipse. This perceptual mistake is explained by the
fact that we perceive the shape of an object based on the way
we draw it (in drawing a circle, we move with a constant speed,
whereas in drawing an ellipse, we slow down at the two opposite
extremities). Typically, handwriting learning (often cited by the
authors) is based not only on learning visually the shape of the
letters, but also mainly on global sensorimotor learning of perceiv-
ing (vision) and acting (writing, drawing). Once again, this
example indicates that machines/robots should be able to under-
stand an object or the reaction of a person based on how they
have acted on that object/person.

Therefore, to design machines that learn as fast as humans, we
need to make them able to (1) learn through a perception-action
paradigm, (2) perceive and react to the movements of other

agents or to the object on which they are acting, and (3) learn
to understand what his or her or its actions mean.
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The argument for single-purpose robots
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Abstract: The argument by Lake et al. to create more human-like robots
is, first, implausible and, second, undesirable. It seems implausible to me
that a robot might have friends, fall in love, read Foucault, prefer Scotch to
Bourbon, and so on. It seems undesirable because we already have 7
billion people on earth and don’t really need more.

This commentary addresses the issue of Human-Like Machines
(HLMs), which Lake et al. would like to be able to do more than
have “object recognition” and play “video games, and board
games” (abstract). They would like a machine “to learn or think
like a person” (sect. 1, para. 3). I argue that people do vastly
more than this: they interact, communicate, share, and collaborate;
they use their learning and thinking to “behave”; they experience
complex emotions. I believe that these authors have a far too
limited sense of what “human-like” behavior is. The kinds of behav-
ior I have in mind include (but are certainly not limited to) these:
1. Drive with a friend in a stick shift car from LA to Vancouver,

and on to Banff…
2. Where, using a fly he or she tied, with a fly rod he or she

made, he or she should be able to catch a trout which…
3. He or she should be able to clean, cook, and share with a

friend.
4. He or she should have a clear gender identity, clearly recog-

nizing what gender he or she is, and understanding the differences
between self and other genders. (Let’s decide our HLM was man-
ufactured to be, and identifies as, “male.”)
5. He should be able to fall in love, get married, and reproduce.

He might wish to vote; he should be able to pay taxes. I’m not
certain if he could be a citizen.
6. He should be able to read Hop on Pop to his 4-year-old,

helping her to get the idea of reading. He should be able to
read it to her 200 times. He should be able to read and understand
Foucault, Sahlins, Hinton, le Carré, Erdrich, Munro, and authors
like them. He should enjoy reading. He should be able to write a
book, like Hop on Pop, or like Wilder’s The Foundations of
Mathematics.
7. He should be able to have irreconcilable differences with his

spouse, get divorced, get depressed, get psychological counseling,
get better, fall in love again, remarry, and enjoy his grandchildren.
He should be able to detect by scent that the baby needs to have
her diaper changed. Recent research indicates that the human
nose can discriminate more than one trillion odors (Bushdid
et al. 2014). Our HLM should at least recognize a million or so.
He should be able to change a diaper and to comfort and calm
a crying child. And make mac and cheese.
8. He should be able to go to college, get a B.A. in Anthropol-

ogy, then a Ph.D., get an academic job, and succeed in teaching
the complexities of kinship systems to 60 undergraduates.
9. He should be able to learn to play creditable tennis, squash,

baseball, or soccer, and enjoy it into his seventies. He should be
able to get a joke. (Two chemists go into a bar. The first says,
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“I’ll have an H2O.” The second says, “I’ll have an H2O too.” The
second guy dies.) He should be able both to age and to die.

10. He should be able to know the differences between Scotch
and Bourbon, and to develop a preference for one or the other,
and enjoy it occasionally. Same for wine.

I’m human, and I can do, or have done, all those things (except
die), which is precisely why I think this is a fool’s errand. I think it
is a terrible idea to develop robots that are like humans. There are
7 billion humans on earth already. Why do we need fake humans
when we have so many real ones? The robots we have now are
(primarily) extremely useful single-function machines that can
weld a car together in minutes, 300 a day, and never feel like,
well, a robot, or a rivethead (Hamper 2008).

Even this sort of robot can cause lots of problems, as substantial
unemployment in industry can be attributed to them. They tend
to increase productivity and reduce the need for workers (Baily
& Bosworth 2014). If that’s what single-purpose (welding)
robots can do, imagine what a HLM could do. If you think it
might not be a serious problem, read Philip K. Dick’s story, Do
Androids Dream Electric Sheep (Dick 1968), or better yet,
watch Ridley Scott’s film Blade Runner (Scott 2007) based on
Dick’s story. The key issue in this film is that HLMs are indistin-
guishable from ordinary humans and are allowed legally to exist
only as slaves. They don’t like it. Big trouble ensues. (Re
number 6, above, our HLM should probably not enjoy Philip
Dick or Blade Runner.)

What kinds of things should machines be able to do? Jobs inimical
to the human condition. Imagine an assistant fireman which could
run into a burning building and save the 4-year-old reading Dr.
Seuss. There is work going on to develop robotic devices – referred
to as exoskeletons – that can help people with profound spinal cord
injuries to walk again (Brenner 2016). But this is only reasonable if
the device helps the patient go where he wants to go, not where the
robot wants to go. There is also work going on to develop robotic
birds, or orniothopters, among them the “Nano Hummingbird”
and the “SmartBird.” Both fly with flapping wings (Mackenzie
2012). The utility of these creatures is arguable; most of what they
can do could probably be done with a $100 quad-copter drone.
(Our HLM should be able to fly a quad-copter drone. I can.)

Google recently reported significant improvements in language
translation as a result of the adoption of a neural-network approach
(Lewis-Kraus 2016; Turovsky 2016). Many users report dramatic
improvements in translations. (My own experience has been less
positive.) This is a classic single-purpose “robot” that can help
translators, but no one ought to rely on it alone.

In summary, it seems that even with the development of large
neural-network style models, we are far from anything in Blade
Runner. It will be a long time before we can have an HLM that
can both display a patellar reflex and move the pieces in a chess
game. And that, I think, is a very good thing.

Autonomous development and learning in
artificial intelligence and robotics: Scaling up
deep learning to human-like learning

doi:10.1017/S0140525X17000243, e275

Pierre-Yves Oudeyer
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pierre-yves.oudeyer@inria.fr http://www.pyoudeyer.com

Abstract: Autonomous lifelong development and learning are
fundamental capabilities of humans, differentiating them from current
deep learning systems. However, other branches of artificial intelligence
have designed crucial ingredients towards autonomous learning:
curiosity and intrinsic motivation, social learning and natural interaction
with peers, and embodiment. These mechanisms guide exploration and

autonomous choice of goals, and integrating them with deep learning
opens stimulating perspectives.

Deep learning (DL) approaches made great advances in artificial
intelligence, but are still far from human learning. As argued con-
vincingly by Lake et al., differences include human capabilities to
learn causal models of the world from very few data, leveraging
compositional representations and priors like intuitive physics
and psychology. However, there are other fundamental differ-
ences between current DL systems and human learning, as well
as technical ingredients to fill this gap that are either superficially,
or not adequately, discussed by Lake et al.

These fundamental mechanisms relate to autonomous develop-
ment and learning. They are bound to play a central role in artifi-
cial intelligence in the future. Current DL systems require
engineers to specify manually a task-specific objective function
for every new task, and learn through offline processing of large
training databases. On the contrary, humans learn autonomously
open-ended repertoires of skills, deciding for themselves which
goals to pursue or value and which skills to explore, driven by
intrinsic motivation/curiosity and social learning through natural
interaction with peers. Such learning processes are incremental,
online, and progressive. Human child development involves a pro-
gressive increase of complexity in a curriculum of learning where
skills are explored, acquired, and built on each other, through par-
ticular ordering and timing. Finally, human learning happens in
the physical world, and through bodily and physical experimenta-
tion, under severe constraints on energy, time, and computational
resources.

In the two last decades, the field of Developmental and Cogni-
tive Robotics (Asada et al. 2009; Cangelosi and Schlesinger 2015),
in strong interaction with developmental psychology and neuro-
science, has achieved significant advances in computational mod-
eling of mechanisms of autonomous development and learning in
human infants, and applied them to solve difficult artificial intelli-
gence (AI) problems. These mechanisms include the interaction
between several systems that guide active exploration in large
and open environments: curiosity, intrinsically motivated rein-
forcement learning (Barto 2013; Oudeyer et al. 2007; Schmid-
huber 1991) and goal exploration (Baranes and Oudeyer 2013),
social learning and natural interaction (Chernova and Thomaz
2014; Vollmer et al. 2014), maturation (Oudeyer et al. 2013),
and embodiment (Pfeifer et al. 2007). These mechanisms crucially
complement processes of incremental online model building
(Nguyen and Peters 2011), as well as inference and representation
learning approaches discussed in the target article.
Intrinsic motivation, curiosity and free play. For example,

models of how motivational systems allow children to choose
which goals to pursue, or which objects or skills to practice in con-
texts of free play, and how this can affect the formation of devel-
opmental structures in lifelong learning have flourished in the last
decade (Baldassarre and Mirolli 2013; Gottlieb et al. 2013). In-
depth models of intrinsically motivated exploration, and their
links with curiosity, information seeking, and the “child-as-a-
scientist” hypothesis (see Gottlieb et al. [2013] for a review),
have generated new formal frameworks and hypotheses to under-
stand their structure and function. For example, it was shown that
intrinsically motivated exploration, driven by maximization of
learning progress (i.e., maximal improvement of predictive or
control models of the world; see Oudeyer et al. [2007] and
Schmidhuber [1991]) can self-organize long-term developmental
structures, where skills are acquired in an order and with timing
that share fundamental properties with human development
(Oudeyer and Smith 2016). For example, the structure of early
infant vocal development self-organizes spontaneously from
such intrinsically motivated exploration, in interaction with the
physical properties of the vocal systems (Moulin-Frier et al.
2014). New experimental paradigms in psychology and neurosci-
ence were recently developed and support these hypotheses
(Baranes et al. 2014; Kidd 2012).
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These algorithms of intrinsic motivation are also highly efficient
for multitask learning in high-dimensional spaces. In robotics,
they allow efficient stochastic selection of parameterized experi-
ments and goals, enabling incremental collection of data and
learning of skill models, through automatic and online curriculum
learning. Such active control of the growth of complexity enables
robots with high-dimensional continuous action spaces to learn
omnidirectional locomotion on slippery surfaces and versatile
manipulation of soft objects (Baranes and Oudeyer 2013) or hier-
archical control of objects through tool use (Forestier and
Oudeyer 2016). Recent work in deep reinforcement learning
has included some of these mechanisms to solve difficult rein-
forcement learning problems, with rare or deceptive rewards
(Bellemare et al. 2016; Kulkarni et al. 2016), as learning multiple
(auxiliary) tasks in addition to the target task simplifies the
problem (Jaderberg et al. 2016). However, there are many
unstudied synergies between models of intrinsic motivation in
developmental robotics and deep reinforcement learning
systems; for example, curiosity-driven selection of parameterized
problems/goals (Baranes and Oudeyer 2013) and learning strate-
gies (Lopes and Oudeyer 2012) and combinations between intrin-
sic motivation and social learning, for example, imitation learning
(Nguyen and Oudeyer 2013), have not yet been integrated with
deep learning.
Embodied self-organization. The key role of physical embodi-

ment in human learning has also been extensively studied in
robotics, and yet it is out of the picture in current deep learning
research. The physics of bodies and their interaction with their
environment can spontaneously generate structure guiding learn-
ing and exploration (Pfeifer and Bongard 2007). For example,
mechanical legs reproducing essential properties of human leg
morphology generate human-like gaits on mild slopes without
any computation (Collins et al. 2005), showing the guiding role
of morphology in infant learning of locomotion (Oudeyer 2016).
Yamada et al. (2010) developed a series of models showing that
hand-face touch behaviours in the foetus and hand looking in
the infant self-organize through interaction of a non-uniform
physical distribution of proprioceptive sensors across the body
with basic neural plasticity loops. Work on low-level muscle syner-
gies also showed how low-level sensorimotor constraints could
simplify learning (Flash and Hochner 2005).
Human learning as a complex dynamical system.Deep learning

architectures often focus on inference and optimization. Although
these are essential, developmental sciences suggested many times
that learning occurs through complex dynamical interaction
among systems of inference, memory, attention, motivation,
low-level sensorimotor loops, embodiment, and social interaction.
Although some of these ingredients are part of current DL
research, (e.g., attention and memory), the integration of other
key ingredients of autonomous learning and development opens
stimulating perspectives for scaling up to human learning.

Human-like machines: Transparency and
comprehensibility

doi:10.1017/S0140525X17000255, e276
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UNIL-Dorigny, Internef, CH-1015 Lausanne, Switzerland
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Abstract: Artificial intelligence algorithms seek inspiration from human
cognitive systems in areas where humans outperform machines. But on
what level should algorithms try to approximate human cognition? We
argue that human-like machines should be designed to make decisions

in transparent and comprehensible ways, which can be achieved by
accurately mirroring human cognitive processes.

How to build human-like machines? We agree with the authors’
assertion that “reverse engineering human intelligence can use-
fully inform artificial intelligence and machine learning” (sect.
1.1, para. 3), and in this commentary we offer some suggestions
concerning the direction of future developments. Specifically,
we posit that human-like machines should not only be built to
match humans in performance, but also to be able to make deci-
sions that are both transparent and comprehensible to humans.
First, we argue that human-like machines need to decide and

act in transparent ways, such that humans can readily understand
how their decisions are made (see Arnold & Scheutz 2016; Indur-
khya & Misztal-Radecka 2016; Mittelstadt et al. 2016). Behavior
of artificial agents should be predictable, and people interacting
with them ought to be in a position that allows them to intuitively
grasp how those machines decide and act the way they do (Malle
& Scheutz 2014). This poses a unique challenge for designing
algorithms.
In current neural networks, there is typically no intuitive

explanation for why a network reached a particular decision
given received inputs (Burrell 2016). Such networks represent
statistical pattern recognition approaches that lack the ability
to capture agent-specific information. Lake et al. acknowledge
this problem and call for structured cognitive representations,
which are required for classifying social situations. Specifically,
the authors’ proposal of an “intuitive psychology” is grounded
in the naïve utility calculus framework (Jara-Ettinger et al.
2016). According to this argument, algorithms should attempt
to build a causal understanding of observed situations by creat-
ing representations of agents who seek rewards and avoid costs
in a rational way.
Putting aside extreme examples (e.g., killer robots and autono-

mous vehicles), let us look at the more ordinary artificial intelli-
gence task of scene understanding. Cost-benefit–based
inferences about situations such as the one depicted in the left-
most picture in Figure 6 of Lake et al. will likely conclude that
one agent has a desire to kill the other, and that he or she
values higher the state of the other being dead than alive.
Although we do not argue this is incorrect, a human-like classifi-
cation of such a scene would rather reach the conclusion that
the scene depicts either a legal execution or a murder. The
returned alternative depends on the viewer’s inferences about
agent-specific characteristics. Making such inferences requires
going beyond the attribution of simple goals – one needs to
make assumptions about the roles and obligations of different
agents. In the discussed example, although both a sheriff and a
contract killer would have the same goal to end another
person’s life, the difference in their identity would change the
human interpretation in a significant way.
We welcome the applicability of naïve utility calculus for infer-

ring simple information concerning agent-specific variables, such
as goals and competence level. At the same time, however, we
point out some caveats inherent to this approach. Humans inter-
acting with the system will likely expect a justification of why it has
picked one interpretation rather than another, and algorithm
designers might want to take this into consideration.
This leads us to our second point. Models of cognition can come

in at least two flavors: (1) As-if models, which only aspire to
achieve human-like performance on a specific task (e.g., classify-
ing images), and (2) process models, which seek both to achieve
human-like performance and to accurately reproduce the cogni-
tive operations humans actually perform (classifying images by
combining pieces of information in a way humans do). We
believe that the task of creating human-like machines ought to
be grounded in existing process models of cognition. Indeed,
investigating human information processing is helpful for ensuring
that generated decisions are comprehensible (i.e., that they follow
human reasoning patterns).
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Why is it important that machine decision mechanisms, in addi-
tion to being transparent, actually mirror human cognitive pro-
cesses in a comprehensible way? In the social world, people
often judge agents not only according to the agents’ final deci-
sions, but also according to the process by which they have
arrived at these (e.g., Hoffman et al. 2015). It has been argued
that the process of human decision making does not typically
involve rational utility maximization (e.g., Hertwig & Herzog
2009). This, in turn, influences how we expect other people to
make decisions (Bennis et al. 2010). To the extent that one
cares about the social applications of algorithms and their interac-
tions with people, considerations about transparency and compre-
hensibility of decisions become critical.

Although as-if models relying on cost-benefit analysis might be
reasonably transparent and comprehensible, for example, when
problems are simple and do not involve moral considerations,
this might not always be the case. Algorithm designers need to
ensure that the underlying process will be acceptable to the
human observer. What research can be drawn up to help build
transparent and comprehensible mechanisms?

We argue that one source of inspiration might be the research
on fast-and-frugal heuristics (Gigerenzer & Gaissmaier 2011).
Simple strategies such as fast-and-frugal trees (e.g., Hafenbrädl
et al. 2016) might be well suited to providing justifications for
decisions made in social situations. Heuristics not only are
meant to capture ecologically rational human decision mecha-
nisms (see Todd & Gigerenzer 2007), but also are transparent
and comprehensible (see Gigerenzer 2001). Indeed, these heuris-
tics possess a clear structure composed of simple if-then rules
specifying (1) how information is searched within the search
space, (2) when information search is stopped, and (3) how the
final decision is made based upon the information acquired
(Gigerenzer & Gaissmaier 2011).

These simple decision rules have been used to model and aid
human decisions in numerous tasks with possible moral implica-
tions, for example, in medical diagnosis (Hafenbrädl et al. 2016)
or classification of oncoming traffic at military checkpoints as
hostile or friendly (Keller & Katsikopoulos 2016). We propose
that the same heuristic principles might be useful to engineer
autonomous agents that behave in a human-like way.
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Abstract: The search for a deep, multileveled understanding of human
intelligence is perhaps the grand challenge for 21st-century science, with
broad implications for technology. The project of building machines that
think like humans is central to meeting this challenge and critical to
efforts to craft new technologies for human benefit.

A century of research on human brains and minds makes three
things clear. First, human cognition can be understood only if it
is studied at multiple levels, from neurons to concepts to compu-
tations (Marr 1982/2010). Second, human and animal brains/
minds are highly similar. Indeed, most of what we have discovered
about our own capacities comes frommultileveled studies of other

animals (e.g., Hubel & Wiesel, 1959), suggesting that an under-
standing of human cognition is achievable. Third, the project of
understanding human cognition has a long way to go. We have
learned a lot about what we know when and what our brains are
made of, but not how or why we know, think, and learn as we do.

Research on cognition in human infancy provides a case in
point. Infants represent key geometric properties of the navigable
layout, track objects as solid, continuously movable bodies, and
endow others with goals and causal powers in ways that are
highly similar to those of other inexperienced animals (e.g.,
Spelke & Lee 2012). These abilities are not shaped by encounters
with the postnatal environment: precocial and controlled-reared
animals exhibit them the first time they move through a navigable
space (e.g., Chiandetti et al. 2014; Wills et al. 2010), track an
object over occlusion (e.g., Regolin et al. 1995), or encounter
another animal (e.g., Mascalzoni et al. 2010). Moreover, the
basic ways that infants and animals understand space, objects,
and goal-directed action remain central to our intuitive thinking
as adults (e.g., Doeller & Burgess 2008) and to the brain
systems that support it (e.g., Doeller et al. 2008; 2010).

None of these findings should be surprising or controversial.
Human cognitive and neural architecture is unlikely to differ rad-
ically from that of other animals, because evolution proceeds by
modifying what is already present. Abilities to represent space,
objects, and other agents are unlikely to be entirely learned,
because most animals need to get some problems right the first
time they arise, including finding their way home, distinguishing
a supporting surface from a teetering rock, avoiding predators,
and staying with their group. And innate knowledge is unlikely
to be overturned by later learning, because core knowledge cap-
tures fundamental properties of space, objects, and agency and
because learning depends on prior knowledge.

Despite these findings, we do not know how human knowledge
originates and grows, and a wealth of approaches to this question
are rightly being pursued. One class of models, however, cannot
plausibly explain the first steps of learning and development in
any animal: deep learning systems whose internal structure is
determined by analyzing massive amounts of data beyond any
human scale. Human learning is fast and effective, in part,
because it builds on cognitive and neural systems by which we
understand the world throughout our lives. That’s one reason
why the effort described by Lake et al., implemented in computa-
tional models and tested against the judgments of human adults, is
important to the grand challenge of achieving a deep understand-
ing of human intelligence. We think the biggest advances from
this work are still to come, through research that crafts and tests
such models in systems that begin with human core knowledge
and then learn, as young children do, to map their surroundings,
develop a taxonomy of object kinds, and reason about others’
mental states.

Computational models of infant thinking and learning may foster
efforts to build smart machines that are not only better at reasoning,
but also better for us. Because human infants are the best learners
on the planet and instantiate human cognition in its simplest natural
state, a computational model of infants’ thinking and learning could
guide the construction of machines that are more intelligent than
any existing ones. But equally importantly, and sometimes left
out of the conversation, a better understanding of our own minds
is critical to building information systems for human benefit.
Whether or not such systems are designed to learn and think as
we do, such an understanding will help engineers build machines
that will best foster our own thinking and learning.

To take just one example from current technology that is
already ubiquitous, consider mobile, GPS-guided navigation
systems. These systems can choose the most efficient route to a
destination, based on information not accessible to the user, and
allowing users to get around in novel environments. A person
with a GPS-enabled cell phone never needs to know where he
or she is or how the environment is structured. Is such a device
good for us? A wealth of research indicates that the systems that
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guide active, independent navigation in humans and animals from
the moment that they first begin to locomote independently are
broadly involved in learning and memory (e.g., Squire 1992).
Moreover, the brain activity observed during active navigation
diminishes when the same trajectory is followed passively
(O’Keefe & Nadel 1978). How are these systems affected by
the use of devices that do our navigating for us? If the cognitive
and brain sciences could answer such questions in advance,
researchers could design intelligent devices that both eliminate
unnecessary cognitive burdens and provide needed cognitive
exercise. Without a deeper understanding of how and why we
learn and remember what we do, however, the designers of
current technologies are working in the dark, even when they
design devices to aid navigation, one of our best-understood cog-
nitive functions (e.g., O’Keefe 2014; Moser et al. 2008).

Working in the dark posed less of a problem in past centuries.
When each new tool that humans invented had limited function,
and its use spread slowly, tools could be evaluated and modified by
trial and error, without benefit of scientific insights into the
workings of our minds. Today’s tools, however, have multiple
functions, whose workings are opaque to the end user. Technolog-
ical progress is dizzyingly rapid, and even small advances bring
sweeping, worldwide changes to people’s lives. To design future
machines for human benefit, researchers in all of the information
technologies need to be able to foresee the effects that their
inventions will have on us. And as Lake et al. observe, such fore-
sight comes only with understanding. A great promise of human-
inspired artificial intelligence, beyond building smarter machines,
is to join neuroscience and cognitive psychology in meeting the
grand challenge of understanding the nature and development
of human minds.

The fork in the road
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Robert J. Sternberg
Department of Human Development, College of Human Ecology,
Cornell University, Ithaca, NY 14853.

robert.sternberg@cornell.edu www.robertjsternberg.com

Abstract: Machines that learn and think like people should simulate how
people really think in their everyday lives. The field of artificial intelligence
originally traveled down two roads, one of which emphasized abstract,
idealized, rational thinking and the other, which emphasized the
emotionally charged and motivationally complex situations in which
people often find themselves. The roads should have converged but
never did. That’s too bad.

Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.

—Robert Frost, The Road Not Taken
When you come to a fork in the road, take it.

—Yogi Berra

Lake and his colleagues have chosen to build “machines that learn
and think like people.” I beg to differ. Or perhaps it is a matter of
what one means by learning and thinking like people. Permit me
to explain. Early in the history of artificial intelligence (AI) and
simulation research, investigators began following two different
roads. The roads might potentially have converged, but it has
become more and more apparent from recent events that they
have actually diverged.

One road was initiated by pioneers like Newell et al. (1957),
Winograd (1972), Minsky and Papert (1987), Minsky (2003),
and Feigenbaum and Feldman (1995). This road was based on
understanding people’s competencies in learning and thinking.
Investigators taking this road studied causal reasoning, game

playing, language acquisition, intuitive physics, and people’s
understanding of block worlds. Today, Anderson’s ACT-R
perhaps provides the most comprehensive simulation model
(Anderson et al. 2004).
A second road was taken by pioneers like Colby (1975) with

PARRY, a computer program simulating a paranoid, Abelson
and Carroll (1965) with their True Believer program, andWeizen-
baum (1966) with his ELIZA non-directive psychotherapy
program. The idea in this research was to understand people’s
often suboptimal performances in learning and thinking. These
programs recognized that people are often emotional, a-rational,
and function at levels well below their capabilities.
Many of these ideas have been formalized in recent psycholog-

ical research. For example, Stanovich (2009) has shown that ratio-
nality and intelligence are largely distinct. Mayer and Salovey
(1993) have shown the importance of emotional intelligence to
people’s thinking, and Sternberg (1997) has argued both for the
importance of practical intelligence and for its relative indepen-
dence from analytical or more academic aspects of intelligence.
The two roads of AI/simulation research might have converged

with comprehensive models that comfortably incorporate aspects
of both optimal and distinctly suboptimal performance. They
haven’t. At the time, Abelson, Colby, and others worked on
their models of what was at best a-rational, and at worst wholly
irrational, thinking. The work seemed a bit quirky and off the
beaten track – perhaps a road not worth following very far. That
was then
The 2016 presidential election has upended any assumption that

everyday people think along the lines that Lake and his colleagues
have pursued. Whether one is a Republican or a Democrat, it
would be hard to accept this election process as representing any-
thing other than seriously deficient and even defective thinking.
The terms learning and thinking seem almost too complimentary
to describe what went on. To some people the 2016 election was
a frightening portent of a dystopia to come.
The first road, that of Lake et al., is of human cognition divorced

from raw emotions, of often self-servingmotivations and illogic that
characterize much of people’s everything thinking. On this view,
people are more or less rational “machines.” One might think
that it is only stupid people (Sternberg 2002; 2004) who think
and act foolishly. But smart people are as susceptible to foolish
thinking as are not so smart people, or even more susceptible,
because they do not realize they can think and act foolishly.
The United States, and indeed the world, seems to be entering

a new and uncharted era of populism and appeals by politicians
not to people’s intellects, but to their basest emotions. Unless
our models of learning and thinking help us understand how
those appeals can succeed, and how we can counter them and
help people become wiser (Sternberg & Jordan 2005), the
models we create will be academic, incomplete, and, at worst,
wrong-headed. The field came to a fork in the road and took it,
but to where?

Avoiding frostbite: It helps to learn from others
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Abstract:Machines that learn and think like people must be able to learn
from others. Social learning speeds up the learning process and – in
combination with language – is a gateway to abstract and unobservable
information. Social learning also facilitates the accumulation of
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knowledge across generations, helping people and artificial intelligences
learn things that no individual could learn in a lifetime.

Causality, compositionality, and learning-to-learn – the future
goals for artificial intelligence articulated by Lake et al. – are
central for human learning. But these abilities alone would not
be enough to avoid frostbite on King William Island in the
Arctic Archipelago. You need to know how to hunt seals, make
skin clothing, and manage dog sleds, and these skills are not
easy to acquire from the environment alone. But if the Netsilik
Inuit people taught them to you, your chances of surviving a
winter would be dramatically improved (Lambert 2011). Similar
to a human explorer, an artificial intelligence (AI) learning to
play video games like Frostbite should take advantage of the
rich knowledge available from other people. Access to this knowl-
edge requires the capacity for social learning, both a critical pre-
requisite for language use and a gateway in itself to cumulative
cultural knowledge.

Learning from other people helps you learn with fewer data. In
particular, humans learn effectively even from “small data”
because the social context surrounding the data is itself informa-
tive. Dramatically different inferences can result from what is
ostensibly the same data in distinct social contexts or even with
alternative assumptions about the same context (Shafto et al.
2012). The flexibility of the social inference machinery in
humans turns small signals into weighty observations: Even for
young children, ambiguous word-learning events become infor-
mative through social reasoning (Frank & Goodman 2014), non-
obvious causal action sequences become “the way you do it”
when presented pedagogically (Buchsbaum et al. 2011), and
complex machines can become single-function tools when a
learner is taught just one function (Bonawitz et al. 2011).

Learning from others comes in many forms. An expert may tol-
erate onlookers, a demonstrator may slow down when completing
a particularly challenging part of the task, and a teacher may
actively provide pedagogical examples and describe them with
language (Csibra & Gergely 2009; Kline 2015). Informative
demonstrations may be particularly useful for procedural learning
(e.g., hunting seals, learning to play Frostbite). Language,
however, is uniquely powerful in its ability to convey information
that is abstract or difficult to observe, or information that
otherwise does not have a way of being safely acquired such as
learning that certain plants are poisonous or how to avoid frostbite
(Gelman 2009). Studying social learning is an important part of
studying language learning (Goodman & Frank 2016); both
should be top priorities for making AIs learn like people.

Focusing on Lake et al.’s key example, you can even learn the
game Frostbite with fewer data when you learn it from other
people. We recruited 20 participants from Amazon’s Mechanical
Turk to play Frostbite for 5 minutes. Half of the participants
were given written instructions about the abstract content of the
game, adapted directly from the caption of Figure 2 in the

target article. The other half were not given this information.
(Everybody was told that you move the agent using the arrow
keys.) Learners who were told about the abstract structure of
the game learned to play the game more quickly and achieved
higher overall scores (M = 2440) than the group without written
instructions (M = 1333) (Figure 1). The highest score for those
without linguistic instructions was 3530 points, achieved after
about 4 minutes of play. By comparison, the highest score
achieved with linguistic instructions was 7720 points, achieved
after 2 minutes of play. Indeed, another group (including some
authors of the target article) recently found a similar pattern of
increased performance in Frostbite as a result of social guidance
(Tsividis et al. 2017).

Learning from others also does more than simply “speed up”
learning about the world. Human knowledge seems to accumulate
across generations, hence permitting progeny to learn in one life-
time what no generation before them could learn (Boyd et al.,
2011; Tomasello, 1999). We hypothesize that language – and par-
ticularly its flexibility to refer to abstract concepts – is key to faith-
ful transmission of knowledge, between individuals and through
generations. Human intelligence is so difficult to match because
we stand on the shoulders of giants. AIs need to “ratchet” up
their own learning, by communicating knowledge efficiently
within and across generations. Rather than be subject to a top-
down hive mind, intelligent agents should retain their individual
intellectual autonomy, and innovate new solutions to problems
based on their own experience and what they have learned from
others. The important discoveries of a single AI could then be
shared, and we believe language is the key to this kind of cultural
transmission. Cultural knowledge could then accumulate within
both AI and human networks.

In sum, learning from other people should be a high priority for
AI researchers. Lake et al. hope to set priorities for future
research in AI, but fail to acknowledge the importance of learning
from language and social cognition. This is a mistake: The more
complex the task is, the more learning to perform like a human
involves learning from other people.

Crossmodal lifelong learning in hybrid neural
embodied architectures

doi:10.1017/S0140525X17000292, e280

Stefan Wermter, Sascha Griffiths, and Stefan Heinrich
Knowledge Technology Group, Department of Informatics, Universität
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Figure 1 (Tessler et al.). Score trajectories for players in the game Frostbite over time. The two panels depict results with and without
instructions on the abstract structure of the game.
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Abstract: Lake et al. point out that grounding learning in general
principles of embodied perception and social cognition is the next step
in advancing artificial intelligent machines. We suggest it is necessary to
go further and consider lifelong learning, which includes developmental
learning, focused on embodiment as applied in developmental robotics
and neurorobotics, and crossmodal learning that facilitates integrating
multiple senses.

Artificial intelligence has recently been seen as successful in a
number of domains, such a playing chess or Go, recognising hand-
written characters, or describing visual scenes in natural language.
Lake et al. discuss these kinds of breakthroughs as a big step for
artificial intelligence, but raise the question how we can build
machines that learn like people? We can find an indication in a
survey of mind perception (Gray et al. 2007), which is the
“amount of mind” people are willing to attribute to others. Partic-
ipants judged machines to be high on agency but low on experi-
ence. We attribute this to the fact that computers are trained on
individual tasks, often involving a single modality such as vision
or speech, or a single context such as classifying traffic signs, as
opposed to interpreting spoken and gestured utterances. In con-
trast, for people, the “world” essentially appears as a multimodal
stream of stimuli, which unfold over time. Therefore, we
suggest that the next paradigm shift in intelligent machines will
have to include processing the “world” through lifelong and cross-
modal learning. This is important because people develop
problem-solving capabilities, including language processing, over
their life span and via interaction with the environment and
other people (Elman 1993, Christiansen and Chater 2016). In
addition, the learning is embodied, as developing infants have a
body-rational view of the world, but also seem to apply general
problem-solving strategies to a wide range of quite different
tasks (Cangelosi and Schlesinger 2015).

Hence, we argue that the proposed principles or “start-up soft-
ware” are coupled tightly with general learning mechanisms in the
brain. We argue that these conditions inherently enable the devel-
opment of distributed representations of knowledge. For
example, in our research, we found that architectural mecha-
nisms, like different timings in the information processing in the
cortex, foster compositionality that in turn enables both the devel-
opment of more complex body actions and the development of
language competence from primitives (Heinrich 2016). These
kinds of distributed representations are coherent with the cogni-
tive science on embodied cognition. Lakoff and Johnson (2003),
for example, argue that people describe personal relationships
in terms of the physical sensation of temperature. The transfer
from one domain to the other is plausible, as an embrace or hand-
shake between friends or family members, for example, will cause
a warm sensation for the participants. These kinds of temperature
exchanging actions are supposed to be signs of people’s positive
feelings towards each other (Hall 1966). The connection
between temperature sensation and social relatedness is argued
to reflect neural “bindings” (Gallese and Lakoff 2005). The
domain knowledge that is used later in life can be derived from
the primitives that are encountered early in childhood, for
example, in interactions between infants and parents, and is
referred to as intermodal synchrony (Rohlfing and Nomikou
2014). As a further example, our own research shows that learn-
ing, which is based on crossmodal integration, like the integration
of real sensory perception on low and on intermediate levels (as
suggested for the superior colliculus in the brain), can enable
both super-additivity and dominance of certain modalities based
on the tasks (Bauer et al. 2015).

In developing machines, approaches such as transfer learning
and zero-shot learning are receiving increasing attention, but
are often restricted to transfers from domain to domain or from
modality to modality. In the domain case, this can take the form
of a horizontal transfer, in which a concept in one domain is

learned and then transferred to another domain within the same
modality. For example, it is possible to learn about affect in
speech and to transfer that model of affect to music (Coutinho
et al. 2014). In the modality case, one can vertically transfer con-
cepts from one modality to another. This could be a learning
process in which language knowledge is transferred to the visual
domain (Laptev 2008; Donahue 2015). However, based on the
previous crossmodal integration in people, we must look into com-
binations of both, such that transferring between domains is not
merely switching between two modalities, but integrating into
both. Therefore, machines must exploit the representations that
form when integrating multiple modalities that are richer than
the sum of the parts. Recent initial examples include (1) under-
standing continuous counting expressed in spoken numbers
from learned spatial differences in gestural motor grounding
(Ruciński 2014) and (2) classifying affective states’ audiovisual
emotion expressions via music, speech, facial expressions, and
motion (Barros and Wermter 2016).
Freeing learning from modalities and domains in favour of dis-

tributed representations, and reusing learned representations in
the next individual learning tasks, will enable a larger view of
learning to learn. Having underlying hybrid neural embodied
architectures (Wermter et al. 2005) will support horizontal and
vertical transfer and integration. This is the “true experience”
machines need to learn and think like people. All in all, Lake
et al. stress the important point of grounding learning in general
principles of embodied perception and social cognition. Yet, we
suggest it is still necessary to go a step further and consider life-
long learning, which includes developmental learning, focused
on embodiment as applied in developmental robotics and neuro-
robotics, and crossmodal learning, which facilitates the integration
of multiple senses.

Authors’ Response

Ingredients of intelligence: From classic
debates to an engineering roadmap
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Abstract: We were encouraged by the broad enthusiasm for
building machines that learn and think in more human-like
ways. Many commentators saw our set of key ingredients as
helpful, but there was disagreement regarding the origin and
structure of those ingredients. Our response covers three main
dimensions of this disagreement: nature versus nurture,
coherent theories versus theory fragments, and symbolic versus
sub-symbolic representations. These dimensions align with
classic debates in artificial intelligence and cognitive science,
although, rather than embracing these debates, we emphasize
ways of moving beyond them. Several commentators saw our
set of key ingredients as incomplete and offered a wide range of
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additions. We agree that these additional ingredients are
important in the long run and discuss prospects for
incorporating them. Finally, we consider some of the ethical
questions raised regarding the research program as a whole.

R1. Summary

We were pleased to see so many thoughtful commentaries
and critiques in response to our target article. The project
of “building machines that learn and think like people” will
require input and insight from a broad range of disciplines,
and it was encouraging that we received responses from
experts in artificial intelligence (AI), machine learning, cog-
nitive psychology, cognitive development, social psychol-
ogy, philosophy, robotics, and neuroscience. As to be
expected, there were many differences in perspective and
approach, but before turning to those disagreements we
think it is worth starting with several main points of
agreement.

First, we were encouraged to see broad enthusiasm for
the general enterprise and the opportunities it would
bring. Like us, many researchers have been inspired by
recent AI advances to seek a better computational under-
standing of human intelligence, and see this project’s
potential for driving new breakthroughs in building more
human-like intelligence in machines. There were notable
exceptions: A few respondents focused more on the poten-
tial risks and harms of this effort, or questioned its whole
foundations or motivations. We return to these issues at
the end of this response.

Most commenters also agreed that despite rapid pro-
gress in AI technologies over the last few years, machine
systems are still not close to achieving human-like learning
and thought. It is not merely a matter of scaling up current
systems with more processors and bigger data sets. Funda-
mental ingredients of human cognition are missing, and
fundamental innovations must be made to incorporate
these ingredients into any kind of general-purpose,
human-like AI.

Our target article articulated one vision for making pro-
gress toward this goal. We argued that human-like intelli-
gence will come from machines that build models of the
world –models that support explanation and understanding,
prediction and planning, and flexible generalization for an
open-ended array of new tasks – rather than machines that
merely perform pattern recognition to optimize perfor-
mance in a previously specified task or set of tasks.

We outlined a set of key cognitive ingredients that could
support this approach, which are missing from many
current AI systems (especially those based on deep learn-
ing), but could add great value: the “developmental start-
up software” of intuitive physics and intuitive psychology,
and mechanisms for rapid model learning based on the
principles of compositionality, causality, and learning-to-
learn (along with complementary mechanisms for efficient
inference and planning with these models). We were grat-
ified to read that many commentators found these sug-
gested cognitive ingredients useful: “We agree … on
their list of ‘key ingredients’ for building human-like intel-
ligence” (Botvinick, Barrett, Battaglia, de Freitas,
Kumaran, Leibo, Lillicrap, Modayil, Mohamed, Rabi-
nowitz, Rezende, Santoro, Schaul, Summerfield,
Wayne, Weber, Wierstra, Legg, & Hassabis [Botvi-
nick et al.], abstract): “We entirely agree with the

central thrust of the article” (Davis & Marcus, para. 1):
“Causality, compositionality, and learning-to-learn … are
central for human learning” (Tessler, Goodman, &
Frank [Tessler et al.], para. 1): “Their ideas of ‘start-up
software’ and tools for rapid model learning … help pin-
point the sources of general, flexible intelligence”
(Dennet & Lambert, para. 1).
This is not to say that there was universal agreement

about our suggested ingredients. Our list was carefully
chosen but not meant to be complete, and many commen-
tators offered additional suggestions: emotion (Clark;
Güss & Dörner), embodiment and action (Baldassarre,
Santucci, Cartoni, & Caligiore; [Baldassarre et al.];
MacLennan; Marin & Mostafaoui; Oudeyer;
Wermter, Griffiths, & Heinrich [Wermter et al.]),
social and cultural learning (Clegg & Corriveau;
Dennett & Lambert; Tessler et al.; Marin & Mosta-
faoui), and open-ended learning through intrinsic moti-
vation (Baldassarre et al.; Güss & Dörner; Oudeyer;
Wermter et al.). We appreciate these suggested additions,
which help paint a richer and more complete picture of
the mind and the ingredients of human intelligence. We
discuss prospects for incorporating them into human-like
AI systems in Section 5.
The main dimensions of disagreement in the commentar-

ies revolved around how to implement our suggested ingre-
dients in building AI: To what extent should they be
explicitly built in, versus expected to emerge? What is
their real content? How integrated or fragmented is the
mind’s internal structure? And what form do they take?
How are these capacities represented in the mind or instan-
tiated in the brain, and what kinds of algorithms or data
structures should we be looking to in building an AI system?
Perhaps, unsurprisingly, these dimensions tended to

align with classic debates in cognitive science and AI, and
we found ourselves being critiqued from all sides. The
first dimension is essentially the nature versus nurture
debate (Section 2), and we were charged with advocating
both for too much nature (Botvinick et al.; Clegg & Cor-
riveau; Cooper) and too little (Spelke & Blass). The
second dimension relates to whether human mental
models are better characterized in terms of coherent theo-
ries versus theory fragments (Section 3): We were criticized
for positing theory-forming systems that were too strong
(Chater & Oaksford; Davis & Marcus; Livesey, Gold-
water, & Colagiuri [Livesey et al.]), but also too weak
(Dennett & Lambert). The third dimension concerns
symbolic versus sub-symbolic representations (Section 4):
To some commenters our proposal felt too allied with sym-
bolic cognitive architectures (Çağlar & Hanson;Hansen,
Lampinen, Suri, & McClelland [Hansen et al.]; Mac-
Lennan). To others, we did not embrace symbols deeply
enough (Forbus & Gentner).
Some who saw our article through the lens of these

classic debates, experienced a troubling sense of déjà vu.
It was “Back to the Future: The Return of Cognitive Func-
tionalism” forÇağlar &Hanson. ForCooper, it appeared
“that cognitive science has advanced little in the last 30
years with respect to the underlying debates.” We felt dif-
ferently. We took this broad spectrum of reactions from
commentators (who also, by and large, felt they agreed
with our main points), as a sign that our field collectively
might be looking to break out from these debates – to
move in new directions that are not so easily classified as
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just more of the same. It is understandable that many com-
mentators would see our argument through the lens of
these well-known and entrenched lines of argument,
perhaps because we, as individuals, have contributed to
them in previous publications. However, we wrote this
target article, in part, because we felt it was vital to redefine
this decades-long discussion in light of the recent progress
in AI and machine learning.
Recent AI successes, on the one hand, make us optimis-

tic about the project of building machines that learn and
think like people. Working toward this goal seems much
more plausible to many people than it did just a few
years ago. At the same time, recent AI successes, when
viewed from the perspective of a cognitive scientist, also
highlight the gaps between machine and human intelli-
gence. Our target article begins from this contrast:
Whereas the driving force behind most of today’s
machine learning systems is sophisticated pattern recogni-
tion, scaled up to increasingly large and diverse data sets,
the most impressive feats of human learning are better
understood in terms of model building, often with much
more limited data. We take the goal of building machines
that can build models of the world as richly, as flexibly,
and as quickly as humans can, as a worthy target for the
next phase of AI research. Our target article lays out
some of the key ingredients of human cognition that
could serve as a basis for making progress toward that goal.
We explicitly tried to avoid framing these suggestions in

terms of classic lines of argument that neural network
researchers and other cognitive scientists have engaged
in, to encourage more building and less arguing. With
regards to nature versus nurture (sect. 2 of this article),
we tried our best to describe these ingredients in a way
that was “agnostic with regards to [their] origins” (target
article, sect. 4, para. 2), but instead focused on their engi-
neering value. We made this choice, not because we do
not have views on the matter, but because we see the
role of the ingredients as more important than their
origins, for the next phase of AI research and the dialog
between scientists and engineers. Whether learned,
innate, or enriched, the fact that these ingredients are
active so early in development, is a signal of their impor-
tance. They are present long before a person learns a
new handwritten letter in the Character Challenge, or
learns to play a new video game in the Frostbite Challenge
(target article, sects. 3.1 and 3.2). AI systems could similarly
benefit from utilizing these ingredients. With regards to
symbolic versus sub-symbolic modeling (sect. 4 of this
article), we think the ingredients could take either form,
and they could potentially be added to symbolic architec-
tures, sub-symbolic architectures, or hybrid architectures
that transcend the dichotomy. Similarly, the model-build-
ing activities we describe could potentially be implemented
in a diverse range of architectures, including deep learning.
Regardless of implementation, demonstrations such as the
Characters and Frostbite challenges show that people can
rapidly build models of the world, and then flexibly recon-
figure these models for new tasks without having to retrain.
We see this as an ambitious target for AI that can be
pursued in a variety of ways, and will have many practical
applications (target article, sect. 6.2).
The rest of our response is organized as follows: The next

three sections cover in detail the main dimensions of
debate regarding the origin and structure of our

ingredients: nature versus nurture (sect. 2), coherent theo-
ries versus theory fragments (sect. 3), and symbolic versus
sub-symbolic representations (sect. 4). Additional ingredi-
ents suggested by the commentators are covered in
Section 5. We discuss insights from neuroscience and the
brain in Section 6. We end by discussing the societal risks
and benefits of building machines that learn and think
like people, in the light of the ethical issues raised by
some commentators (sect. 7).

R2. Nature versus nurture

As mentioned, our target article did not intend to take a
strong stance on “nature versus nurture” or “designing
versus learning” for how our proposed ingredients should
come to be incorporated into more human-like AI
systems. We believe this question is important, but we
placed our focus elsewhere in the target article. The main
thesis is that a set of ingredients – each with deep roots in
cognitive science –would be powerful additions to AI
systems in whichever way a researcher chooses to include
them. Whether the ingredients are learned, built in, or
enriched through learning, we see them as a primary goal
to strive for when building the next generation of AI
systems. There are multiple possible paths for developing
AI systems with these ingredients, and we expect individual
researchers will vary in the paths they choose for pursuing
these goals.
Understandably, many of the commentators linked their

views on the biological origin of our cognitive principles to
their strategy for developing AI systems with these princi-
ples. In contrast to the target article and its agnostic
stance, some commentators took a stronger nativist
stance, arguing that aspects of intuitive physics, intuitive
psychology, and causality are innate, and it would be valu-
able to develop AI systems that “begin with human core
knowledge” (Spelke & Blass, para. 4). Other commenta-
tors took a stronger nurture stance, arguing that the goal
should be to learn these core ingredients rather than
build systems that start with them (Botvinick et al.;
Cooper). Relatedly, many commentators pointed out addi-
tional nurture-based factors that are important for human-
like learning, such as social and cultural forms of learning
(Clegg & Corriveau; Dennet & Lambert; Marin &
Mostafaoui; Tessler et al.). In the section that follows,
we respond to the different suggestions regarding the
origin of the key ingredients, leaving the discussion of addi-
tional ingredients, such as social learning, for Section 5.
The response from researchers at Google DeepMind

(Botvinick et al.) is of particular interest because our
target article draws on aspects of their recent work. We
offered their work as examples of recent accomplishments
in AI (e.g., Graves et al. 2016; Mnih et al. 2015; Silver et al.
2016). At the same time, we highlighted ways that their
systems do not learn or think like people (e.g., the Frostbite
Challenge), but could potentially be improved by aiming
for this target and by incorporating additional cognitive
ingredients. Botvinick et al.’s response suggests that there
are substantial areas of agreement. In particular, they see
the five principles as “a powerful set of target goals for AI
research” (para. 1), suggesting similar visions of what
future accomplishments in AI will look like, and what the
required building blocks are for getting there.
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Botvinick et al. strongly emphasized an additional prin-
ciple: Machines should learn for themselves with minimal
hand engineering from their human designers. We agree
this is a valuable principle to guide researchers seeking to
build learning-based general AI systems, as DeepMind
aims to. To the extent that this principle is related to our
principle of “learning-to-learn,” we also endorse it in build-
ing machines that learn and think like people. Children are
born capable of learning for themselves everything they will
ultimately learn, without the need for an engineer to tweak
their representations or algorithms along the way.
However, it is not clear that the goals of building general
AI systems and building machines that learn like people
always converge, and the best design approach might be
correspondingly different. Human beings (and other
animals) may be born genetically programmed with mech-
anisms that effectively amount to highly engineered cogni-
tive representations or algorithms –mechanisms that
enable their subsequent learning and learning-to-learn abil-
ities. Some AI designers may want to emulate this
approach, whereas others may not.

The differences between our views may also reflect a dif-
ference in how we prioritize a set of shared principles and
how much power we attribute to learning-to-learn
mechanisms. Botvinick et al. suggest – but do not state
explicitly – that they prioritize learning with minimal engi-
neering above the other principles (and, thus, maximize
the role of learning-to-learn). Under this strategy, the
goal is to develop systems with our other key ingredients
(compositionality, causality, intuitive physics, and intuitive
psychology), insofar as they can be learned from scratch
without engineering them. In the short term, this approach
rests heavily on the power of learning-to-learn mechanisms
to construct these other aspects of an intelligent system. In
cases where this strategy is not feasible, Botvinick et al.
state their approach also licenses them to build in ingredi-
ents too, but (we assume) with a strong preference for
learning the ingredients wherever possible.

Although these distinctions may seem subtle, they can
have important consequences for research strategy and
outcome. Compare DeepMind’s work on the Deep Q-
Network (Mnih et al. 2015) to the theory learning approach
our target article advocated for tackling the Frostbite Chal-
lenge, or their work on one-shot learning in deep neural
networks (Rezende et al. 2016; Santoro et al. 2016;
Vinyals et al. 2016) and our work on Bayesian Program
Learning (Lake et al. 2015a). DeepMind’s approaches to
these problems clearly learn with less initial structure
than we advocate for, and also clearly have yet to approach
the speed, flexibility, and richness of human learning, even
in these constrained domains.

We sympathize with DeepMind’s goals and believe
their approach should be pursued vigorously, along with
related suggestions by Cooper and Hansen et al.
However, we are not sure how realistic it is to pursue all
of our key cognitive ingredients as emergent phenomena
(see related discussion in sect. 5 of the target article),
using the learning-to-learn mechanisms currently on
offer in the deep learning landscape. Genuine intuitive
physics, intuitive psychology, and compositionality, are
unlikely to emerge from gradient-based learning in a rela-
tively generic neural network. Instead, a far more expen-
sive evolutionary-style search over discrete architectural
variants may be required (e.g., Real et al. 2017; Stanley

& Miikkulainen 2002). This approach may be character-
ized as “building machines that evolve to learn and think
like people,” in that such an extensive search would pre-
sumably include aspects of both phylogeny and ontogeny.
As discussed in Section 4.1 of the target article, children
have a foundational understanding of physics (objects,
substances, and their dynamics) and psychology (agents
and their goals) early in development. Whether innate,
enriched, or rapidly learned, it seems unlikely that these
ingredients arise purely in ontogeny from an extensive
structural search over a large space of cognitive architec-
tures, with no initial bias toward building these kinds of
structures. In contrast, our preferred approach is to
explore both powerful learning algorithms and starting
ingredients together.
Over the last decade, this approach has led us to the key

ingredients that are the topic of the target article (e.g.,
Baker et al. 2009; 2017; Battaglia et al. 2013; Goodman
et al. 2008; Kemp et al. 2007; Lake et al. 2015a; Ullman
et al. 2009); we did not start with these principles as
dogma. After discovering which representations, learning
algorithms, and inference mechanisms appear especially
powerful in combination with each other, it is easier to
investigate their origins and generalize them so they
apply more broadly. Examples of this strategy from our
work include the grammar-based framework for discover-
ing structural forms in data (Kemp & Tenenbaum 2008),
and a more emergent approach for implicitly learning
some of the same forms (Lake et al. 2016), as well as
models of causal reasoning and learning built on the
theory of causal Bayesian networks (Goodman et al. 2011;
Griffiths & Tenenbaum 2005, 2009). This strategy has
allowed us to initially consider a wider spectrum of
models, without a priori rejecting those that do not learn
everything from scratch. Once an ingredient is established
as important, it provides important guidance for additional
research on how it might be learned.
We have pursued this strategy primarily through struc-

tured probabilistic modeling, but we believe it can be fruit-
fully pursued using neural networks as well. As Botvinick
et al. point out, this strategy would not feel out of place in
contemporary deep learning research. Convolutional
neural networks build in a form of translation invariance
that proved to be highly useful for object recognition (Kriz-
hevsky et al. 2012; LeCun et al. 1989), and more recent
work has explored building various forms of compositional-
ity into neural networks (e.g., Eslami et al. 2016; Reed & de
Freitas 2016). Increasingly, we are seeing more examples of
integrating neural networks with lower-level building
blocks from classic psychology and computer science (see
sect. 6 of target article): selective attention (Bahdanau
et al. 2015; Mnih et al. 2014; Xu et al. 2015), augmented
working memory (Graves et al. 2014; Grefenstette et al.
2015; Sukhbaatar et al. 2015; Weston et al. 2015b), and
experience replay (McClelland et al. 1995; Mnih et al.
2015). AlphaGo has an explicit model of the game of Go
and builds in a wide range of high level and game-specific
features, including how many stones a move captures,
how many turns since a move was played, the number of
liberties, and whether a ladder will be successful or not
(Silver et al. 2016). If researchers are willing to include
these types of representations and ingredients, we hope
they will also consider our higher level cognitive
ingredients.
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It is easy to miss fruitful alternative representations by
considering only models with minimal assumptions, espe-
cially in cases where the principles and representations
have strong empirical backing (as is the case with our sug-
gested principles). In fact, Botvinick et al. acknowledge
that intuitive physics and psychology may be exceptions
to their general philosophy, and could be usefully built in,
given their breadth of empirical support. We were gratified
to see this, and we hope it is clear to them and like-minded
AI researchers that our recommendations are to consider
building in only a relatively small set of core ingredients
that have this level of support and scope. Moreover, a
purely tabula rasa strategy can lead to models that
require unrealistic amounts of training experience, and
then struggle to generalize flexibly to new tasks without
retraining. We believe that has been the case so far for
deep learning approaches to the Characters and Frostbite
challenges.

R3. Coherent theories versus theory fragments

Beyond the question of where our core ingredients come
from, there is the question of their content and structure.
In our article, we argued for theory-like systems of knowl-
edge and causally structured representations, in particular
(but not limited to) early-emerging intuitive physics and
intuitive psychology. This view builds on extensive empiri-
cal research showing how young infants organize the world
according to general principles that allow them to general-
ize across varied scenarios (Spelke 2003; Spelke & Kinzler
2007), and on theoretical and empirical research applied to
children and adults that sees human knowledge in different
domains as explained by theory-like structures (Carey 2009;
Gopnik et al. 2004; Murphy & Medin 1985; Schulz 2012b;
Wellman & Gelman 1992; 1998).
Commentators were split over how rich and how theory-

like (or causal) these representations really are in the
human mind and what that implies for building human-
like AI. Dennett & Lambert see our view of theories as
too limited – useful for describing cognitive processes
shared with animals, but falling short of many distinctively
human ways of learning and thought. On the other hand,
several commentators saw our proposal as too rich for
much of human knowledge. Chater & Oaksford argue
by analogy to case-law, that “knowledge has the form of a
loosely inter-linked history of reusable fragments”
(para. 6) rather than a coherent framework. They stress
that mental models are often shallow, and Livesey et al.
add that people’s causal models are not only shallow, but
also often wrong, and resistant to change (such as the
belief that vaccines cause autism). Davis & Marcus simi-
larly suggest that the models we propose for the core ingre-
dients are too causal, too complete, and too narrow to
capture all of cognitive reasoning: Telling cats from dogs
does not require understanding their underlying biological
generative process; telling that a tower will fall does not
require specifying in detail all of the forces and masses at
play along the trajectory; and telling that someone is
going to call someone does not require understanding
whom they are calling or why.
In our target article, although we emphasized a view of

cognition as model building, we also argued that pattern
recognition can be valuable and even essential – in

particular, for enabling efficient inference, prediction,
and learning in rich causal theories. We suggested that dif-
ferent behaviors might be best explained by one, or the
other, or both. For example, identifying the presence in a
scene of an object that we call a “fridge” may indeed be
driven by pattern recognition. But representing that
object as a heavy, rigid, inanimate entity, and the corre-
sponding predictions and plans that representation allows,
is likely driven by more general abstract knowledge about
physics and objects, whose core elements are not tied
down to extensive patterns of experience with particular
categories of objects. We could just as well form this repre-
sentation upon our first encounter with a fridge, without
knowing what it is called or knowing anything about the cat-
egory of artifacts that it is one instance of.
On the issue of rich versus shallow representations,

whereas intuitive theories of physics and psychology may
be rich in the range of generalizable inferences they
support, these and other intuitive theories are shallow in
another sense; they are far more shallow than the type of
formal theories scientists aim to develop, at the level of
base reality and mechanism. From the point of view of a
physicist, a game engine representation of a tower of
blocks falling down is definitely not, as Davis & Marcus
describe it, a “physically precise description of the situa-
tion” (para. 4). A game engine representation is a simplifi-
cation of the physical world; it does not go down to the
molecular or atomic level, and it does not give predictions
at the level of a nanosecond. It represents objects with sim-
plified bounding shapes, and it can give coarse predictions
for coarse time-steps. Also, although real physics engines
are useful analogies for a mental representation, they are
not one and the same, and finding the level of granularity
of the mental physics engine (if it exists) is an empirical
question. To the point about intuitive psychology, theories
that support reasoning about agents and goals do not need
to specify all of the moving mental or neural parts involved
in planning, to make useful predictions and explanations
about what an agent might do in a given situation.
Returning to the need for multiple types of models, and

to the example of the fridge, Chater & Oaksford point to
a significant type of reasoning not captured by either recog-
nizing an image of a fridge or reasoning about its physical
behavior as a heavy, inert object. Rather, they consider
the shallow and sketchy understanding of how a fridge
stays cold. Chater & Oaksford use such examples to
reason that, in general, reasoning is done by reference to
examplars. They place stored, fragmented exemplars in
the stead of wide-scope and deep theories. However, we
suggest that even the shallow understanding of the opera-
tion of a fridge may best be phrased in the language of a
causal, generative model, albeit a shallow or incomplete
one. That is, even in cases in which we make use of previ-
ously stored examples, these examples are probably best
represented by a causal structure, rather than by external
or superficial features. To use Chater & Oaksford’s
analogy, deciding which precedent holds in a new case
relies on the nature of the offense and the constraining cir-
cumstances, not the surname of the plaintiff. In the same
way that two letters are considered similar not because of
a pixel-difference measure, but because of the similar
strokes that created them, exemplar-based reasoning
would rely on the structural similarity of causal models of
a new example and stored fragments (Medin & Ortony
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1989). An interesting hypothesis is that shallow causal
models or mini-theories could be filling their gaps with
more general, data-driven statistical machinery, such as a
causal model with some of its latent variables generated
by neural networks. Another possibility is that some mini-
causal theories are generated ad hoc and on the fly
(Schulz, 2012a), and so it should not be surprising that
they are sometimes ill-specified and come into conflict
with one another.

Unlike more general and early developing core theories
such as intuitive physics and intuitive psychology, these
mini-theory fragments may rely on later-developing lan-
guage faculties (Carey 2009). More generally, the early
forms of core theories such as intuitive physics and psychol-
ogy, may be, asDennett & Lambert put it, “[bootstrapped]
into reflective comprehension” (para. 3). Similar points have
been made in the past by Carey (2009) and Spelke (Spelke
2003; Spelke & Kinzler 2007), among others, regarding
the role of later-developing language in using domain-spe-
cific and core knowledge concepts to extend intuitive theo-
ries as well as to build formal theories. The principles of
core knowledge by themselves, are not meant to fully
capture the formal or qualitative physical understanding of
electricity, heat, light, and sound (distinguishing it from
from the qualitative reasoning that Forbus & Gentner
discuss). But, if later-developing aspects of physical under-
standing are built on these early foundations, that may be
one source of the ontological confusion and messiness that
permeates our later intuitive theories as well as people’s
attempts to understand formal theories in intuitive terms
(Livesey et al.). Electrons are not little colliding ping-
pong balls; enzymes are not trying to achieve an aspiration.
But our parsing of the world into regular-bounded objects
and intentional agents produces these category errors,
because of the core role objects and agents play in cognition.

R4. Symbolic versus sub-symbolic
representations

Beyond the richness and depth of our intuitive theories, the
nature of representation was hotly contested in other ways,
for the purposes of both cognitive modeling and developing
more human-like AI. A salient division in the commentaries
was between advocates of “symbolic” versus “sub-symbolic”
representations, or relatedly, those who viewed our work
through the lens of “explicit” versus “implicit” representa-
tions or “rules” versus “associations.” Several commentators
thought our proposal relied too much on symbolic repre-
sentations, especially because sub-symbolic distributed
representations have helped facilitate much recent pro-
gress in machine learning (Çağlar & Hanson; Hansen
et al.; MacLennan). Other commentators argued that
human intelligence rests on more powerful forms of sym-
bolic representation and reasoning than our article empha-
sized, such as abstract relational representations and
analogical comparison (Forbus & Gentner).

This is a deeply entrenched debate in cognitive science
and AI – one that some of us have directly debated in
past articles (along with some of the commentators [e.g.,
Griffiths et al. 2010; McClelland et al. 2010]), and we are
not surprised to see it resurfacing here. Although we
believe that this is still an interesting debate, we also see
that recent work in AI and computational modeling of

human cognition has begun to move beyond it, in ways
that could be valuable.
To this end, we suggested that pattern recognition versus

model building – and the ability to rapidly acquire new
models and then reconfigure these models for new tasks
without having to retrain – is a useful way to view the
wide gap between human and machine intelligence. Imple-
menting AI systems with our key ingredients would be a
promising route for beginning to bridge this gap. Although
our proposal is not entirely orthogonal to the symbolic
versus sub-symbolic debate, we do see it as importantly
different. Genuine model-building capabilities could be
implemented in fully symbolic architectures or in a
range of architectures that combine minimal symbolic com-
ponents (e.g., objects, relations, agents, goals) with compo-
sitionality and sub-symbolic representation.
These ingredients could also be implemented in an

architecture that does not appear to have symbols in any
conventional sense – one that advocates of sub-symbolic
approaches might even call non-symbolic – although we
expect that advocates of symbolic approaches would point
to computational states, which are effectively functioning
as symbols. We do not claim to be breaking any new
ground with these possibilities; the theoretical landscape
has been well explored in philosophy of mind. We merely
want to point out that our set of key ingredients is not
something that should trouble people who feel that
symbols are problematic. On the contrary, we hope this
path can help bridge the gap between those who see
symbols as essential, and those who find them mysterious
or elusive.
Of our suggested ingredients, compositionality is argu-

ably the most closely associated with strongly symbolic
architectures. In relation to the above points, it is especially
instructive to discuss how close this association has to be,
and how much compositionality could be achievable
within approaches to building intelligent machines that
might not traditionally be seen as symbolic.
Hansen et al. argue that there are inherent limitations

to “symbolic compositionality” that deep neural networks
help overcome. Although we have found traditional sym-
bolic forms of compositionality to be useful in our work,
especially in interaction with other key cognitive ingredi-
ents such as causality and learning-to-learn (e.g.,
Goodman et al. 2011; 2015; Lake et al. 2015a), there may
be other forms of compositionality that are useful for learn-
ing and thinking like humans, and easier to incorporate into
neural networks. For example, neural networks designed to
understand scenes with multiple objects (see also Fig. 6 of
our target article), or to generate globally coherent text
(such as a recipe), have found simple forms of composition-
ality to be extremely useful (e.g., Eslami et al. 2016; Kiddon
et al. 2016). In particular, “objects” are minimal symbols
that can support powerfully compositional model building,
even if implemented in an architecture that would other-
wise be characterized as sub-symbolic (e.g., Eslami et al.
2016; Raposo et al. 2017). The notion of a physical object –
a chunk of solid matter that moves as a whole, moves
smoothly through space and time without teleporting, dis-
appearing, or passing through other solid objects – emerges
very early in development (Carey 2009). It is arguably the
central representational construct of human beings’ earliest
intuitive physics, one of the first symbolic concepts in any
domain that infants have access to, and likely shared with
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many other animal species in some form (see target article,
sect. 4.1.1). Hence, the “object” concept is one of the best
candidates for engineering AI to start with, and a promising
target for advocates of sub-symbolic approaches who might
want to incorporate useful but minimal forms of symbols
and compositionality into their systems.
Deep learning research is also beginning to explore more

general forms of compositionality, often by utilizing hybrid
symbolic and sub-symbolic representations. Differentiable
neural computers (DNCs) are designed to process sym-
bolic structures such as graphs, and they use a mixture of
sub-symbolic neural network-style computation and sym-
bolic program traces to reason with these representations
(Graves et al. 2016). Neural programmer-interpreters
(NPIs) begin with symbolic program primitives embedded
in their architecture, and they learn to control the flow of
higher-level symbolic programs that are constructed from
these primitives (Reed & de Freitas 2016). Interestingly,
the learned controller is a sub-symbolic neural network,
but it is trained with symbolic supervision. These systems
are very far from achieving the powerful forms of model
building that we see in human intelligence, and it is likely
that more fundamental breakthroughs will be needed.
Still, we are greatly encouraged to see neural network
researchers who are not ideologically opposed to the role
of symbols and compositionality in the mind and, indeed,
are actively looking for ways to incorporate these notions
into their paradigm.
In sum, by viewing the impressive achievements of

human learning as model building rather than pattern rec-
ognition, we hope to emphasize a new distinction, different
from classic debates of symbolic versus sub-symbolic com-
putation, rules versus associations, or explicit versus
implicit reasoning. We would like to focus on people’s
capacity for learning flexible models of the world as a
target for AI research – one that might be reached success-
fully through a variety of representational paradigms if they
incorporate the right ingredients. We are pleased that the
commentators seem to broadly support “model building”
and our key ingredients as important goals for AI research.
This suggests a path for moving forward together.

R5. Additional ingredients

Many commentators agreed that although our key ingredi-
ents were important, we neglected another obvious, crucial
component of human-like intelligence. There was less
agreement on which component we had neglected. Over-
looked components included emotion (Güss & Dörner;
Clark); embodiment and action (Baldassarre et al.;Mac-
Lennan; Marin & Mostafaoui; Oudeyer; Wermter
et al.); learning from others through social and cultural
interaction (Clegg & Corriveau; Dennett & Lambert;
Marin & Mostafaoui; Tessler et al.); open-ended learn-
ing combined with the ability to set one’s own goal (Baldas-
sarre et al.; Oudeyer; Wermter et al.); architectural diversity
(Buscema & Sacco); dynamic network communication
(Graham); and the ability to get a joke (Moerman).
Clearly, our recipe for building machines that learn and

think like people was not complete. We agree that each of
these capacities should figure in any complete scientific
understanding of human cognition, and will likely be
important for building artificial human-like cognition.

There are likely other missing components as well.
However, the question for us as researchers interested in
the reverse engineering of cognition is: Where to start?
We focused on ingredients that were largely missing from

today’s deep learning AI systems, ones that were clearly
crucial and present early in human development, and with
large expected payoffs in terms of core AI problems. Impor-
tantly, for us, we also wanted to draw focus to ingredients
that to our mind can be implemented in the relatively
short term, given a concentrated effort. Our challenges
are not meant to be AI-complete, but ones that can poten-
tially be met in the next few years. For many of the sugges-
tions the commentators made, it is hard (for us, at least) to
know where to begin concrete implementation.
We do not mean that there have not been engineering

advances and theoretical proposals for many of these sug-
gestions. The commentators have certainly made progress
on them, and we and our colleagues have also made theo-
retical and engineering contributions to some. But to do
full justice to all of these missing components – from
emotion to sociocultural learning to embodiment – there
are many gaps that we do not know how to fill yet. Our
aim was to set big goal posts on the immediate horizon,
and we admit that there are others beyond. With these
implementation gaps in mind, we have several things to
say about each of these missing components.

R5.1. Machines that feel: Emotion

In popular culture, intelligent machines differ from
humans in that they do not experience the basic passions
that color people’s inner life. To call someone robotic
does not mean that they lack a good grasp of intuitive
physics, intuitive psychology, compositionality, or causality.
It means they, like the TinMan, have no heart. Research on
“mind attribution” has also borne out this distinction (Gray
& Wegner 2012; Gray et al. 2007; Haslam 2006; Loughnan
& Haslam 2007): Intelligent machines and robots score
highly on the agency dimension (people believe such crea-
tures can plan and reason), but low on the experience
dimension (people believe they lack emotion and subjective
insight). In line with this, Güss & Dörner; Clark; and
Sternberg highlight emotion as a crucial missing ingredi-
ent in building human-like machines. As humans ourselves,
we recognize the importance of emotion in directing
human behavior, in terms of both understanding oneself
and predicting and explaining the behavior of others. The
challenge, of course, is to operationalize this relationship
in computational terms. To us, it is not obvious how to go
from evocative descriptions, such as “a person would get
an ‘uneasy’ feeling when solution attempts do not result
in a solution” (as observed by Güss & Dörner, para. 5),
to a formal and principled implementation of unease in a
decision-making agent. We see this as a worthwhile
pursuit for developing more powerful and human-like AI,
but we see our suggested ingredients as leading to concrete
payoffs that are more attainable in the short term.
Nonetheless we can speculate about what it might take

to structure a human-like “emotion” ingredient in AI, and
how it would relate to the other ingredients we put forth.
Pattern-recognition approaches (based on deep learning
or other methods) have had some limited success in
mapping between video and audio of humans to simple
emotion labels like happy (e.g., Kahou et al. 2013).
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Sentiment analysis networks learn to map between text and
its positive or negative valence (e.g., Socher et al. 2013).
But genuine, human-like concepts or experiences of
emotion will require more, especially more sophisticated
model building, with close connections and overlap with
the ingredient of intuitive psychology. Humans may have
a “lay theory of emotion” (Ong et al. 2015) that allows
them to reason about the causal processes that drive the
experiences of frustration, anger, surprise, hate, and joy.
That is, something like “achieving your goal makes you
feel happy.” This type of theory would also connect the
underlying emotions to observable behaviors such as
facial expressions (downward turned lips), action (crying),
body posture (hunched shoulders), and speech (“It’s
nothing, I’m fine”). Moreover, as pointed out by Güss &
Dörner, a concept of “anger” must include how it modu-
lates perception, planning, and desires, touching on key
aspects of intuitive psychology.

R5.2. Machines that act: Action and embodiment

One of the aspects of intelligence “not much stressed by
Lake et al.” was the importance of intelligence being
“strongly embodied and situated,” located in an acting
physical body (Baldassarre et al., para. 4), with possible
remedies coming in the form of “developmental robotics
and neurorobotics” (Oudeyer; Wermter et al.). This
was seen by some commentators as more than yet-
another-key-ingredient missing from current deep learning
research. Rather, they saw it as an issue for our own pro-
posal, particularly as it relates to physical causality and
learning. Embodiment and acting on the real world pro-
vides an agent with “a foundation for its understanding of
intuitive physics” (MacLennan), and “any learning or
social interacting is based on social motor embodiment.”
Even understanding what a chair is requires the ability to
sit on it (Marin & Mostafaoui).

We were intentionally agnostic in our original proposal
regarding the way a model of intuitive physics might be
learned, focusing instead on the existence of the ability,
its theory-like structure, usefulness, and early emergence,
and its potential representation as something akin to a
mental game engine. It is an interesting question whether
this representation can be learned only by passively
viewing video and audio, without active, embodied engage-
ment. In agreement with some of the commentators, it
seems likely to us that such a representation in humans
does come about – over a combination of both evolutionary
and developmental processes – from a long history of
agents’ physical interactions with the world – applying
their own forces on objects (perhaps somewhat haphaz-
ardly at first in babies), observing the resulting effects,
and revising their plans and beliefs accordingly.

An intuitive theory of physics built on object concepts,
and analogs of force and mass, would also benefit a physi-
cally realized robot, allowing it to plan usefully from the
beginning, rather than bumbling aimlessly and wastefully
as it attempts some model-free policies for interaction
with its environment. An intuitive theory of physics can
also allow the robot to imagine potential situations
without going through the costly operation of carrying
them out. Furthermore, unlike MacLennan’s require-
ment that theories be open to discourse and communica-
tion, such a generative, theory-like representation does

not need to be explicit and accessible in a communicative
sense (target article, sect. 4). Instead, people may have
no introspective insight into its underlying computations,
in the same way that they have no introspective insight
into the computations that go into recognizing a face.
To MacLennan’s point regarding the necessary tight

coupling between an agent and a real environment: If a
theory-like representation turns out to be the right repre-
sentation, we do not see why it cannot be arrived at by
virtual agents in a virtual environment, provided that they
are provided with the equivalents of somatosensory infor-
mation and the ability to generate the equivalent of
forces. Agents endowed with a representation of intuitive
physics may have calibration issues when transferred
from a virtual environment to a situated and embodied
robot, but it would likely not result in a complete break-
down of their physical understanding, any more than
adults experience a total breakdown of intuitive physics
when transferred to realistic virtual environments.
As for being situated in a physical body, although the

mental game-engine representation has been useful in cap-
turing people’s reasoning about disembodied scenes (such
as whether a tower of blocks on a table will fall down), it is
interesting to consider extending this analogy to the exis-
tence of an agent’s body and the bodies of other agents.
Many games rely on some representation of the players,
with simplified bodies built of “skeletons” with joint con-
straints. This type of integration would fit naturally with
the long-investigated problem of pose estimation (Moeslund
et al. 2006), which has recently been the target of discrimina-
tive deep learning networks (e.g., Jain et al. 2014; Toshev &
Szegedy 2014). Here, too, we would expect a converging
combination of structured representations and pattern rec-
ognition: That is, rather than mapping directly between
image pixels and the target label sitting, there would be an
intermediate simplified body-representation, informed by
constraints on joints and the physical situation. This interme-
diate representation could in turn be categorized as sitting
(see related hybrid architectures from recent years [e.g.,
Chen & Yuille 2014; Tompson et al. 2014]).

R5.3. Machines that learn from others: Culture and
pedagogy

We admit that the role of sociocultural learning is, as
Clegg & Corriveau put it, “largely missing from Lake
et al.’s discussion of creating human-like artificial intelli-
gence” (abstract). We also agree that this role is essential
for human cognition. As the commentators pointed out,
it is important both on the individual level, as “learning
from other people helps you learn with fewer data”
(Tessler et al., para. 2) and also on the societal level, as
“human knowledge seems to accumulate across genera-
tions” (Tessler et al., para. 5). Solving Frostbite is not
only a matter of combining intuitive physics, intuitive psy-
chology, compositionality, and learning-to-learn, but also a
matter of watching someone play the game, or listening to
someone explain it (Clegg & Corriveau; Tessler et al.),
as we have shown in recent experiments (Tsividis et al.
2017).
Some of the commentators stressed the role of imitation

and over-imitation in this pedagogical process (Dennet &
Lambert; Marin & Mostafaoui). Additionally, Tessler
et al. focused more on language as the vehicle for this
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learning, and framed the study of social learning as a part of
language learning. Our only disagreement with Tessler
et al. regarding the importance of language, is their conten-
tion that we “fail to acknowledge the importance of learn-
ing from language.” We completely agree about the
importance of understanding language for understanding
cognition. However, we think that by understanding the
early building blocks we discussed, we will be in a better
position to formally and computationally understand lan-
guage learning and use. For a fuller reply to this point,
we refer the reader to Section 5 in the target article.
Beyond being an additional ingredient,Clegg & Corri-

veau suggest sociocultural learning may override some of
the key ingredients we discuss. As they nicely put it,
“although the developmental start-up software children
begin with may be universal, early in development child-
ren’s ‘software updates’ may be culturally-dependent.
Over time, these updates may even result in distinct oper-
ating systems” (para. 4). Their evidence for this includes
different culture-dependent time-courses for passing the
false belief task, understanding fictional characters as
such, and an emphasis on consensus-building (Corriveau
et al. 2013; Davoodi et al. 2016; Liu et al. 2008). We see
these differences as variations on, or additions to, the
core underlying structure of intuitive psychology, which
is far from monolithic in its fringes. The specific causes
of a particular behavior posited by a 21st-century
Western architect may be different from those of a medi-
eval French peasant or a Roman emperor, but the parsing
of behavior in terms of agents that are driven by a mix of
desire, reasoning, and necessity, would likely remain the
same, just as their general ability to recognize faces
would likely be the same (Or as an emperor put it,
“[W]hat is such a person doing, and why, and what is he
saying, and what is he thinking of, and what is he contriv-
ing” [Aurelius 1937]). Despite these different stresses, we
agree with Clegg & Corriveau that sociocultural learning
builds upon the developmental start-up packages, rather
than by starting with a relatively blank slate child that
develops primarily through socio-cultural learning via lan-
guage and communication (Mikolov et al. 2016).

R5.4. Machines that explore: Open-ended learning and
intrinsic motivation

Several commentators (Baldassarre et al.; Güss &
Dörner; Oudeyer; Wermter et al.) raised the challenge
of building machines that engage in open-ended learning
and exploration. Unlike many AI systems, humans (espe-
cially children) do not seem to optimize a supervised objec-
tive function; they explore the world autonomously,
develop new goals, and acquire skill repertoires that gener-
alize across many tasks. This challenge has been particularly
acute for developmental roboticists, who must endow their
robots with the ability to learn a large number of skills from
scratch. It is generally infeasible to solve this problem by
defining a set of supervised learning problems, because of
the complexity of the environment and sparseness of
rewards. Instead, roboticists have attempted to endow
their robots with intrinsic motivation to explore, so that
they discover for themselves what goals to pursue and
skills to acquire.
We agree that open-ended learning is a hallmark of

human cognition. One of our main arguments for why

humans develop rich internal models is that these
support the ability to flexibly solve an infinite variety of
tasks. Acquisition of such models would be impossible if
humans were not intrinsically motivated to acquire infor-
mation about the world, without being tied to particular
supervised tasks. The key question, in our view, is how to
define intrinsic motivation in such a way that a learning
system will seek to develop an abstract understanding of
the world, populated by agents, objects, and events. Devel-
opmental roboticists tend to emphasize embodiment as a
source of constraints: Robots need to explore their physical
environment to develop sophisticated, generalizable
sensory-motor skills. Some (e.g., MacLennan) argue that
high-level competencies, such as intuitive physics and cau-
sality, are derived from these same low-level sensory-motor
skills. As in the previous section, we believe that embodi-
ment, although important, is insufficient: humans can use
exploration to develop abstract theories that transcend par-
ticular sensors and effectors (e.g., Cook et al. 2011). For
example, in our Frostbite Challenge, many of the alterna-
tive goals are not defined in terms of any particular visual
input or motor output. A promising approach would be
to define intrinsic motivation in terms of intuitive theories –
autonomous learning systems that seek information about
the causal relationships between agents, objects, and
events. This form of curiosity would augment, not
replace, the forms of lower-level curiosity necessary to
develop sensory-motor skills.

R6. Insights from neuroscience and the brain

Our article did not emphasize neuroscience as a source of
constraint on AI, not because we think it is irrelevant
(quite the contrary), but because we felt that it was neces-
sary to first crystallize the core ingredients of human intel-
ligence at a computational level before trying to figure out
how they are implemented in physical hardware. In this
sense, we are advocating a mostly top-down route
through the famous Marr levels of analysis, much as Marr
himself did. This was unconvincing to some commentators
(Baldassarre et al.; George; Kriegeskorte & Mok;
Marblestone, Wayne, & Kording). Surely it is necessary
to consider neurobiological constraints from the start, if
one wishes to build human-like intelligence?
We agree that it would be foolish to argue for cognitive

processes that are in direct disagreement with known neu-
robiology. However, we do not believe that neurobiology in
its current state provides many strong constraints of this
sort. For example, George suggests that lateral connec-
tions in visual cortex indicate that the internal model
used by the brain enforces contour continuity. This seems
plausible, but it is not the whole story. We see the world
in three dimensions, and there is considerable evidence
from psychophysics that we expect the surfaces of objects
to be continuous in three dimensions, even if such continu-
ity violates two-dimensional contour continuity (Nakayama
et al. 1989). Thus, the situation is more like the opposite of
what George argues: a challenge for neuroscience is to
explain how neurons in visual cortex enforce the three-
dimensional continuity constraints we know exist from psy-
chophysical research.
Kriegeskorte & Mok point to higher-level vision as a

place where neural constraints have been valuable. They
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write that core object recognition has been “conquered” by
brain-inspired neural networks. We agree that there has
been remarkable progress on basic object recognition
tasks, but there is still a lot more to understand scientifically
and to achieve on the engineering front, even in visual
object perception. Take, for example, the problem of occlu-
sion. Because most neural network models of object recog-
nition have no explicit representation of objects arranged in
depth, they are forced to process occlusion as a kind of
noise. Again, psychophysical evidence argues strongly
against this: When objects pass behind an occluding
surface, we do not see them as disappearing or becoming
corrupted by a massive amount of noise (Kellman &
Spelke 1983). A challenge for neuroscience is to explain
how neurons in the ventral visual stream build a 3D repre-
sentation of scenes that can appropriately handle occlusion.
The analogous challenge exists in AI for brain-inspired arti-
ficial neural networks.

Further challenges, just in the domain of object percep-
tion, include perceiving multiple objects in a scene at once;
perceiving the fine-grained shape and surface properties of
novel objects for which one does not have a class label; and
learning new object classes from just one or a few examples,
and then generalizing to new instances. In emphasizing the
constraints biology places on cognition, it is sometimes
underappreciated to what extent cognition places strong
constraints on biology.

R7. Coda: Ethics, responsibility, and opportunities

Your scientists were so preoccupied with whether or not they
could, that they didn’t stop to think if they should.

— Dr. Ian Malcom, Jurassic Park

Given recent progress, AI is now widely recognized as a
source of transformative technologies, with the potential
to impact science, medicine, business, home life, civic
life, and society, in ways that improve the human condition.
There is also real potential for more negative impacts,
including dangerous side effects or misuse. Recognizing
both the positive and negative potential has spurred a
welcome discussion of ethical issues and responsibility in
AI research. Along these lines, a few commentators ques-
tioned the moral and ethical aspects of the very idea of
building machines that learn and think like people.
Moerman argues that the project is both unachievable
and undesirable and, instead, advocates for building
useful, yet inherently limited “single-purpose” machines.
As he puts it (para. 2), “There are 7 billion humans on
earth already. Why do we need fake humans when we
have so many real ones?” Dennett & Lambert worry
that machines may become intelligent enough to be given
control of many vital tasks, before they become intelligent
or human-like enough to be considered responsible for the
consequences of their behavior.

We believe that trying to build more human-like intelli-
gence in machines could have tremendous benefits. Many
of these benefits will come from progress in AI more
broadly – progress that we believe would be accelerated
by the project described in our target article. There are
also risks, but we believe these risks are not, for the foresee-
able future, existential risks to humanity, or uniquely new
kinds of risks that will sneak up on us suddenly. For
anyone worried that AI research may be making too much

progress too quickly, we would remind them that the best
machine-learning systems are still very far from achieving
human-like learning and thought, in all of the ways we dis-
cussed in the target article. Superintelligent AIs are even
further away, so far that we believe it is hard to plan for
them, except in the most general sense. Without new
insights, ingredients, and ideas –well beyond those we
have written about –we think that the loftiest goals for AI
will be difficult to reach. Nonetheless, we see the current
debate on AI ethics as responsible and healthy, and we
take Dennett & Lambert’s suggestion regarding AI co-
pilots in that spirit.
Moerman’s commentary fits well with many of these

points: Simply scaling up current methods is unlikely to
achieve anything like human intelligence. However, he
takes the project of building more human-like learning
machines to its logical extreme – building a doppelgänger
machine that can mimic all aspects of being human,
including incidental ones. Beyond rapid model building
and flexible generalization, and even after adding the
additional abilities suggested by the other commentators
(sect. 5), Moerman’s doppelgänger machine would still
need the capability to get a joke, get a Ph.D., fall in
love, get married, get divorced, get remarried, prefer
Bourbon to Scotch (or vice versa), and so on. We agree
that it is difficult to imagine machines will do all of
these things any time soon. Nonetheless, the current AI
landscape would benefit from more human-like learn-
ing – with its speed, flexibility, and richness – far before
machines attempt to tackle many of the abilities that
Moerman discusses. We think that this type of progress,
even if only incremental, would still have far-reaching,
practical applications (target article, sect. 6.2), and
broader benefits for society.
Apart from advances in AI more generally, advances in

human-like AI would bring additional unique benefits.
Several commentators remarked on this. Spelke &
Blass point out that a better understanding of our own
minds will enable new kinds of machines that “can foster
our thinking and learning” (para. 5). In addition,
Patrzyk, Link, & Marewski expound on the benefits of
“explainable AI,” such that algorithms can generate
human-readable explanations of their output, limitations,
and potential failures (Doshi-Velez & Kim 2017). People
often learn by constructing explanations (Lombrozo
2016, relating to our “model building”), and a human-
like machine learner would seek to do so too. Moreover,
as it pertains to human-machine interaction (e.g.,
Dennett & Lambert), it is far easier to communicate
with machines that generate human-understandable expla-
nations than with opaque machines that cannot explain
their decisions.
In sum, building machines that learn and think like

people is an ambitious project, with great potential for pos-
itive impact: through more powerful AI systems, a deeper
understanding of our own minds, new technologies for
easing and enhancing human cognition, and explainable
AI for easier communication with the technologies of the
future. As AI systems become more fully autonomous
and agentive, building machines that learn and think like
people will be the best route to building machines that
treat people the way people want and expect to be
treated by others: with a sense of fairness, trust, kindness,
considerateness, and intelligence.
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In this commentary, we highlight a crucial challenge posed by the proposal of Lake et al. to introduce key elements of human cognition into deep neural networks and future artificial-intelligence systems: the need to design effective sophisticated architectures. We propose that looking at the brain is an important means of facing this great challenge.
We agree with the claim of Lake et al. that to obtain human-level learning speed and cognitive flexibility, future artificial-intelligence (AI) systems will have to incorporate key elements of human cognition: from causal models of the world, to intuitive psychological theories, compositionality, and knowledge transfer. However, the authors largely overlook the importance of a major challenge to implementation of the functions they advocate: the need to develop sophisticated architectures to learn, represent, and process the knowledge related to those functions. Here we call this the architecture challenge. In this commentary, we make two claims: (1) tackling the architecture challenge is fundamental to success in developing human-level AI systems; (2) looking at the brain can furnish important insights on how to face the architecture challenge.
The difficulty of the architecture challenge stems from the fact that the space of the architectures needed to implement the several functions advocated by Lake et al. is huge. The authors get close to this problem when they recognize that one thing that the enormous genetic algorithm of evolution has done in millions of years of the stochastic hill-climbing search is to develop suitable brain architectures. One possible way to attack the architecture challenge, also mentioned by Lake et al., would be to use evolutionary techniques mimicking evolution. We think that today this strategy is out of reach, given the &ldquo;ocean-like&rdquo; size of the search space. At most, we can use such techniques to explore small, interesting &ldquo;islands lost within the ocean.&rdquo; But how do we find those islands in the first place? We propose looking at the architecture of real brains, the product of the evolution genetic algorithm, and try to &ldquo;steal insights&rdquo; from nature. Indeed, we think that much of the intelligence of the brain resides in its architecture. Obviously, identifying the proper insights is not easy to do, as the brain is very difficult to understand. However, it might be useful to try, as the effort might give us at least some general indications, a compass, to find the islands in the ocean. Here we present some examples to support our intuition.
When building architectures of AI systems, even when following cognitive science indications (e.g., Franklin 2007), the tendency is to &ldquo;divide and conquer,&rdquo; that is, to list the needed high-level functions, implement a module for each of them, and suitably interface the modules. However, the organisation of the brain can be understood on the basis of not only high-level functions (see below), but also &ldquo;low-level&rdquo; functions (usually called &ldquo;mechanisms&rdquo;). An example of a mechanism is brain organisation based on macro-structures, each having fine repeated micro-architectures implementing specific computations and learning processes (Caligiore et al. 2016; Doya 1999): the cortex to statically and dynamically store knowledge acquired by associative learning processes (Penhune &amp; Steele 2012; Shadmehr &amp; Krakauer 2008), the basal ganglia to learn to select information by reinforcement learning (Graybiel 2005; Houk et al. 1995), the cerebellum to implement fast time-scale computations possibly acquired with supervised learning (Kawato et al. 2011; Wolpert et al. 1998), and the limbic brain structures interfacing the brain to the body and generating motivations, emotions, and the value of things (Mirolli et al. 2010; Mogenson et al. 1980). Each of these mechanisms supports multiple, high-level functions (see below).
Brain architecture is also forged by the fact that natural intelligence is strongly embodied and situated (an aspect not much stressed by Lake et al.); that is, it is shaped to adaptively interact with the physical world (Anderson 2003; Pfeifer &amp; G&oacute;mez 2009) to satisfy the organism&apos;s needs and goals (Mannella et al. 2013). Thus, the cortex is organised along multiple cortical pathways running from sensors to actuators (Baldassarre et al. 2013a) and &ldquo;intercepted&rdquo; by the basal ganglia selective processes in their last part closer to action (Mannella &amp; Baldassarre 2015). These pathways are organised in a hierarchical fashion, with the higher ones that process needs and motivational information controlling the lower ones closer to sensation&sol;action. The lowest pathways dynamically connect musculoskeletal body proprioception with primary motor areas (Churchland et al. 2012). Higher-level &ldquo;dorsal&rdquo; pathways control the lowest pathways by processing visual&sol;auditory information used to interact with the environment (Scott 2004). Even higher-level &ldquo;ventral&rdquo; pathways inform the brain on the identity and nature of resources in the environment to support decisions (Caligiore et al. 2010; Milner &amp; Goodale 2006). At the hierarchy apex, the limbic brain supports goal selection based on visceral, social, and other types of needs&sol;goals. Embedded within the higher pathways, an important structure involving basal ganglia&ndash;cortical loops learns and implements stimulus&ndash;response habitual behaviours (used to act in familiar situations) and goal-directed behaviours (important for problem solving and planning when new challenges are encountered) (Baldassarre et al. 2013b; Mannella et al. 2013). These brain structures form a sophisticated network, knowledge of which might help in designing the architectures of human-like embodied AI systems able to act in the real world.
A last example of the need for sophisticated architectures starts with the recognition by Lake et al. that we need to endow AI systems with a &ldquo;developmental start-up software.&rdquo; In this respect, together with other authors (e.g., Weng et al. 2001; see Baldassarre et al. 2013b; 2014, for collections of works) we believe that human-level intelligence can be achieved only through open-ended learning, that is, the cumulative learning of progressively more complex skills and knowledge, driven by intrinsic motivations, which are motivations related to the acquisition of knowledge and skills rather than material resources (Baldassarre 2011). The brain (e.g., Lisman &amp; Grace 2005; Redgrave &amp; Gurney 2006) and computational theories and models (e.g., Baldassarre &amp; Mirolli 2013; Baldassarre et al. 2014; Santucci et al. 2016) indicate how the implementation of these processes indeed requires very sophisticated architectures able to store multiple skills, to transfer knowledge while avoiding catastrophic interference, to explore the environment based on the acquired skills, to self-generate goals&sol;tasks, and to focus on goals that ensure a maximum knowledge gain.
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