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Abstract

Policy compression is a computational framework that describes how capacity-limited

agents trade reward for simpler action policies to reduce cognitive cost. In this study, we

present behavioral evidence that humans prefer simpler policies, as predicted by a capac-

ity-limited reinforcement learning model. Across a set of tasks, we find that people exploit

structure in the relationships between states, actions, and rewards to “compress” their pol-

icies. In particular, compressed policies are systematically biased towards actions with

high marginal probability, thereby discarding some state information. This bias is greater

when there is redundancy in the reward-maximizing action policy across states, and

increases with memory load. These results could not be explained qualitatively or quantita-

tively by models that did not make use of policy compression under a capacity limit. We

also confirmed the prediction that time pressure should further reduce policy complexity

and increase action bias, based on the hypothesis that actions are selected via time-

dependent decoding of a compressed code. These findings contribute to a deeper under-

standing of how humans adapt their decision-making strategies under cognitive resource

constraints.

Author summary

Decision making taxes cognitive resources. For example, when shopping for groceries on

a budget, we must evaluate which brand offers the best value for the price. But time con-

straints or mental fatigue can often steer us towards familiar choices, such as sticking to

the same brand. To understand how cognitive resource limitations affect human decision

making, we conducted a study in which we manipulated the number of optimal choices

and the time limit within which choices were made. Across three tasks, we found that peo-

ple utilize task structure to compress the amount of information factored into their deci-

sion making. Information compression biases people towards their past choices. This bias

persists even when multiple optimal choices are available, and intensifies under cognitive

load and time pressure. A computational model of decision making under cognitive
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constraints accurately describes the experimental data. Our findings may have the poten-

tial to inform the design of choice environments that better align with human decision

biases.

Introduction

Everyday decision making requires individuals to learn about the relationship between states

and actions in their environment. For example, when deciding what to eat for lunch (the

action), a decision-maker might consider the nutritional content as well as the price of a meal

(information about the state). They may aim to maximize the overall value of their choices,

such as choosing the cheapest, calorie-dense option. But because decision making consumes

cognitive resources, the quality of our decisions is often bounded by the availability of those

resources. The “resource-rational” approach suggests that people are making the best choices

they can subject to constraints on their cognitive resources [1, 2]. These resources can be for-

malized in terms of the physical systems that implement decision making. For example, all

finite physical storage systems, such as the brain, have memory constraints that limit their

capacity to store and transmit information. This capacity limit has important implications for,

and effects on, decision making.

In the reinforcement learning (RL) framework, the decision-maker learns a policy that

maps states of the world to actions [3]. When cast in the language of information theory,

which provides a formalism for understanding how information is stored and transmitted,

policies can be viewed as communication channels that transmit information about state (the

input) to guide action selection (the output; Fig 1A) [4]. The capacity of a channel is defined as

the maximal mutual information between its inputs and outputs (also known as the rate), and

thus we refer to the mutual information between states and actions as the agent’s policy com-
plexity. The capacity of the action selection channel is thus the maximal policy complexity that

the agent can achieve (Fig 1D).

Policy complexity measures the amount of information about state used to select actions, or

how much an agent “pays attention” to the state. Paying more attention to the state allows the

agent to make reward-maximizing decisions, but the channel capacity limits the agent’s ability

to encode states with high fidelity, thus impacting decision making. This implies a trade-off

between policy complexity and task performance. Limited capacity forces the agent to “com-

press” their policies (i.e., reduce their state-dependence), thereby reducing performance [5–

11]. We refer to this as the “policy compression” framework.

Recent work has used policy compression to explain a wide range of decision making phe-

nomena, such as perseveration [12], cognitive deficits in schizophrenia [10], mouse naviga-

tion [13], and undermatching [14], among other examples. However, all of these studies

have relied on post hoc analyses of data from previously published research. In the current

study, we use theory to guide experimental design in order to directly test the unique, key

predictions of the policy compression framework. This approach also allows us to explore

previously untested hypotheses about learning under cognitive constraints. For example,

while some previous work focused on applying policy compression to understand set size

effects (a decrease in performance with the number of distinct stimuli to remember; [10,

12]), we ask whether policy compression can systematically vary even when set size is held

fixed. Furthermore, [12] used policy compression to provide a normative explanation for

perseveration, the tendency to produce the same action policy across states, irrespective of

the reward outcome. By intentionally designing the distribution of rewarded actions, we can
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directly test the prediction that individuals with low policy complexity will perseverate opti-

mally—that is, their choices will be biased towards actions they have chosen most frequently

in the past.

In the current study, we hypothesize that structure in the probabilistic relationships

between states, actions, and rewards will shape how agents compress their policies. To test

this hypothesis, we design tasks that manipulate the distribution of states and actions in

ways that encourage policy compression. Across three tasks, we show that people adjust

their policy complexity in response to the characteristics of their environment. We find that

people consistently prefer simpler policies, exploiting structure in the distribution of states

and the redundancy of actions across states to compress their policies. As a result, choice

behavior is systematically biased towards actions with higher marginal action probabilities,

as predicted by policy compression models. Moreover, we show that individuals reduce

their policy complexity under time pressure, providing evidence for the hypothesis that

actions are selected through time-sensitive decoding of a compressed code [11]. Our results

cannot be explained by models that do not compress policies under a capacity constraint,

including those that consider working memory contributions to reinforcement learning

[15]. Taken together, these results provide strong support for policy compression models,

illuminating how individuals leverage the structure of the environment to simplify their

policies.

Fig 1. Capacity-limited action selection. (A) Policies can be viewed as capacity-limited channels that communicate

information about states to guide action selection. A state distribution P(s) generates states s that are encoded into

memory. The policy complexity (depicted as the size of the channel) is the mutual information (in bits) between states

and actions, or the amount of information from the state that is used for action selection. (B) Policy complexity is low

when the distribution over actions is the same in each state (left), and it is high when the action distribution is different

for each state (right). (C) The optimal policy combines state-action values Q(s, a) with a marginal action probability

term P(a) that biases the policy towards actions that are chosen frequently across all states. The trade-off term, β,

determines the relative contribution of Q(s, a) and P(a), thereby controlling how state-dependent action selection is.

Example distributions are shown to depict action selection in one state. (D) A limit on the channel capacity (or a set

aspiration level) results in a trade-off between reward and complexity. The β parameter increases monotonically with

policy complexity. Using the depicted example in (C), two policies with different complexities are shown, along with

the agent’s theoretical capacity limit, C, and aspiration level, R. The light green point on the curve illustrates a low

complexity policy (low β), resulting in a distribution of actions that closely resembles the marginal distribution P(a).

The dark green point on the curve illustrates a high complexity policy (high β), resulting in a distribution of actions

that more closely resembles the state-action values Q(s, a).

https://doi.org/10.1371/journal.pcbi.1012057.g001
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Results

Modeling overview

We briefly summarize the main components of the policy compression model that are directly

relevant to the subsequent behavioral experiments. A more comprehensive presentation of the

theory can be found in the Methods section.

In the reinforcement learning (RL) framework, the agent’s goal is to learn an optimal policy

π* that maximizes expected reward:

p∗ ¼ argmax
p

Vp; ð1Þ

where Vπ is the expected reward earned by following policy π:

Vp ¼
X

s

PðsÞ
X

a

pðajsÞQðs; aÞ: ð2Þ

Here, P(s) is the probability of state s, and Q(s, a) is the expected reward in state s after taking

action a. A capacity-limited agent faces the additional constraint that its policy complexity (the

mutual information between states and actions) cannot exceed its capacity C. The optimal pol-

icy for such an agent that seeks to maximize expected reward subject to their capacity limit is

[5, 6, 8, 11]:

p∗ðajsÞ / exp½bQðs; aÞ þ log P∗ðaÞ�; ð3Þ

which is a softmax function that combines state-action values Q(s, a) with a marginal action

probability term P*(a) = ∑s P(s)π*(a|s) that biases the policy towards actions that are chosen

frequently across all states. The optimal policy results in a trade-off between average reward

and the agent’s policy complexity (Fig 1D). This trade-off is mediated by the inverse tempera-

ture parameter term, β, which indexes how state-dependent a policy is: When β is close to 0,

the policy will be state-independent, driven by actions that are overall chosen more frequently

(the P*(a) term). As β increases, the policy will select actions that yield the most reward, condi-

tional on the current state (the Q(s, a) term; see Fig 1D for a visual example). In summary, pol-

icy complexity is higher when the policy depends strongly on the state: it is maximized when

each state maps to a unique action, and it is minimized when the distribution over actions is

the same in each state (Fig 1B). Finally, we note that another way to view policy compression is

to minimize policy complexity subject to a fixed aspiration level R (an agent’s desired reward

rate; see [8]). The two optimization problems (maximizing reward and minimizing complex-

ity) can lead to the same optimal policy if the aspiration level R is chosen to be the highest

expected reward achievable under capacity C (Fig 1D).

Because of the influence of the marginal action distribution, a capacity-limited agent’s pol-

icy and subsequent behavior may be significantly influenced by the task structure, compared

to a standard reinforcement learning (RL) agent whose policy is:

pðajsÞ / exp½bQðs; aÞ�: ð4Þ

To illustrate this, imagine a task where there are three states and three possible actions to

choose from. Two of the states share the same rewarded action, while the last state has its own

uniquely-rewarded action (Fig 2A). In the policy compression model, the agent’s choice

behavior in each state is biased by the marginal distribution of actions, which can be seen in

the predicted choice probabilities of suboptimal actions with non-zero marginal probability.

This is especially true for agents with low capacity constraints (Fig 2B, light green). Notably, a

Standard RL agent matched for the same value of β is not biased by the marginal action
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distribution. While there is more stochasticity across actions (reflecting the low β), the Stan-

dard RL agent chooses suboptimal actions with equal probability. For the capacity-limited

agent, the bias towards the marginal action distribution is gradually reduced by increasing

capacity (Fig 2C). At high enough capacities (namely, capacity limits that are at or exceed the

task complexity), the bias disappears, and the policy compression model and Standard RL

model become equivalent (Fig 2D). An agent’s capacity limit places an upper bound on its pol-

icy complexity (Fig 2F), which determines the maximum average reward that can be earned

(Fig 2G), and affects other aspects of choice, such as stochasticity (Fig 2H) and response time

(Fig 2I).

In our previous work [11], we argued that response time (RT) should be a linear function of

policy complexity, which can be manipulated even when the number of states is held fixed

[16]. Consistent with this prediction, we found that lower policy complexity significantly pre-

dicted shorter response times in a contextual multi-armed bandit task [11, 17]. In the current

study, we directly test the relationship between complexity and RT by building trial-by-trial

RT predictions into our model. To do this, we make two assumptions. First, we assumed that

RT is monotonically related to the policy cost, which indexes the cost of taking a specific action

a in the current state s by quantifying the deviation of the state-specific action policy π(a|s)

Fig 2. Task structure influences choice behavior. (A) In this example task, two states share one, deterministically-

rewarded optimal action, and one state has its own uniquely-rewarded action. The marginal action distribution P(a)

depicted is derived from the optimal unbounded policy, which assumes that β!1 (i.e., assuming that subjects

perfectly learn the reward function) and is biased towards a1. (B) For an agent with a low capacity limit and therefore

low β, the policy is similar across states and closely resembles P(a). A Standard RL agent’s policy under the same β
value is not influenced by the marginal distribution of actions. (C) Same as (B) for an agent with a medium capacity

limit. While the state-dependent policies become more “peaked” on the optimal action, the policy compression model

still predicts some influence of P(a), particularly on the choice probabilites of suboptimal actions with non-zero

marginal probability. Suboptimal actions are chosen equally under a Standard RL agent’s policy with the same β value.

(D) Same as (B) for an agent with a high or unbounded capacity limit (in this case they are equivalent, since the agent’s

capacity limit is equal to the task complexity). Under a sufficiently high value of β, the policy compression and

Standard RL agent make the same predictions. (E) The reward-complexity trade-off curve for the task shown in (A).

Each colored point indicates the performance of an optimal agent with a low (C = 0.1), medium (C = 0.5), or high

(C = 1.1) capacity limit (from left to right). (F) The optimal policy complexity of each agent depicted in (E). (G) The

average reward obtained by the policies learned by each agent in (E). (H) The stochasticity of agents’ choices, measured

as the conditional entropy of action given states. (I) Example response times (RT) for each agent, generated from a

policy compression model that assumes a linear relationship between policy complexity and RT.

https://doi.org/10.1371/journal.pcbi.1012057.g002
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from the marginal action probability P(a): log pyðajsÞ
PðaÞ . This implies that the RT will be slower in

trials where the agent selects an action with a higher state-specific probability relative to its

marginal probability. Second, we assumed that RT is monotonically related to the entropy of

the policy on a given trial:

H ¼ �
X

a

pyðajsÞ log pyðajsÞ: ð5Þ

This assumption is based on the idea that greater “action uncertainty” (i.e., more dispersed

policies) should produce slower RTs [18–20]. For example, if the action probabilities are all

similar (i.e., if π(a|s) is roughly uniform), we should expect high uncertainty and a slow RT.

This assumption captures the overall decrease in RT due to learning, as policies tend to

become more “peaked,” or lower in entropy, with learning. Note that policy complexity alone

cannot capture this pattern, because in some conditions policy complexity increases over the

course of learning while RTs continue to decline. Using these two quantities, we can specify a

regression model relating policy cost and entropy to response time (in milliseconds) [21]:

log RT ¼ log t0 þ b1 log
pyðajsÞ
PðaÞ

� �

þ b2H
� �

þ � ð6Þ

where t0 is non-decision time and �* N(0, σ2) is Gaussian random noise.

We considered several variants of our policy compression model, which vary in their num-

ber of free parameters: “Fixed” models assume that the β parameter remains constant through-

out learning, while “Adaptive” models assume that β is updated according to the dynamics of

learning. Within the “Adaptive” category, we considered a model where β is optimized so that

the agent’s policy complexity meets the capacity constraint C (the “Adaptive: Capacity”

model), and another where β is optimized to target the agent’s desired “reward aspiration”

level (the “Adaptive: Value” model). One final model variant combines aspects of the first two

adaptive models: the agent considers both capacity and aspiration levels when optimizing β
(the “Adaptive: Capacity-Value” model). See the Methods for a table comparing all model

variants.

Comparison models. Our policy compression models make the key assumption that

human choice behavior and RT are sensitive to the marginal action probability and policy

complexity. To test this claim, we compared our model to several comparison models that do

not penalize policy complexity. First, we considered a “Standard RL” model of choice [3], as

described in Eq 4. We also considered a version of the reinforcement learning working mem-

ory (RLWM) model that has been studied extensively by Collins and colleagues [15, 17, 20, 22,

23].

The RLWM model captures the parallel recruitment of working memory (WM) and rein-

forcement learning (RL) by simultaneously training two learning modules. It was originally

developed to capture behavior in an instrumental learning task that examined the effects of

memory load on learning and action selection. While the RLWM model successfully captures

a wide range of behavioral effects, there is no mechanism for optimizing a trade-off between

reward and policy complexity. We chose the RLWM model as a natural point of comparison

because it makes explicit how memory constraints affect performance and response time in RL

tasks like the ones we study here. Further details about the Standard RL and RLWM models

can be found in the Methods.

In the current study, we used a simple instrumental learning task to show that human

choice behavior conforms to the unique predictions of our policy compression model, and

that models that do not penalize policy complexity cannot adequately capture our results.
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Experimental tasks

Using Amazon Mechanical Turk, we collected data from 200 subjects who participated in our

online behavioral experiment. Subjects completed a series of three instrumental learning tasks

that all shared the same experimental structure (Fig 3). Subjects were instructed to learn which

of three key press responses was associated with a particular image stimulus to maximize

reward. On each trial, subjects saw a single stimulus and were required to respond with a key

press in under 2 seconds (with the exception of Task 3). Each stimulus was associated with one

or more optimal (highest probability of reward) responses. After making a response, subjects

were given feedback indicating whether their response was “correct” (a reward of +1 is earned)

or “incorrect” (no reward is earned). The probability that the subject would receive “correct”

feedback given their response was defined by a reward function that varied across tasks and

conditions. If no response was made, the trial would be counted as “incorrect” and the next

trial would begin. Subjects were told to maximize their payout, proportional to the number of

“correct” responses made over the entire task. Each stimulus was presented 30 times in each

task block (with the exception of Task 1).

Each task consisted of two block conditions, which we refer to as Q1 and Q2. Q1 always

served as the “control” condition, whereas Q2 was designed to test a prediction of the policy

compression model. In all tasks, we carefully designed Q1 and Q2 to have the same average

and maximum reward values to control for motivational effects. In Task 1, both conditions

shared the same reward function, but differed in their stimulus distribution (some stimuli

Fig 3. Instrumental learning task. (A) Example state-action space. Each task block comprised of three unique states

(stimuli) and three possible actions. Each state was associated with one or more optimal action(s). (B) The

experimental trial structure. Subjects made their response under 2 seconds and received negative (red) or positive

(green) feedback in the form of a border around the image. Open source images from (A) and (B) were taken from:

https://unsplash.com/photos/bunch-of-strawberries-KVv5lFOMY1E, https://unsplash.com/photos/sliced-orange-

fruit-on-white-ceramic-plate-pCjw_ygKCv0, https://unsplash.com/photos/black-berries-lot-0DtoVEDaJbs (C) Each

task used unique stimulus sets to prevent learning across tasks. Open source images were taken from: https://unsplash.

com/photos/pink-flower-in-macro-lens-K3x_AkLVTAo, https://unsplash.com/photos/blue-flower-focus-

photography-6ZyLeconAsg, https://unsplash.com/photos/purple-flowers-with-green-leaves-V4Pn7QeYdPQ, https://

unsplash.com/photos/pink-and-white-flower-kkJuQhp9Kw0, https://unsplash.com/photos/white-cherry-blossom-in-

close-up-photography-yRXuXvy4sQ4, https://unsplash.com/photos/white-daisy-in-bloom-during-daytime-

3tYZjGSBwbk, https://unsplash.com/photos/bunch-of-strawberries-KVv5lFOMY1E, https://unsplash.com/photos/

sliced-orange-fruit-on-white-ceramic-plate-pCjw_ygKCv0, https://unsplash.com/photos/black-berries-lot-

0DtoVEDaJbs, https://unsplash.com/photos/closeup-photo-of-pineapple-5bdKZLqeySU, https://unsplash.com/

photos/shallow-focus-photo-of-green-fruits-9Jl9Wk9juuE, https://unsplash.com/photos/a-bunch-of-figs-that-are-

sitting-on-a-table--t52BM39yRs https://unsplash.com/photos/brown-turtle-swimming-underwater-L-2p8fapOA8,

https://unsplash.com/photos/brown-fox-on-snow-field-xUUZcpQlqpM, https://unsplash.com/photos/selective-focus-

photo-of-giraffe-D6TqIa-tWRY, https://unsplash.com/photos/panda-eating-bamboo-_9a-3NO5KJE, https://unsplash.

com/photos/brown-tabby-kitten-sitting-on-floor-nKC772R_qog, https://unsplash.com/photos/polar-bear-on-snow-

covered-ground-during-daytime-qQWV91TTBrE (D) Example experiment structure for one subject. The order of the

three tasks, as well as the conditions within each task, were randomized across subjects.

https://doi.org/10.1371/journal.pcbi.1012057.g003
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https://unsplash.com/photos/polar-bear-on-snow-covered-ground-during-daytime-qQWV91TTBrE
https://unsplash.com/photos/polar-bear-on-snow-covered-ground-during-daytime-qQWV91TTBrE
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appeared more frequently than others). In Task 2, the two conditions differed in their reward

functions and the number of optimal responses per state. In Task 3, both conditions again

shared the same reward function, but differed in the time limit within which subjects were

required to make their response. Task order and block condition order within tasks were ran-

domized across subjects. We encouraged independent learning of responses across stimuli by

informing the subjects that multiple stimuli could share the same optimal response, or that a

single state could have more than one optimal response. Finally, we ensured that subjects

would not be biased towards any particular key on the keyboard by randomizing the mapping

between stimuli and optimal responses, as well as the physical location of optimal responses in

each task and condition. However, for the purpose of standardizing our data analysis, we re-

mapped both stimuli and subjects’ responses to be consistent with the depicted reward func-

tions in each task figure.

Model fitting and comparison. We used maximum likelihood estimation to jointly fit

choice and response time data for each subject. We fit one set of parameters per subject to cap-

ture their performance across all three tasks. In our quantitative model comparison, we found

that many of the policy compression models scored very close in BIC (see S1 Fig for more

details). As a result, we focus on qualitative model predictions to adjudicate between models.

We simulated data from all candidate models and compared the dynamics of policy complex-

ity, average reward, and response time during learning to determine the overall winning

model. We also plotted the dynamic reward-complexity trade-off plot for each model, which

shows on average, how subjects’ policy complexity and reward evolve together over the course

of each task. Lastly, we analyzed the correlation between RT and policy complexity (S2, S3 and

S4 Figs).

Across all three tasks, the “Adaptive: Capacity-Value” model came closest to capturing the

dynamics of learning in subjects’ data in all three tasks. Though this model scored close to the

“Adaptive: Capacity” and “Adaptive: Value” models in quantitative model comparison metrics,

the other two adaptive models could not capture key aspects of the learning dynamics in Tasks

2 and 3 (for a more detailed explanation, please refer to S3 and S4 Figs, and their captions).

State frequency biases action selection. In Task 1, we asked whether an asymmetric state

distribution, P(s), would bias behavior in line with the predictions of our policy compression

model (Fig 4). To do this, we varied the frequency of stimulus presentations in each condition.

In Q1, all three stimuli were presented an equal number of times (30 presentations/stimulus, P
(s) = 0.33 for all stimuli), while in Q2, one randomly chosen stimulus appeared three times

more frequently than the others (90 presentations or P(s) = 0.6 for one stimulus, 30 presenta-

tions or P(s) = 0.2 for the other two). Therefore, for this task only, there are overall fewer trials

in Q1 (90 trials) than in Q2 (150 trials). By ensuring that the low-frequency stimuli in Q2 were

presented an equal number of times in both conditions, we enable a direct comparison of

choice biases associated with those stimuli across conditions. Each stimulus had one unique

optimal response that delivered the highest probability of reward (bolded), and two suboptimal

responses that were equal in reward probability (green, orange, and purple boxes).

As a result of this stimulus frequency manipulation, the marginal distribution over actions,

P(a), should differ in Q1 and Q2 (Fig 4A). In Q1, all three actions should be chosen roughly

equally, while in Q2, the optimal action A1 should be overall chosen more frequently than the

other two actions, simply because S1 appears more often. The policy compression model, but

not the Standard RL or RLWM models, predicts that this increased action frequency should

bias action selection overall because of how the marginal action distribution enters into the

optimal policy (Eq 3). As a result, subjects should show a preference for A1 even in other states,

and over other suboptimal actions with equal reward probability. This action preference

should only be present in Q2 and not in Q1. Finally, the policy compression model predicts
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overall higher expected reward values than the Standard RL and RLWM models because of

how the relationship between policy complexity and reward changes with the state distribution

(Fig 4B, second row; see also [6]). Therefore, the signature of policy compression in Task 1 is

being able to earn more reward in Q2 than in Q1 with the same policy complexity. This reward

advantage should also be greater for individuals with low policy complexity (as estimated from

their task behavior), a hypothesis we explore in a subsequent section.

In Fig 4B, we show aggregated subject data and compare it to the qualitative predictions of

each candidate model. Each data point on the reward-complexity trade-off plot in Fig 4B rep-

resents a single subject’s performance in one task condition. (For more details about how

Fig 4. Action selection is biased by the state distribution. (A) Task 1 consisted of two conditions, Q1 and Q2, that

shared the same reward function but differed in their state distribution (optimal actions for each state are in bold). As a

result, the marginal action probability, P(a), in Q2 is biased towards the optimal action of the state that appears most

frequently (e.g., A1 for S1). The P(a) depicted for each task condition is derived from the optimal unbounded policy,

which assumes that β!1 (i.e., assuming that subjects perfectly learn the reward function). (B) (Top) Policy

complexity, average reward, stochasticity, and response time (RT) as a function of the two task conditions. (Middle)

Qualitative behavioral predictions of the policy compression model. (Bottom) Qualitative behavioral predictions

shared by the Standard RL and RLWM models. (C) The proportion of suboptimal actions chosen in each state. The

marginal action probability resulting from the asymmetrical state distribution causes subject’s behavior to be biased

towards A1 despite both suboptimal actions sharing the same expected reward value. The policy compression model

alone predicts this action preference, and this bias does not appear for the suboptimal actions in condition Q1. All

error bars indicate standard error.

https://doi.org/10.1371/journal.pcbi.1012057.g004
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empirical policy complexity is calculated, see the Methods.) Policy complexity did not change

between conditions [t(199) = -0.829, p = 0.408; Cohen’s d = -0.059]. However, average reward

earned was higher in Q2 [t(199) = -4.853, p<0.001; Cohen’s d = -0.343], consistent with the

unique predictions of the policy compression model. Stochasticity was significantly lower in

Q2 [t(199) = 5.641, p<0.001; Cohen’s d = 0.399], as well as response time [t(199) = 5.036,

p<0.001; Cohen’s d = 0.356].

As predicted, there was no systematic action preference in Q1, where both the state and

marginal action distribution were uniform (Fig 4C, left). However, in Q2 subjects significantly

preferred A1 over the other suboptimal action in states S2 and S3, despite the probability of

reward for both actions being equal [ΔP(A) for S2: t(199) = 3.541, p<0.001; Cohen’s d = 0.250

and ΔP(A) for S3: t(199) = 2.182, p = 0.030; Cohen’s d = 0.154], although the size of this effect

is relatively small (Fig 4C, right). There was no difference in the proportion of suboptimal

actions chosen in the high-frequency state S1 [t(199) = 0.125, p = 0.900; Cohen’s d = 0.009].

Action frequency biases action selection. In Task 2, we directly tested the prediction that

the marginal action distribution, P(a), biases subjects’ behavior (Fig 5). To do this, we designed

task conditions to vary in the number of shared optimal responses across stimuli. In Q1, each

stimulus was associated with one unique optimal response that delivered deterministic reward,

but in Q2, states S2 and S3 each had two optimal responses that both delivered deterministic

reward (Fig 5A). Critically, one of these optimal responses, A1, was shared across all three

states. We predicted that in Q2, subjects would be more likely to choose the shared action over

the other optimal action, despite both actions delivering deterministic reward. Additionally,

we predicted that policy complexity would be lower and average reward higher in Q2 than in

Q1, as the reward function in Q2 encourages policy compression via reliance on the marginal

action distribution. This essentially means that in Q2, subjects can earn more reward than in

Q1 with a less complex policy. We note here that compression can occur in two main ways: (1)

earning more reward with the same policy complexity (as seen in Task 1), and (2) learning a

simpler policy while earning the same, or more, reward. Both are valid ways to compress one’s

policy, as compression simply implies that people are ignoring some state information and tak-

ing advantage of the marginal action distribution.

In Fig 5B, we show aggregated subject data and compare it to the qualitative predictions of

each model. As predicted, policy complexity was lower in Q2 [t(199) = 2.8213, p = 0.0052;

Cohen’s d = 0.199], yet average reward earned was higher [t(199) = -12.5759, p<0.0001;

Cohen’s d = -0.889]. Stochasticity was significantly lower in Q2 [t(199) = 9.8321, p<0.0001;

Cohen’s d = 0.695], as well as response time [t(199) = 7.1026, p<0.0001; Cohen’s d = 0.502].

Note that for this task, the policy compression model makes similar qualitative predictions on

most behavioral measures as the Standard RL and RLWM models. While the Standard RL and

RLWM models are not constrained by capacity limits, (i.e., there is nothing in the models

specifying what the complexity of the optimal policy should be) they can still match subjects’

empirical policy complexity through parameter setting (as we demonstrated through the

examples in Fig 2B–2D). So to enable a fair comparison, we simulated the comparison models

to match the average policy complexity in our subject data. Though two different algorithms

(e.g., Standard RL vs policy compression) can in theory generate the same policy complexity

and reward, the pattern of their choice biases will differ significantly. This is exactly the case

for Task 2, where the key behavioral signatures of policy compression are revealed when exam-

ining subjects’ choice preferences in each condition (Fig 5C).

As predicted, there was no systematic action preference in Q1 where the marginal action

distribution was uniform (Fig 5C, left). However, in Q2 subjects again significantly preferred

A1 over the other optimal action in states S2 and S3, despite the both actions delivering deter-

ministic reward [ΔP(A) for S2: t(199) = 4.350, p<0.001; Cohen’s d = 0.308 and ΔP(A) for S3: t
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(199) = 4.763, p<0.001; Cohen’s d = 0.337] (Fig 5C, right). There was no difference in the pro-

portion of suboptimal actions chosen in the state with only one optimal action, S1 [t(199) =

-0.698, p = 0.486; Cohen’s d = -0.049]. This behavioral bias is a clear deviation from the predic-

tions of the Standard RL and RLWM models, in which both optimal actions should be chosen

equally. Notably, the size of this action bias is much larger in Task 2 than in Task 1: directly

manipulating the action distribution produces a stronger action biases than attempting to

manipulate it through state frequency.

Fig 5. Action selection is biased by the marginal action distribution. (A) Task 2 consisted of two conditions, Q1 and

Q2, that differed in the number of optimal actions per state (bolded). As a result, the marginal action probability, P(a),

in Q2 is biased towards the optimal action that is shared across all states (e.g., A1). (B) (Top) Policy complexity, average

reward, stochasticity, and response times (RT) as a function of the two task conditions. (Middle) Qualitative behavioral

predictions of the policy compression model. (Bottom) Qualitative behavioral predictions shared by the Standard RL

and RLWM models. (C) The proportion of actions with the same reward probability chosen in each state. The biased

marginal action probability causes subjects to prefer A1 over another optimal action that is equally rewarding. The

policy compression model alone predicts this action preference. This biased preference does not appear for actions that

share the same reward probability in condition Q1. All error bars indicate standard error.

https://doi.org/10.1371/journal.pcbi.1012057.g005
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We have focused our current analysis of action bias within one set size condition. However,

a natural follow-up question is whether this bias increases as a function of set size. In previous

work, we have shown that average policy complexity does not vary monotonically across set

sizes, indicating a roughly constant resource constraint [10]. We interpreted this finding as

consistent with the hypothesis that set size effects reflect the redistribution of a fixed resource

across more states, resulting in lower precision per state [24]. Therefore, we should expect sig-

natures of policy compression (in this case, a bias towards actions that are high in marginal

probability) to increase with set size.

We confirmed this prediction by re-analyzing data from [23], which used a similar instru-

mental learning task to study learning across various set sizes with deterministic rewards

(N = 40, Fig 6). By taking block conditions where optimal actions were shared across 2 or

more states, we computed the difference between suboptimal actions in states for which the

optimal action was not high in marginal probability (Fig 6A). In Fig 6B, we first show that

across all set sizes, suboptimal actions that have high marginal probability are chosen more fre-

quently over other suboptimal actions (p<0.001 for all set size conditions). We then show that

the action bias, or the difference between the proportion of suboptimal actions chosen, ΔP(A)

= P(A1) − P(A2), does increase slightly as a function of set size, though this increase is non-lin-

ear and possibly non-monotonic (Fig 6C). This may be due to averaging across various block

conditions within one set size. For example, some blocks by design may have produced a

stronger influence of the marginal probability on choice (i.e., optimal actions were shared

across a majority of the states), while others may have produced less of an effect.

Time pressure compresses policies. Now that we have shown that choice behavior aligns

uniquely with the predictions of the policy compression model, we turn our attention to the

hypothesis that actions are generated by time-dependent decoding. To perfectly decode an

action from a state, the optimal policy complexity required is log N, where N is the number of

actions [11, 18]. In a Huffman code, the policy complexity corresponds to the number of bits

that need to be inspected to reveal the coded action. If bits are inspected at a constant rate,

response time should be a linear function of policy complexity, which can vary even when the

number of states is held fixed (such as in our tasks).

We reasoned that time pressure should further reduce policy complexity in a capacity-lim-

ited agent by limiting the amount of time allowed for decoding actions from states. This is also

the assumption that we built into our model linking trial-by-trial RT to policy cost. In Task 3,

we tested this hypothesis by designing two task conditions that shared the same reward func-

tion but differed in the time allowed for subjects to make their response (Fig 7A). In Q1, sub-

jects were allowed 2 seconds to make their key press response (as in the other two tasks), while

in Q2, they were only given 1 second. If subjects failed to respond within the 1 second time

window, they were shown a warning message that encouraged them to respond faster or risk

Fig 6. Bias scales with set size. (A) An example of our analysis method from a condition where the set size, or number

of states (nS), was 4. We averaged the proportion of suboptimal actions in states for which the optimal action was not

high in marginal probability. (B) The average proportion of suboptimal actions that aligned with the high marginal

probability (A1), and those that did not (A2) for each set size condition. (C) The difference between the proportion of

suboptimal actions chosen as a function of set size. Error bars indicate standard error. Data source: [23].

https://doi.org/10.1371/journal.pcbi.1012057.g006
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having their bonus for the task withheld. Importantly, the marginal action probability was con-

centrated on one action, as two out of the three states shared an optimal action that delivered

deterministic reward. We predicted that under time pressure (Q2), subjects would further

compress their policies, reducing policy complexity and choosing suboptimal actions more

often (Fig 7A, boxed. Here, we define suboptimal action as the action with the second highest

reward probability). In particular, we predicted that subjects would be biased to choose A1 in

S3 more often than when not under time pressure (purple box), but that there would be no dif-

ference in the expression of suboptimal action A2 in S1 and S2 (green and orange boxes) across

conditions. This is because the marginal action distribution is concentrated on A1 rather than

A2.

In Fig 7B, we show aggregated subject data and compare it to the qualitative predictions of

each model. As predicted, policy complexity was significantly lower in the time pressure

Fig 7. Policies are more compressed under time pressure. (A) Task 3 consisted of two conditions, Q1 and Q2, that

shared the same reward function (optimal actions in bold) but differed in the time allowed for subjects to make their

response. In this task, the marginal action probability, P(a), is the same for both conditions, and is biased towards one

action, A1. (B) (Top) Policy complexity, average reward, stochasticity, and response times (RT) as a function of the two

task conditions. (Middle) Qualitative behavioral predictions of the policy compression model. (Bottom) Qualitative

behavioral predictions shared by the Standard RL and RLWM models. (C) The proportion of suboptimal actions

chosen in each state. Under time pressure (condition Q2), there is a greater influence of the marginal action

probability on choice behavior. Subjects choose suboptimal action A1 in S3 more often than they did when given more

time to respond. The policy compression model alone predicts this action preference. All error bars indicate standard

error.

https://doi.org/10.1371/journal.pcbi.1012057.g007
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condition (Q2) [t(199) = 7.082, p<0.001; Cohen’s d = 0.501], as well as average reward [t(199)

= 6.948, p<0.001; Cohen’s d = 0.491]. Stochasticity significantly increased under time pressure

[t(199) = -5.536, p<0.001;Cohen’s d = -0.391], and response time decreased as expected to stay

within the new time constraint [t(199) = 12.4826, p<0.001; Cohen’s d = 0.883]. In the Standard

RL and RLWM models, there is no mechanism for how time pressure should change subjects’

policies, and therefore no predicted qualitative differences between Q1 and Q2.

As predicted by the policy compression model, there was no difference in the proportion of

suboptimal actions chosen between conditions in S1 and S2 [ΔP(A) for S1: t(199) = -1.181,

p = 0.239; Cohen’s d = -0.0835 and ΔP(A) for S2: t(199) = -1.061, p = 0.290; Cohen’s d =

-0.075] (Fig 7C). However, in Q2 subjects were biased to choose A1 in S3 more often than in

Q1, indicating greater policy compression and an increased reliance on the marginal action

probability when under time pressure. [ΔP(A) for S3: t(199) = 4.488, p<0.001; Cohen’s

d = 0.317]. This increased influence of the marginal action distribution is not predicted by the

Standard RL and RLWM models, in which suboptimal actions should be chosen equally across

conditions in all states, regardless of time limits on response.

Individual differences in policy complexity predict action bias and earned

reward

We now summarize and follow up the key results from our within-subject analyses with

between-subject analyses that highlight systematic differences in individuals’ behavior across

all three tasks. Specifically, we analyze how subjects’ empirical policy complexity relates to

their choice bias in each task, and how this bias influences earned average reward.

First, the state distribution affects the relationship between reward and policy complexity in

the compression framework. An asymmetrical state distribution makes it possible for subjects

to earn more reward with the same policy complexity (Fig 4B, middle), and causes subjects to

be biased towards suboptimal actions with high marginal probability. This pattern of choice

bias is distinct from a Standard RL or RLWM strategy where action selection in each state is

treated independently. Subjects’ average action bias (i.e., the bias towards choosing a subopti-

mal action with high marginal probability over another suboptimal action with the same

reward probability) in Q2 decreased as a function of policy complexity, although this effect is

small [Pearson’s correlation: r = -0.179, p = 0.011] (Fig 8A).

Furthermore, we reasoned that subjects with low complexity (defined as the empirical pol-

icy complexity estimated from choice behavior in each task condition) would benefit more

from action bias, since it is more efficient to focus one’s limited cognitive resources on states

(and their optimal actions) that appear most frequently. In line with this prediction, we found

that subjects’ increase in average reward from Q1 to Q2 was positively correlated with action

bias for subjects with low [Pearson’s correlation: r = 0.322, p<0.001], but not high [Pearson’s

correlation: r = -0.112, p = 0.313], policy complexity Fig 8B). In other words, subjects with low

complexity policies are able to take advantage of their action bias to earn more reward via pol-

icy compression, though they did not necessarily increase their average reward more than

those with high complexity policies [t(198) = -1.278, p = 0.203; Cohen’s d = -0.178].

Second, this perseverative action bias is even greater when there is redundancy in the

reward-maximizing policy across states. Even when there was more than one optimal action

per state, subjects consistently preferred the optimal action with a higher marginal action

probability. This action bias was, again, more pronounced for individuals with low policy com-

plexity: we found a strong negative relationship between average action bias and policy com-

plexity [Pearson’s correlation: r = -0.817, p<0.001] (Fig 8C). While action bias and policy

complexity are estimated from the same behavioral data, their relationship is not entirely
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tautological: though it is unlikely for a high complexity policy to produce high action bias, it is

possible to have a low complexity policy (e.g., taking random actions regardless of state) with-

out being biased towards the action with highest marginal probability. Our analysis here

shows that the relationship between action bias and complexity becomes more pronounced by

directly manipulating the action distribution (as in Task 2), rather than the state distribution

(as in Task 1). Consistent with Task 1, we also found that the change in average reward earned

is correlated with greater action bias in subjects with low [Pearson’s correlation: r = 0.793,

p<0.001], but not high [Pearson’s correlation: r = -0.108, p = 0.345], policy complexity (Fig

8D). Subjects with low complexity policies also had a greater increase in earned average reward

across conditions than those with high complexity policies [t(198) = 5.354, p<0.001; Cohen’s

d = 0.788], indicating that their action bias allowed them to significantly increase reward earn-

ings despite their resource limit.

Third, we provided evidence for a strong relationship between time pressure and policy

compression: under a tight time constraint, subjects reduce their policy complexity and sacri-

fice reward. The relationship between response time and policy complexity is not only present

in Task 3; indeed, there is a strong positive correlation between RT and complexity in all three

tasks [Task 1: Pearson’s correlation: r = 0.513 for Q1, r = 0.609 for Q2, both p<0.001; Task 2:

Pearson’s correlation: r = 0.591 for Q1, r = 0.669 for Q2, both p<0.001; Task 3: Pearson’s cor-

relation: r = 0.638 for Q1, r = 0.563 for Q2, both p<0.001], a feature that can only be replicated

by the policy compression models (S2, S3 and S4 Figs). On the other hand, both the Standard

RL and RLWM models predict a negative relationship between policy complexity and RT,

which is a clear deviation from the data (see panels E and F of S2, S3 and S4 Figs). Under time

pressure, subjects—especially those with low policy complexity—rely more on their action

Fig 8. Action bias decreases with policy complexity and increases reward for subjects with low policy complexity.

(A) Action bias as a function of policy complexity in Task 1. Each data point represents a single subject’s mean action

bias, or the bias towards choosing a suboptimal action with high marginal probability over another suboptimal action

with the same reward value), plotted against their policy complexity (data from Q2 only). (B) The change in average

reward across task conditions as a function of subjects’ action bias for subjects with low and high complexity policies

(mean split of data). Each data point represents a single subject’s difference in earned average reward across conditions

(Q2-Q1), plotted against their mean action bias in Q2. (C) Same as (A) but for Task 2. (D) Same as (B) but for Task 2.

(E) The proportion of choosing the suboptimal action in S3 as a function of policy complexity in Task 3 (data from Q2

only). (F) The change in proportion of choosing the suboptimal action (Q2-Q1) as a function of the change in policy

complexity (Q2-Q1) due to time pressure in Task 3.

https://doi.org/10.1371/journal.pcbi.1012057.g008
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history to make choices: Fig 8E shows a negative relationship between the tendency to choose

a suboptimal action with high marginal probability and policy complexity. Additionally, sub-

jects’ decrease in policy complexity under time pressure was correlated with an increase in

choosing the suboptimal action across conditions [Pearson’s correlation: r = -0.630, p<0.001]

(Fig 8F).

Finally, we asked whether policy complexity reflected a fixed resource that remained

roughly constant across tasks, or whether it varied across tasks. On average, subjects’ policy

complexity in the control condition (Q1) remained roughly constant across tasks (Fig 9A)

[one-way ANOVA: F(2,597) = 1.032, p = 0.357]. Additionally, we found a moderate positive

correlation between policy complexities across tasks (Fig 9B) [Pearson’s correlation coeffi-

cients ranging from 0.432 to 0.573, all p<0.001], which shows that subjects used roughly the

same amount of cognitive resources for each task. Subjects’ empirical policy complexity may

reflect an individual’s actual cognitive capacity limit (in a trait-like fashion), or simply reflect

the amount of cognitive effort that the individual has chosen to allocate for the experimental

tasks. While our experiment was not designed to tease apart these two possibilities, future

work may consider investigating how independent, trait-like measures such as working mem-

ory capacity could predict individuals’ policy complexity in experimental tasks. In either case,

we know from our results that policy complexity is flexible to some degree within an individ-

ual, as it can be shaped by the task structure itself and by exogenous factors such as time pres-

sure and memory load.

Discussion

In this paper, we tested the hypothesis that humans prefer simpler policies, as predicted by a

capacity-limited reinforcement learning model. Across three tasks, we found that human sub-

jects utilize structure in the relationship between states, actions, and rewards to “compress”

their policies. This strategy allows subjects to discard some state information (i.e., reduce their

policy complexity) without sacrificing reward. As a consequence of policy compression, people

are systematically biased towards actions they have chosen most frequently in the past. This

bias persists even when multiple optimal actions are available, and increases under both time

pressure and memory load. These results are uniquely explained by models that balance

between two computational goals: reward maximization and policy compression under a

capacity limit.

We found that the “Adaptive: Capacity-Value” model best described our data on both

quantitative and qualitative measures. This model assumes that the dynamics of learning are

driven both by the agent’s capacity limit as well as a desired aspiration level. We found that

Fig 9. Policy complexity is correlated across tasks. (A) Average policy complexity in the control condition (Q1) for

each task. Error bars indicate standard error. (B) Moderate between-task correlations in policy complexity.

https://doi.org/10.1371/journal.pcbi.1012057.g009
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this method of optimizing the policy allowed agents to flexibly adapt to a variety of environ-

ments with different reward-complexity trade-off landscapes, such as in our different task con-

ditions. Recall that the policy compression theory assumes that learned policies have

complexities that equal an agent’s capacity limit. However, there may be situations where

agents choose instead to “satisfice” at some aspiration level (for example, an agent might be

content with an average reward value of 0.8) and not make use of all their computational

resources. In fact, previous work has shown sensitivity of human decision making to aspiration

level, in simple as well as in more complex tasks such as financial investing [25–27]. Future

models should consider the effects of a desired aspiration level on the dynamics of learning

and decision making.

Our study is the first designed to directly test the unique behavioral predictions of the policy

compression framework, which has already enjoyed success in explaining a range of behavioral

phenomena. A key distinguishing feature of our model from others that consider both RL and

memory capacity (such as the RLWM model [15]) is the application of rate-distortion theory

[4, 28] to reinforcement learning to characterize decision-making under a capacity limit. This

framework allows us to derive the form of an optimal policy and the accompanying process

model that optimizes the trade-off between reward and policy complexity [5–7, 11, 12].

Our modeling framework allows us to interpret well-studied phenomena through a new,

normative lens. For instance, though many previous studies have examined the influence of

time constraints on choice behavior [29, 30], policy compression offers a normative rationale

for the relationship between response time and policy complexity. Time pressure reduces an

agent’s capacity limit, shortening the expected code length that determines how long it takes to

decode actions from state representations. This, in turn, leads to an even greater bias towards

previous actions according to the optimal form of the policy. We note one caveat: in this study

we did not explicitly disentangle policy learning from its implementation, which raises the

question of whether reduced complexity under time pressure is a feature of time-dependent

decoding alone, or whether it a priori affects policy encoding as well. However, since previous

work [11, 31] has shown that policy compressibility relates to its learnability (i.e., simpler or

more compressed policies are easier to learn), it is reasonable to assume that time pressure also

causes agents to learn overall simpler policies.

Our framework also incorporates ideas previously proposed in models combining response

time and choice. For example, [20] reasoned that the uncertainty over actions prior to encod-

ing the current stimulus should affect decision time, a term that they added into their joint

model of RT and choice. This prior uncertainty enters into choice by scaling down the drift

rates of each action equally. If one action is used more frequently than the others, the prior

uncertainty over actions is smaller, and drift rates are faster. While our model shares the simi-

lar approach of considering how prior information influences aspects of action selection, it dif-

fers in that the prior distribution over actions affects not only RT but the choice itself (which is

why the RLWM model cannot capture our result).

While our study provides compelling evidence for several key predictions of the policy

compression model, it also has several limitations. First, while our modeling procedure was

able to distinguish between models that do and do not penalize policy complexity, it was

unable to unambiguously identify the correct model variant within the class of policy compres-

sion models. Designing specific experiments to distinguish between fixed and adaptive policy

compression models is a potential area for further research. Second, we relied on a previously

published dataset to test the prediction that compression increases with memory load. While

we found a relationship between set size and action bias, the dataset used was not explicitly

designed to investigate whether bias increases monotonically with set size, or if there is indeed

a “plateau” effect for higher memory loads. Exploring how memory load influences
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compression and perseverative action biases remains an avenue for future investigation.

Finally, we note that a majority of subjects’ behavior deviated from the optimal reward-com-

plexity trade-off curve, which indicates additional sources of error and bias that are not due to

the marginal action probability. For example, it is certainly possible that other forms of persev-

eration (e.g., repeating actions that do not have high marginal probability, such as in sequential

effects or motor habits) may co-occur with those that arise from capacity limits, but their ori-

gins are beyond the scope of this paper. Future experiments could be uniquely designed to

tease apart different sources of perseveration-like effects.

A limitation of our theoretical framework is that it assumes people always prefer simpler

policies (all other things being equal), whereas some evidence suggests a preference for empow-
erment (i.e., more complex policies) in certain situations, such as games without an explicit

reward function [32]. In such situations, policy complexity itself can become a source of intrin-

sic motivation. Intuitively, an agent with high policy complexity has more control over the

environment, which is useful for carrying out many different tasks. An important challenge

for future work will be to disentangle the conditions in which people seek or avoid policy

complexity.

This study adds to a larger body of research that focuses on how agents can utilize environ-

mental structure to compress or simplify behavior, which may facilitate generalization in novel

situations [33, 34]. Understanding the relationship between policy compression and generali-

zation to new tasks is an interesting direction for future research, with potential implications

for designing artificial learning agents with human-like inductive biases. Our study also high-

lights an important distinction between policy complexity (the number of bits needed to

encode and decode a policy), statistical complexity (the amount of data needed to learn a pol-

icy), and computational complexity (the number of operations needed to execute an algo-

rithm), which is important for placing our model in the broader context of other common RL

algorithms such as model-free and model-based RL. For example, while model-based RL is

more computationally complex than model-free RL (as it requires more operations to imple-

ment), it is not necessarily more statistically complex [31], and also does not necessarily

require a more complex policy. Since model-free and model-based RL both require attention

to the state for selecting actions, the complexity of the policies learned with either algorithm

will vary depending on the particular state space and reward structure that learning takes place

in. A more comprehensive theoretical analysis of how policy complexity differs in common RL

algorithms would be an interesting area for further exploration.

While our finding that people are biased towards past choices is not new, our study suggests

ways to accommodate or leverage these biases. Understanding how individuals behave under

cognitive constraints can inform the creation of decision environments that align with these

behavioral tendencies, promoting more effective decision making. For example, consider our

result from Task 1, where individuals with lower complexity benefited the most from the

asymmetric state distribution. The “design” of this choice environment enabled them to lever-

age their biases to earn more reward, compared to an environment with a uniform state distri-

bution. In the same vein, knowing how people adapt their choice behavior under time

pressure can shape the way information is presented to busy, time-poor individuals facing

important decisions.

These ideas fall under the umbrella of “libertarian paternalism,” the philosophy that societal

structures and policies can be thoughtfully designed to positively influence people’s choices

[35]. For instance, the “choice architecture” of decision environments, such as default options,

can be strategically selected to impact group or individual decision-making. Examples include

automatic enrollment in retirement savings plans [36] or setting renewable energy sources as

the default option [37], both of which have been shown to positively influence people’s choices.
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These default settings take advantage of people’s perseverative biases, especially when they

don’t have the time or cognitive resources to properly evaluate their options before deciding.

Some have even suggested that these choice environments should be “engineered” by using

quantitative models such as ours to shape choice behavior [38]. We believe that computational

models of policy compression (and its accompanying biases) may be powerful tools for choice

architecture design.

Methods

Theoretical framework

The theoretical framework of policy optimization under an information-theoretic capacity

limit was originally developed in several papers by Tishby and his collaborators [5–7]. Still and

Precup [8] and Lerch et al. [9] developed online RL algorithms to learn a policy that optimizes

the trade-off between reward and policy complexity through interactions with the environ-

ment. We further built upon these ideas [10, 11] by introducing a process model that (1) incre-

mentally modifies the policy based on reward feedback that directly penalizes policy

complexity, and (2) specifies how an agent’s reward-complexity trade-off should evolve during

learning. In the current study, we (3) built trial-by-trial response time predictions into our pro-

cess model, which allows us to directly test the hypothesis that RT in part reflects the time-sen-

sitive decoding of a compressed code. In what follows, we review the general framework along

with the process model.

Policy compression via capacity-limited reward optimization. We assume that the opti-

mal policy for an unbounded agent maximizes expected reward:

p∗ ¼ argmax
p

Vp; ð7Þ

where Vπ is the expected reward under policy π:

Vp ¼
X

s

PðsÞ
X

a

pðajsÞQðs; aÞ: ð8Þ

Here P(s) is the probability of state s, and Q(s, a) is the expected reward in state s after taking

action a.

A capacity-limited agent faces the additional constraint that its policy complexity (informa-

tion rate) cannot exceed its capacity C. Behavioral evidence shows that people are subject to a

capacity limit even in simple instrumental learning tasks [12, 15]. Policy complexity is formally

defined as the mutual information between states and actions, which measures the average

number of bits necessary to encode a policy:

IpðS; AÞ ¼
X

s

PðsÞ
X

a

pðajsÞ log
pðajsÞ
PðaÞ

; ð9Þ

where P(a) = ∑s P(s)π(a|s) is the marginal probability of choosing action a. Policy complexity

is higher when the policy depends strongly on the state: it is maximized when each state maps

to a unique action, and it is minimized when the distribution over actions is the same in each

state (Fig 1B).
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A capacity-limited agent is faced with the optimization problem of maximizing expected

reward subject to its capacity limit, C:

argmax
p

Vp

subject to IpðS; AÞ ¼ C:
ð10Þ

Two other necessary constraints (P(a) must be non-negative and sum to 1) are left implicit.

Another way to view the same problem is to minimize policy complexity subject to a fixed

aspiration level R (desired reward rate; see [8]).

argmin
p

IpðS; AÞ

subject to Vp ¼ R:
ð11Þ

The two optimization problems can lead to the same optimal policy if the aspiration level R is

chosen to be the highest expected reward achievable under capacity C (Fig 1D). Both con-

strained optimization problems can be equivalently expressed and solved in a Lagrangian

form:

p∗ ¼ argmax
p

bVp � IpðS; AÞ þ
X

s

lðsÞð
X

a

pðajsÞ � 1Þ; ð12Þ

with Lagrange multipliers β� 0 and λ(s)� 0 (the 3rd term ensures proper normalization, and

we will leave it implicit in subsequent equations). Solving Eq 12 leads to the optimal policy, π*
[5, 6, 8]:

p∗ðajsÞ / exp½bQðs; aÞ þ log P∗ðaÞ�; ð13Þ

which is a softmax function with an added term P*(a) = ∑s P(s)π* (a|s) that biases the policy

towards actions that are chosen frequently across all states. The Lagrange multiplier β acts as

the familiar “inverse temperature” parameter that regulates the exploration-exploitation trade-

off via the amount of stochasticity in the policy [3]. It also indexes how state-dependent a pol-

icy is: When β is close to 0, the policy will be state-independent, driven by actions that are

overall chosen more frequently (the P* (a) term, Fig 2B). As β increases, the policy will select

actions that yield the most reward, conditional on the current state (the Q(s, a) term, Fig 2D).

The policy also becomes more state-dependent with increasing β, thus increasing policy com-

plexity. Finally, β is also implicitly related to the capacity constraint—its inverse is the slope of

the reward-complexity trade-off curve evaluated at the capacity constraint I(S; A) = C:

b
� 1
¼

dV
dIðS; AÞ

: ð14Þ

In other words, at each value of C there exists a unique β that constitutes one point on the opti-

mal reward-complexity trade-off, and thus the entire trade-off curve is constructed by evaluat-

ing Eq 10 at different values of C (Fig 1D). In general, there is no analytical form for the

mapping from C to β, which means that an agent with access to its capacity may not be able to

specify the inverse temperature corresponding to the optimal policy. In previous work [12], we

have used a variant of the Blahut-Arimoto algorithm [39] to find the optimal policy. The algo-

rithm iterates between updating π(a|s) according to Eq 13 and updating P(a) under the current

policy. By performing this optimization for a range of β values, we can identify the point on

the reward-complexity curve that characterizes the optimal policy for a given capacity con-

straint, C or a fixed attainable reward, R.
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A process model for learning under constraints. The Blahut-Arimoto algorithm requires

direct knowledge of the state-action value function and is computationally intractable when

the state space is large (because it requires marginalization over all states). We therefore

derived a tractable process model based on an “actor-critic” architecture from reinforcement

learning (RL) (see also [10, 11]). In the following sections, we also expand upon our previous

work by bridging the process model to specific response time (RT) predictions, providing a

direct theoretical link for how policy cost should impact RT behavior.

We can cast the optimization problems in Eqs 10 and 11 in a form amenable to RL by

rewriting the Lagrangian in Eq 12 (dropping the normalization term for simplicity):

p∗ ¼ argmax
p

E br � log
pðajsÞ
PðaÞ

� �

: ð15Þ

To find the optimal policy π*, the cost-sensitive agent must find the policy parameters θ* that

maximize expected reward relative to the policy complexity cost. Throughout this paper, we

will use the term policy cost to refer to log pðajsÞ
PðaÞ , and policy complexity to refer to its expectation,

Iπ (S; A). The policy cost indexes the cost of taking a specific action a in the state s by quantify-

ing the deviation of the current, state-specific action policy π(a|s) from the marginal action

probability P(a). In this way, the policy cost captures the amount of state-specific information

used to select a particular action in a single trial or time step. Note that the policy cost corre-

sponds to a form of “entropy regularization” [40] in the special case where P(a) is uniform.

Allowing a non-uniform marginal is an important feature for capturing some of our experi-

mental results.

We define the space of policies by adopting the following functional form:

pyðajsÞ / exp½bysa þ log PðaÞ�; ð16Þ

where θsa can be understood as an action “propensity” (the degree to which action a tends to

be selected in state s). By modifying the policy parameters θ to follow the gradient of Eq 15, we

obtain a “policy gradient” algorithm [3]:

Dy ¼
ayd½1 � pyðajsÞ�b for the chosen action

� aydpyðajsÞb for unchosen actions

(

ð17Þ

where αθ is the “actor” (policy) learning rate and

d ¼ br � log
pyðajsÞ
PðaÞ

� V̂ ðsÞ; ð18Þ

is the prediction error of the “critic” V̂ ðsÞ, which is updated according to:

DV̂ ðsÞ ¼ aVd; ð19Þ

where αV is a learning rate. At this point, the reader may wonder why the policy parameters

are updated according to the policy gradient rather than simply treated as state-action Q-val-

ues and updated directly based on reward, as suggested by the form of the optimal resource-

constrained policy. While this might be more straightforward for small state and action spaces

where we can use look-up tables, applications of this framework to high-dimensional or con-

tinuous state and action spaces create challenges for value function approximators. In contrast,

the optimal policy may be simpler to approximate with a relatively small number of parameters

[3]. Indeed, precisely because we are regularizing towards simpler policies, we expect this to be

typically true.
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We incrementally estimate the marginal action probabilities with an exponential moving

average:

DPðaÞ ¼ aP½pyðajsÞ � PðaÞ�; ð20Þ

with learning rate αP.

Finally, the trade-off parameter β can either be fixed (we called this the “Fixed” model) or

adaptively optimized through learning. This can be done in several ways. First, β can be opti-

mized so that policy complexity meets the capacity constraint, C:

Db ¼ abðC � xÞ; ð21Þ

where ξ is the agent’s estimate of its own policy complexity, updated with an exponential mov-

ing average:

Dx ¼ ax log
pyðajsÞ
PðaÞ

� x

� �

; ð22Þ

with learning rate αξ (we fixed αξ = 0.01). We called this the “Adaptive: Capacity” model.

The second way to adaptively optimize β is to target a desired “reward aspiration” level, R:

Db ¼ abðR � rÞ; ð23Þ

where ρ is the agent’s current estimate of the average reward, also updated via moving average:

Dr ¼ arðr � rÞ; ð24Þ

with learning rate αρ (we fixed αρ = 0.01). We called this the “Adaptive: Value” model.

Finally, we considered a third, hybrid model which combines elements of the first two

adaptive models. In this “Adaptive: Capacity-Value” model, the agent considers both capacity

and aspiration levels when adaptively optimizing β:

Db ¼ ab
C � x
R � r

� b

� �

: ð25Þ

This model variant adapts beta towards an approximation of the inverse slope (i.e., C� x
R� r) at a

point on the optimal reward-complexity trade-off curve, and allows the agent to flexibly adapt

to a variety of environments with different trade-off landscapes. For example, when the cur-

rent policy complexity estimate ξ deviates from the capacity constraint C more than the cur-

rent reward ρ deviates from the aspiration level R (i.e., the numerator is larger), β should be

updated towards a value greater than 1, and the policy should become more complex, or state-

dependent (S5 Fig, left). But when the deviation between current reward and aspiration level is

greater than the deviation between policy complexity and capacity (i.e., the denominator is

larger), the current policy is suboptimal and lies below the optimal trade-off curve (S5 Fig,

right). In this case, β should be updated towards a value less than 1 to decrease complexity and

move closer to the optimal reward- complexity trade-off. As a result, the agent may end up

learning a policy that does not utilize its full capacity C, but that still optimally maximizes

reward for the chosen policy complexity. In practice, we can not know what value of β subjects

use at the start of learning, so we initialize β to a fitted value between 1 and 10 and allow it to

adapt via Eq 25.

Comparison models. We compared our cost-sensitive models to several comparison

models that do not penalize policy complexity. First, we consider a “Standard RL” model of

choice [3], where an agent learns action-values for each state, Q(s, a), by updating it’s estimate
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on each trial using a delta rule [41]:

DQðs; aÞ ¼ aQd; ð26Þ

where

d ¼ r � Qðs; aÞ ð27Þ

is the reward prediction error, αQ is the learning rate, and r is the reward received on the cur-

rent trial after taking action a in state s. These state-action values are then transformed into

choice probabilities via a softmax function:

pðajsÞ / exp½bQðs; aÞ�; ð28Þ

where β is the inverse temperature parameter.

As mentioned in the main text, we also considered a version of the reinforcement learning

working memory (RLWM) model, studied extensively by Collins and colleagues [15, 17, 20,

22, 23]. In particular, we implement the model described in [20] which built on the original

RLWM model by adding in response time predictions. This makes it a natural comparison

because like our model, it makes specific predictions about how memory constraints affect

performance and response time. The RL module is characterized by Eqs 26 and 27. The WM

module learns stimulus-response associations W(s, a) with a fixed learning rate αWM = 1:

DWðs; aÞ ¼ aWM½r � Wðs; aÞ�; ð29Þ

which means that it has the advantage of perfect learning of the observed outcome, in contrast

to a gradual RL process. However, because working memory is vulnerable to short-term for-

getting, the WM module also includes trial-by-trial decay of W:

DW ¼ �ðW0 � WÞ ð30Þ

where ϕ represents time-based decay or forgetting of items held in short-term memory. Practi-

cally, ϕ is a fitted parameter that draws W (over all stimuli and actions) toward their initial val-

ues W0 ¼
1

nA
, and nA is the number of actions. Additionally, to capture the asymmetrical effects

of learning from positive and negative feedback, the learning rates in Eqs 26 and 29 are scaled

whenever the agent receives “incorrect” feedback on a given trial:

a ¼ ga ð31Þ

where γ controls the degree of perseveration (with lower values causing more perseveration).

The WM and RL policies (πRL and πWM) are computed using the respective softmax func-

tions:

pRLðajsÞ / exp½bRLQðs; aÞ� pWMðajsÞ / exp½bWMWðs; aÞ�: ð32Þ

We set both βRL and βWM to 50. The two policies are then combined in the final policy π via a

weighted sum:

pðajsÞ ¼ wpWMðajsÞ þ ð1 � wÞpRLðajsÞ; ð33Þ

where w represents the contribution of WM to choice behavior and is itself modulated by two

additional parameters, the working memory capacity C, and the initial WM weighting ρ:

w ¼ r �min 1;
C
nS

� �

; ð34Þ
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where nS is the set size, or number of unique stimuli (in our study, set size is always fixed at nS

= 3).

Note that while both the policy compression and RLWM models have a capacity parameter

C, the interpretation is slightly different. In the policy compression model, C defines an upper

bound on mutual information, while in the RLWM model, C is the number of items that can

be held in working memory. Therefore, if the set size exceeds the capacity C, the influence of

WM on action selection is reduced.

To build RT predictions into both the “Standard RL” and “RLWM” models, we borrow

from [20] who used an evidence accumulation model, the Linear Ballistic Accumulator (LBA),

to link choice probabilities to trial-by-trial response times. Specifically, there are individual evi-

dence accumulators for each action that “race” and terminate at an upper bound B. The accu-

mulator that reaches the bound first is the action that is executed, and the time-to-bound is the

response time (RT). In the basic LBA model, the mean drift rate vi of each accumulator i repre-

sents the evidence accumulation process of different competing actions. On each trial, vi is

scaled proportionally by its associated action probability from the policy π:

vi ¼ ZpðaijsÞ; ð35Þ

where η is a scaling parameter. This model of RT is consistent with assumptions from the

actor-critic framework, where state-action weights in the striatum govern decision latency.

Similar to our RT model, [20] additionally assume that prior uncertainty over actions would

influence decision time. This prior uncertainty term Hprior was modeled by computing an

average policy~pm that averages action weights for each action over each state and across all

states:

~pm ¼
1

nS

X

s

pðajsÞ: ð36Þ

This vector represents the probability of choosing each of the three actions prior to encoding

the current trial’s stimulus. The degree of uncertainty over this prior on each trial is then com-

puted via the Shannon entropy:

Hprior ¼ �
P
~pm log

2
~pm: ð37Þ

This quantity is then used to scale down the drift rates of each accumulator by the degree of

uncertainty associated with taking any particular action in that trial:

vi ¼ Z
pðaijsÞ
Hprior

" #

: ð38Þ

To generate RTs in the Standard RL and RLWM models, we draw each accumulator’s starting

point ki from a uniform distribution on the interval [0, A]. By randomly-sampling the starting

point from some range of initial bias (A), we create sources of extra random variability that

allow for the initial amount of evidence for each action ki to fluctuate from trial to trial. The

drift rate of each accumulator di is then drawn from a normal distribution, N(vi, sv), where vi is

calculated from Eq 38 using the respective π for each model (i.e., Eq 28 for the Standard RL

model and Eq 33 for the RLWM model). The drift rate di represents the slope or speed of the

accumulation process, which is proportional to the action probability specified by the current

policy, according to Eq 38. The variance of the drift rate distribution, sv, also serves to inject

random trial-to-trial variability in the evidence accumulation process for each action.
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On each trial, each accumulator’s time to threshold Ti can be computed via:

Ti ¼ t0 þ
B � ki

di
; ð39Þ

where B is the LBA threshold bound and t0 is the non-decision time that represents processes

that are independent of the action choice, such as time for stimulus perception and response

production. The agent’s choice and corresponding RT on a single trial is determined by the

accumulator that reaches threshold first (thereby generating the minimum RT):

a ¼ minðTÞ ð40Þ

Modeling time pressure. As mentioned in the Results, one of the main contributions of

this study was modeling response time (RT) as a function of trial-by-trial policy cost and

entropy (Eq 6). To account for the hypothesized effects of time pressure on choice behavior,

we fit one separate parameter in the Adaptive models that was specific to Task 3. This parame-

ter (Creduced for the Capacity and Capacity-Value models and Rreduced for the Value model)

modeled the effect of time pressure as a reduction in the agent’s capacity limit (C) or aspiration

level (R), forcing the agent to further compress their policies.

In the RLWM and Standard RL models, we assumed that time pressure would decrease the

threshold bound of the accumulation process, and therefore we fit a separate bound parameter

B2 − A (to ensure that B2 > A) for the time pressure condition in Task 3. For the Adaptive

models, we hypothesized that time pressure would further compress agents’ policies by

decreasing their capacity limit (C). We therefore fit a separate capacity parameter Creduced for

the time pressure condition (Q2) in Task 3.

Model variants. To summarize, we consider the following policy compression model var-

iants: the Fixed: 1β model (where we fit a single β parameter across all tasks and conditions),

the Adaptive: Capacity model, the Adaptive: Value model, and the Adaptive: Capacity-Value

model. We also considered one additional variant of the Fixed model, where we fit a unique β
parameter for each condition in each task (3 tasks × 2 conditions per task = 6βs). We called

this the Fixed: 6β model. In total, we considered 5 variants of the policy compression model.

For the comparison models, we considered the RLWM model as well as two variants of the

Standard RL model: one where we fit a single β parameter across all tasks and conditions (the

Standard RL: 1β model), and one where we fit a unique β parameter for each condition in each

task (the Standard RL: 6β model). In total, we considered 3 comparison models. All model var-

iants that we considered, along with their free parameters, are summarized in Table 1.

Table 1. List of models and their free parameters. Models vary in whether they penalize policy complexity and how

they update β.

No. Model β update rule Parameters

1 RLWM n/a C, αRL, ϕ, ρ, γ, A, B1, B2, η

2 Standard RL: 1β n/a β, α, A, B1, B2, η

3 Standard RL: 6β n/a β11, β12, β21, β22, β31, β32, α, A, B1, B2, η

4 Fixed: 1β n/a β, αθ, αV, αP, b1, b2

5 Fixed: 6β n/a β11, β12, β21, β22, β31, β32, αθ, αV, αP, b1, b2

6 Adaptive: Capacity Δβ = αβ[C − ξ] C, Creduced, β0, αβ, αθ, αV, αP, b1, b2

7 Adaptive: Value Δβ = αβ[R − ρ] R, Rreduced, β0, αβ, αθ, αV, αP, b1, b2

8 Adaptive: Capacity-Value Db ¼ ab
C� x
R� r � b
h i

C, Creduced, R, β0, αβ, αθ, αV, αP, b1, b2

https://doi.org/10.1371/journal.pcbi.1012057.t001
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Model fitting. We used maximum likelihood estimation to jointly fit the choice and

response time data for each subjects. The Standard RL and RLWM models were fit according

to the methods described in [20]. Parameter constraints were defined according to Tables 2

and 3. In general, all learning rates were constrained in the range [0, 1] and the non-decision

time t0 was fixed to 150ms for all models.

We chose to fix several parameters. For the policy compression (Fixed and Adaptive) mod-

els, σ was fixed to 0.9 for all models. For the RLWM and Standard RL models, the sv parameter

was fixed at 0.1. Fixing this parameter has been shown to significantly improve LBA model

identifiability [20, 42]. For the RLWM model, the inverse temperatures βRL and βWM were

fixed at 50, consistent with previous studies [20, 23]. Since βRL and βWM do not have the same

interpretation as the β in the policy compression models, we chose to fix them to the values

stated in the previous studies’ best fitting model, as other parameters in the RLWM model

were larger determinants of the model fit to data. Additionally, the RLWM model had a very

large number of fitted parameters already (9), so adding even more would have contributed to

potential degeneracy. We also note that changing the βRL and βWM parameters would not have

changed the qualitative predictions of the RLWM model.

Table 2. Parameter bounds for the RLWM and standard RL models.

Parameter RLWM Standard RL: 1β Standard RL: 6β

C [2, 5] - -

β - [1, 30] all 6 βs 2 [1, 30]

α [0, 1] [0, 1] [0, 1]

ϕ [0, 1] - -

ρ [0, 1] - -

γ [0, 1] - -

A [0, 500] [0, 500] [0, 500]

B1 − A [0, 500] [0, 500] [0, 500]

B2 − A [0, 500] [0, 500] [0, 500]

η [0, 3] [0, 3] [0, 3]

Total # Parameters 9 6 11

https://doi.org/10.1371/journal.pcbi.1012057.t002

Table 3. Parameter bounds for the policy compression models.

Parameter Fixed: 1β Fixed: 6β Capacity Value Capacity-Value

C - - [lb, 3] - [lb, 3]

Creduced - - [0, lb] - [0, lb]

R - - - [0, 1] [0, 1]

Rreduced - - - [0, 1] -

β [1, 30] all 6 βs 2 [1, 30] - - -

β0 - - [1, 10] [1, 10] [1, 10]

αθ [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]

αV [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]

αβ - - [0, 1] [0, 1] [0, 1]

αp [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]

b1 [1, 500] [1, 500] [1, 500] [1, 500] [1, 500]

b2 [1, 500] [1, 500] [1, 500] [1, 500] [1, 500]

Total # Parameters 6 11 9 9 10

https://doi.org/10.1371/journal.pcbi.1012057.t003
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All free parameters that we fit for each model are indexed in Tables 2 and 3.

Parameter and model recovery. We validated our modeling procedure in two ways.

First, we assessed parameter recovery by refitting the data simulated from the winning “Adap-

tive: Capacity-Value” model and comparing the resulting parameter estimates to their ground

truth. All 10 of the parameters exhibited reasonable parameter recoverability, with correlations

ranging from 0.25 to 0.944 (mean r = 0.595; all statistically significant, p<0.0001).

Second, we assessed model recovery by fitting the eight total model variants to the simu-

lated data from the winning model and computing the Bayesian Information Criterion (BIC)

and the protected exceedance probability (PXP) using Bayesian model comparison [43]. We

first observed that the BICs of the three models that did not penalize policy complexity

(RLWM, Standard RL (1β), and Standard RL (6β)) was significantly greater than the BICs of

the policy compression models (mean Δ BIC = 7863.4), indicating a clear distinction between

compression and non-compression models (S1 Fig). However, the policy compression model

variants (Fixed (1β), Fixed (6β), Adaptive: Capacity, Adaptive: Value, and Adaptive: Capacity-

Value) are less quantitatively distinguishable from one another, with the top 3 models within a

BIC difference of only 71.7. Additionally, we found that the PXP could not accurately identify

the data-generating model among the compression models. Regardless, we note that the BICs

of the data-generating model were the most internally consistent (with a standard deviation of

281, compared to a mean SD = 561.56 for the other policy compression variants).

From this analysis, we can conclude that our modeling procedure is able to accurately dis-

tinguish between compression and non-compression models, but is less suited for identifying

the correct model variant within the class of policy compression models. Designing experi-

ments to distinguish between fixed and adaptive policy compression models is an avenue for

further research.

Ethics statement

Our study involved human subjects and was approved by the Harvard Institutional Review

Board, number IRB15–2048. All subjects gave electronic written consent before beginning the

study. We pre-registered our study and analyses at https://aspredicted.org/blind.php?x=ZZY_

QBZ.

Subjects

In accordance with a power analysis run on a pilot sample, we collected data from two-hun-

dred (N = 200; 136 male) subjects who completed our study on Amazon Mechanical Turk and

received monetary compensation. Subjects were paid a base pay of $4 and a performance

bonus of up to $4 for completing the task. Subjects took, on average, 35 minutes to complete

the entire experiment, and their average payout was $6.66. No subjects were excluded.

Additional experiment details

All subjects completed 2 practice blocks of 30 trials each before beginning the actual experi-

ment to familiarize them with the structure of the task. The practice blocks were identical to

the experimental blocks in their trial-by-trial procedure, and the reward functions were

designed to expose subjects to probabilistic reward and different stimulus-response contingen-

cies. Each practice block had three unique stimuli and three unique key press responses (same

as the experiment). Each stimulus was presented 10 times in one block. In one practice block,

there was one optimal response for each stimulus, while in the other, all three stimuli shared

one optimal action. They were allowed to return to this practice block as many times as they

wanted throughout the study. We did not analyze data from these practice blocks.

PLOS COMPUTATIONAL BIOLOGY Human decision making balances reward maximization and policy compression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012057 April 26, 2024 27 / 32

https://aspredicted.org/blind.php?x=ZZY_QBZ
https://aspredicted.org/blind.php?x=ZZY_QBZ
https://doi.org/10.1371/journal.pcbi.1012057


In general, we tried to encourage independent learning of actions across states by informing

the subjects that multiple states could share the same optimal action, or that one state could

have more than one optimal action.

Computing empirical policy complexity

Empirical policy complexity as plotted in the reward-complexity trade-off plots in Figs 4B, 5B

and 7B was estimated from each subject’s behavior per task condition. Following [12], we use

the Hutter estimator, which computes the posterior expected value of the mutual information

under a symmetric Dirichlet prior [44], to estimate subjects’ empirical policy complexity, or

the mutual information between the observed stimuli (states) and subjects’ key press responses

(actions).

Supporting information

S1 Fig. Model comparison. The difference in Bayesian Information Criterion (BIC) relative to

the model with the lowest BIC (Value). (Inset) A zoomed-in view of all the policy compression

models. Policy compression models in general outperform the RLWM and Standard RL mod-

els. Error bars indicate standard error.

(PDF)

S2 Fig. Dynamics of learning in Task 1 (manipulating state frequency). (A) From left to

right: The dynamic reward complexity trade-off, averaged across all subjects. Solid dot indi-

cates the start, while open dot indicates the end, of learning. Policy complexity, average reward,

and response time (RT) as a function of trials. Response time as a function of policy complex-

ity. Note that policy complexity, average reward, and RT are computed via a sliding window of

30 trials. The running average in each plot is therefore truncated to 30 trials fewer than the

total number of trials, as there are not enough elements to fill the window at endpoints. (B)

Same as (A) but data simulated from the winning policy compression model (Adaptive:

Capacity-Value). (C) Same as (A) but data simulated from the Adaptive: Value model. (D)

Same as (A) but data simulated from the Adaptive: Capacity model. (E) Same as (A) but data

simulated from the RLWM model. (F) Same as (A) but data simulated from the No Cost (1β)

model. All shaded error bars indicate standard error.

(PDF)

S3 Fig. Dynamics of learning in Task 2 (manipulating action frequency). (A) From left to

right: The dynamic reward complexity trade-off, averaged across all subjects. Solid dot indi-

cates the start, while open dot indicates the end of learning. Policy complexity, average reward,

and response time (RT) as a function of trials. Response time as a function of policy complex-

ity. Note that policy complexity, average reward, and RT are computed via a sliding window of

30 trials. The running average in each plot is therefore truncated to 30 trials less than the total

number of trials, as there are not enough elements to fill the window at endpoints. In the data,

the policy complexity is similar across conditions and increases slightly over the course of the

task. While the Capacity-Value model (B) captures this between-condition similarity, the

Value (C) and Capacity (D) models predict diverging policy complexities. (B) Data simulated

from the winning policy compression model (Adaptive: Capacity-Value). (C) Data simulated

from the Adaptive: Value model. (D) Data simulated from the Adaptive: Capacity model. (E)

Data simulated from the RLWM model. (F) Data simulated from the No Cost (1β) model. All

shaded error bars indicate standard error.

(PDF)
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S4 Fig. Dynamics of learning in Task 3 (manipulating time pressure). (A) From left to

right: The dynamic reward complexity trade-off, averaged across all subjects. Solid dot indi-

cates the start, while open dot indicates the end of learning. Policy complexity, average reward,

and response time (RT) as a function of trials. Response time as a function of policy complex-

ity. Note that policy complexity, average reward, and RT are computed via a sliding window of

30 trials. The running average in each plot is therefore truncated to 30 trials less than the total

number of trials, as there are not enough elements to fill the window at endpoints. In the data,

policy complexity remains roughly constant in both conditions, though it is overall higher in

Q1 than in Q2. This trend is successfully mirrored by the Capacity-Value model (B). In the

Value (C) model, the complexity difference between conditions is much smaller, while in the

Capacity (D) model, complexity starts at the same point for both conditions and diverges with

learning. Additionally, average reward steadily increases for both conditions, though it is

always higher on average in Q1 than Q2. This overall difference in reward, although less pro-

nounced, is captured by the Capacity-Value model but not by the Capacity and Value only

models. (B) Data simulated from the winning policy compression model (Adaptive: Capacity-

Value). (C) Data simulated from the Adaptive: Value model. (D) Data simulated from the

Adaptive: Capacity model. (E) Data simulated from the RLWM model. (F) Data simulated

from the No Cost (1β) model. All shaded error bars indicate standard error.

(PDF)

S5 Fig. Example task conditions. Two task conditions illustrating how the reward function

affects the distribution of actions and changes the reward-complexity trade-off. (A) In this

example condition, there is one unique rewarded action for each state. (B) This results in a

roughly uniform marginal action distribution and a strictly monotonic reward-complexity

trade-off. (C) In this condition, all states share the same rewarded action, causing the marginal

action distribution to be heavily biased towards one action. (D) This reward structure results

in a non-strictly monotonic reward-complexity trade-off. Note that in this condition, agents

could achieve the highest average reward value with a variety of policy complexities. The exam-

ple points on each plot show different suboptimal policies that can move in the reward-com-

plexity space depending on how β is being updated using the capacity limit C, aspiration level

R, or a combination of both.

(PDF)
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DH, editors. Decision Making with Imperfect Decision Makers. Berlin, Heidelberg: Springer Berlin Hei-

delberg; 2012. p. 57–74.

8. Still S, Precup D. An information-theoretic approach to curiosity-driven reinforcement learning. Theory

Biosci. 2012; 131(3):139–148. https://doi.org/10.1007/s12064-011-0142-z PMID: 22791268

9. Lerch RA, Sims CR. Policy Generalization In Capacity-Limited Reinforcement Learning; 2018.

10. Gershman SJ, Lai L. The Reward-Complexity Trade-off in Schizophrenia. Computational Psychiatry.

2021; 5(1):38–53. https://doi.org/10.5334/cpsy.71

11. Lai L, Gershman SJ. Policy compression: An information bottleneck in action selection. In: Federmeier

KD, editor. The Psychology of Learning and Motivation. vol. 74 of Psychology of Learning and Motiva-

tion. Academic Press; 2021. p. 195–232. Available from: https://www.sciencedirect.com/science/

article/pii/S0079742121000049.

12. Gershman SJ. Origin of perseveration in the trade-off between reward and complexity. Cognition. 2020;

204:104394. https://doi.org/10.1016/j.cognition.2020.104394 PMID: 32679270

13. Amir N, Suliman R, Tal M, Shifman S, Tishby N, Nelken I. Value-complexity tradeoff explains mouse

navigational learning. PLoS Comput Biol. 2020; 16(12):e1008497. https://doi.org/10.1371/journal.pcbi.

1008497 PMID: 33306669

14. Bari BA, Gershman SJ. Undermatching Is a Consequence of Policy Compression. J Neurosci. 2023; 43

(3):447–457. https://doi.org/10.1523/JNEUROSCI.1003-22.2022 PMID: 36639891

15. Collins AG, Frank MJ. How much of reinforcement learning is working memory, not reinforcement learn-

ing? A behavioral, computational, and neurogenetic analysis. European Journal of Neuroscience. 2012;

35:1024–1035. https://doi.org/10.1111/j.1460-9568.2011.07980.x PMID: 22487033

16. Hyman R. Stimulus information as a determinant of reaction time. Journal of Experimental Psychology.

1953; 45:188–196. https://doi.org/10.1037/h0056940 PMID: 13052851

17. Collins AG. The tortoise and the hare: Interactions between reinforcement learning and working mem-

ory. Journal of Cognitive Neuroscience. 2018; 30:1422–1432. https://doi.org/10.1162/jocn_a_01238

PMID: 29346018

18. Hick WE. On the rate of gain of information. Quarterly Journal of Dxperimental Psychology. 1952; 4:11–

26.

PLOS COMPUTATIONAL BIOLOGY Human decision making balances reward maximization and policy compression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012057 April 26, 2024 30 / 32

https://doi.org/10.1017/S0140525X1900061X
https://doi.org/10.1017/S0140525X1900061X
http://www.ncbi.nlm.nih.gov/pubmed/30714890
https://doi.org/10.1016/j.cobeha.2021.02.015
https://doi.org/10.3389/fnsys.2011.00022
http://www.ncbi.nlm.nih.gov/pubmed/21603228
https://doi.org/10.1007/s12064-011-0142-z
http://www.ncbi.nlm.nih.gov/pubmed/22791268
https://doi.org/10.5334/cpsy.71
https://www.sciencedirect.com/science/article/pii/S0079742121000049
https://www.sciencedirect.com/science/article/pii/S0079742121000049
https://doi.org/10.1016/j.cognition.2020.104394
http://www.ncbi.nlm.nih.gov/pubmed/32679270
https://doi.org/10.1371/journal.pcbi.1008497
https://doi.org/10.1371/journal.pcbi.1008497
http://www.ncbi.nlm.nih.gov/pubmed/33306669
https://doi.org/10.1523/JNEUROSCI.1003-22.2022
http://www.ncbi.nlm.nih.gov/pubmed/36639891
https://doi.org/10.1111/j.1460-9568.2011.07980.x
http://www.ncbi.nlm.nih.gov/pubmed/22487033
https://doi.org/10.1037/h0056940
http://www.ncbi.nlm.nih.gov/pubmed/13052851
https://doi.org/10.1162/jocn_a_01238
http://www.ncbi.nlm.nih.gov/pubmed/29346018
https://doi.org/10.1371/journal.pcbi.1012057


19. Proctor RW, Schneider DW. Hick’s law for choice reaction time: A review. Quarterly Journal of Experi-

mental Psychology. 2018; 71(6):1281–1299. https://doi.org/10.1080/17470218.2017.1322622 PMID:

28434379

20. McDougle SD, Collins AGE. Modeling the influence of working memory, reinforcement, and action

uncertainty on reaction time and choice during instrumental learning. Psychon Bull Rev. 2021; 28

(1):20–39. https://doi.org/10.3758/s13423-020-01774-z PMID: 32710256

21. Ballard IC, McClure SM. Joint modeling of reaction times and choice improves parameter identifiability

in reinforcement learning models. J Neurosci Methods. 2019; 317:37–44. https://doi.org/10.1016/j.

jneumeth.2019.01.006 PMID: 30664916

22. Collins AG, Ciullo B, Frank MJ, Badre D. Working memory load strengthens reward prediction errors.

Journal of Neuroscience. 2017; 37:4332–4342. https://doi.org/10.1523/JNEUROSCI.2700-16.2017

PMID: 28320846

23. Collins AGE, Frank MJ. Within- and across-trial dynamics of human EEG reveal cooperative interplay

between reinforcement learning and working memory. Proc Natl Acad Sci U S A. 2018; 115(10):2502–

2507. https://doi.org/10.1073/pnas.1720963115 PMID: 29463751

24. Ma WJ, Husain M, Bays PM. Changing concepts of working memory. Nat Neurosci. 2014; 17(3):347–

356. https://doi.org/10.1038/nn.3655 PMID: 24569831

25. Siegel S. Level of aspiration and decision making. Psychol Rev. 1957; 64(4):253–262. https://doi.org/

10.1037/h0049247 PMID: 13453609

26. Selten R. Aspiration Adaptation Theory. J Math Psychol. 1998; 42(2/3):191–214. https://doi.org/10.

1006/jmps.1997.1205 PMID: 9710547
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