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 A B S T R A C T

Many skills in our everyday lives are learned by sequencing actions towards a desired goal. The action sequence 
can become a ‘‘chunk’’ when individual actions are grouped together and executed as one unit, making them 
more efficient to store and execute. While chunking has been studied extensively across various domains, 
a puzzle remains as to why and under what conditions action chunking occurs. To tackle these questions, 
we develop a model of conditional policy compression—the reduction in cognitive cost by conditioning on 
an additional source of information—to explain the origin of chunking. We argue that chunking is a result 
of optimizing the trade-off between reward and conditional policy complexity. Chunking compresses policies 
when there is temporal structure in the environment that can be leveraged for action selection, reducing 
the amount of memory necessary to encode the policy. We experimentally confirm our model’s predictions, 
showing that chunking reduces conditional policy complexity and reaction times. Chunking also increases with 
working memory load, consistent with the hypothesis that the degree of policy compression scales with the 
scarcity of cognitive resources. Finally, chunking also reduces overall working memory load, freeing cognitive 
resources for the benefit of other, not-chunked information.
1. Introduction

In his seminal 1956 paper, George Miller proposed that organizing 
multiple pieces of information into a single ‘‘chunk’’ could help circum-
vent the limited capacity of working memory (Miller, 1956). Chunking 
is thought to reduce cognitive load by representing information in 
a more efficient form. It has been studied extensively across various 
domains, including visual statistical learning (Lengyel et al., 2021; 
Orbán et al., 2008), visual and verbal short-term memory (Chen & 
Cowan, 2005; Franco & Destrebecqz, 2012; Gobet et al., 2001; Mathy 
et al., 2024; Nassar et al., 2018; Norris & Kalm, 2021; Orhan & Jacobs, 
2013), serial order memory (Mathy & Feldman, 2012; Thalmann et al., 
2019), language processing (Christiansen & Chater, 2016; Perruchet 
& Vinter, 1998), task set learning (Bouchacourt et al., 2020), skill 
learning (Du et al., 2022; Haith & Krakauer, 2018), and action sequence 
learning (Banca et al., 2023; Bo & Seidler, 2009; Miyapuram et al., 
2006; Sakai et al., 2003; Terrace, 1991; Tosatto et al., 2022; Verwey, 
1996, 1999).

While chunking encompasses a broad range of cognitive phenom-
ena, we focus specifically on action chunking—the grouping of sequen-
tial motor responses into unified representations. In sequence learning 
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tasks, such as the serial reaction time task, participants learn to exe-
cute a series of actions in response to cued stimuli that appear in a 
patterned order. The ability to group individual actions together into 
chunks enables faster execution times and higher accuracy (Dezfouli 
& Balleine, 2012; Sakai et al., 2003), a strategy also observed in 
animals during the acquisition of habitual behaviors (Graybiel, 1998; 
Jin & Costa, 2010; Jin et al., 2014). Notably, Dezfouli and Balleine 
(2012) modeled action chunking as an adaptive strategy for reducing 
decision time costs: if multi-step action chunks can be executed faster 
than selecting individual actions, chunking becomes advantageous by 
increasing overall reward rate.

These approaches emphasize the computational (i.e., time) costs of 
action selection while largely overlooking its representational (i.e., mem-
ory) demands. However, in other domains of cognitive science, chunk-
ing has long been studied as a strategy for compressing information in 
memory. Human learning and memory are believed to be constrained 
by limited cognitive resources (Baddeley, 1992; Cowan, 2001; Ma et al., 
2014; Miller, 1956; Oberauer et al., 2016), and chunking is thought 
to support working memory efficiency by leveraging similarity-based 
compression (Chekaf et al., 2016; Kowialiewski et al., 2022; Mathy 
et al., 2024; Pothos, 2007). In language processing, cognitive resource 
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constraints are thought to shape the emergence of structured, learnable 
patterns (Christiansen & Chater, 2016). Relatedly, memory limitations 
have been shown to influence chunking in language acquisition (Frank 
et al., 2010; Goldwater et al., 2009). Computational models such as 
TRACX (French et al., 2011), PARSER (Perruchet & Vinter, 1998), and 
the competitive chunking model (Servan-Schreiber & Anderson, 1990) 
capture how learners form chunks by extracting structure from statis-
tical regularities in sequences, while models based on the Minimum 
Description Length (MDL) principle have formalized chunking as a data 
compression process that reduces representational complexity (Mathy 
& Feldman, 2012; Robinet et al., 2011). Although these studies did not 
directly examine action selection, they suggest that action chunking 
may serve not only to reduce time costs but also to economize on 
limited memory storage.

In this study, we propose an alternative perspective that action 
chunking emerges as a consequence of bounded memory resources. 
Following previous work (Dezfouli & Balleine, 2012), we develop a 
formal model of action chunking within the reinforcement learning 
(RL) framework, a mathematical account of instrumental learning that 
describes how agents learn to associate states (stimuli) with actions 
(responses) in order to maximize reward (Sutton & Barto, 2018). The 
mapping from states to actions is called a policy, and storing a policy in 
memory places demands on cognitive resources: more complex policies 
require more memory to store and retrieve. We propose that chunking 
serves as an optimal strategy for reducing these representational costs.

Specifically, we show that action chunking emerges from an
information-theoretic model that maximizes reward while minimizing 
the representational complexity of the policy. In the language of infor-
mation theory, a policy can be thought of as a noisy communication 
channel that maps individual states to codewords (the internal repre-
sentation), which are then decoded into actions. The channel’s function 
is to discard redundant information about states that is not needed 
for effective action selection (Lai & Gershman, 2021). The average 
codeword length (the information rate required to encode the policy 
in memory) is equal to the mutual information between states and 
actions, 𝐼(𝑆;𝐴), or the policy complexity. This complexity is bounded 
by an agent’s channel capacity, a measure of its available storage 
space. Prior work has shown that the highest achievable expected 
reward is a monotonically increasing and concave function of policy 
complexity (Gershman, 2020; Lai & Gershman, 2021; Parush et al., 
2011; Tishby & Polani, 2011), implying a trade-off between reward and 
policy compression: higher reward demands more complex policies, 
but resource limitations constrain complexity. Compression of policy 
representations thus comes at the cost of reward.

In our previous work (Lai & Gershman, 2021), we proposed that 
chunking can reduce policy complexity by collapsing states with similar 
optimal actions or by binding sequences of actions into a single unit 
in memory. For example, if two states yield the same optimal action, 
they can be grouped into a single memory representation (Fig.  1A; 
see also Lai and Gershman (2024)). Alternatively, if one state reliably 
follows another, their associated actions can be combined into an action 
chunk (Fig.  1B). In both cases, chunking reduces the memory cost of 
representing a policy. Furthermore, if policy complexity correlates with 
decision time, as we have proposed in Lai and Gershman (2021, 2024), 
then chunked actions (which are lower in complexity) should also be 
faster to execute.

In this paper, we empirically test the hypothesis that action chunk-
ing arises from conditional policy compression—the reduction in com-
plexity when an agent leverages structured temporal information in the 
environment (Fig.  2A). We designed an RL task in which participants 
learned the correct action to take in different states (indicated by visual 
stimuli). Critically, we manipulated both the predictability of state 
sequences and the overall memory load (i.e., the number of states), 
building on previous work showing that cognitive load affects instru-
mental learning via ‘‘set size’’ effects (Collins, 2018; Collins et al., 2017; 
Collins & Frank, 2012, 2018). Based on our theoretical framework, we 
2 
hypothesized that both temporal predictability and memory load would 
facilitate the formation of action chunks, which we measured as a 
decrease in errors and response time. Following previous work, we also 
predicted that chunking would free up memory resources and lead to 
improved performance for other, unchunked information (Kowialiewski 
et al., 2022; Mathy et al., 2024; Thalmann et al., 2019).

To evaluate our theory, we compare a conditional policy compres-
sion model—where agents maximize reward subject to a constraint on
conditional policy complexity—to an unconditional policy compression 
model, Lai and Gershman (2021, 2024). Our empirical findings support 
the conditional model, providing a normative and mechanistic account 
of how structured temporal input and memory limitations together 
shape the emergence of action chunks.

2. Conditional policy compression as a model of action chunking

In this section, we adapt our policy compression framework (Lai & 
Gershman, 2021) to the problem of action chunking. We start from the 
assumption that capacity-limited agents will exploit structure in their 
environments to compress their policies, which can include redundancy 
in the reward-maximizing action in each state. This is because, if 
multiple states share the same optimal action, the agent does not need 
to pay as much attention to the state in order to select the best action 
(Fig.  1A and Lai and Gershman (2024)). However, the standard policy 
compression framework (Fig.  2A, blue rectangle) does not address how 
an agent might take advantage of temporal structure in their environ-
ment. This is an important problem, as natural environments have 
temporal continuity of both states and actions.

Here, we propose that action chunking takes advantage of the 
temporal structure of the environment to compress policies, by way 
of states being fully predicted by other states in time. For example, if 
two states have different optimal actions, but one state reliably predicts 
another in time (e.g., a yellow traffic light → red traffic light), then the 
actions associated with each state can also be chunked together as one 
action unit (e.g., slowing down → stopping the car). This effectively 
allows the agent to pay less attention to the deterministically predicted 
state in order to know what to do next (Fig.  1B).

As we developed in Gershman (2020) and Lai and Gershman (2021), 
policies can be thought of as communication channels that transmit 
information about the environmental state (source) to guide action 
selection (output). The policy complexity is a measure of the amount 
of mutual information (in bits) between states and actions. Action se-
lection therefore requires an agent to first reconstruct the state identity 
(or source) in order to guide an appropriate behavioral response.

In this view, one can think about temporally-correlated state in-
formation as providing additional data for the reconstruction of the 
source. This ‘‘side’’ information is available to both the encoder and 
decoder (Fig.  2A). In this set up, the minimum number of bits (the 
minimum communication rate) needed for error-free transmission of 
the source identity is the conditional mutual information (Gray, 1972; 
Niu et al., 2023, Fig.  2B). In the context of action selection, we can 
refer to this information rate as the conditional policy complexity, defined 
as the mutual information between states and actions after conditioning 
on an additional information source, such as the state on the previous 
trial 𝑆𝑡−1:

𝐼𝜋 (𝑆𝑡;𝐴𝑡|𝑆𝑡−1) =
∑

𝑠𝑡−1

𝑃 (𝑠𝑡−1)
∑

𝑠𝑡

𝑃 (𝑠𝑡|𝑠𝑡−1)

×
∑

𝑎𝑡

𝜋(𝑎𝑡|𝑠𝑡, 𝑠𝑡−1) log
𝜋(𝑎𝑡|𝑠𝑡, 𝑠𝑡−1)
𝑃 (𝑎𝑡|𝑠𝑡−1)

(1)

In environments where 𝐼(𝑆𝑡;𝑆𝑡−1) is high, the current state 𝑠 contains 
redundant information about the previous state 𝑠𝑡−1, which limits the 
capacity of 𝑆𝑡 to carry unique information about 𝐴 beyond what 
is already conveyed by 𝑆𝑡−1. We hypothesize that capacity-limited 
agents take advantage of this correlated side information and in effect, 
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Fig. 1. Two ways to chunk. (A) If two states lead to the same action, they can be described by one codeword and become ‘‘chunked’’ together as one unit in memory. (B) If two 
states lead to two different actions, but one state is fully predicted by another state, the two-state sequence can be fully described by the first state, and the corresponding actions 
can be chunked together into an ‘‘action chunk’’.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Conditional policy compression. (A) The policy as a communication channel. A state distribution 𝑃 (𝑠𝑡) generates states 𝑠 that are encoded into memory via an encoder, 
yielding a codeword (not shown) whose length is bounded by the channel capacity (policy complexity). The codeword is then decoded and mapped onto an action 𝑎𝑡. Together, 
the encoding and action selection process produce the policy 𝜋(𝑎𝑡|𝑠𝑡) that maps states to actions. Conditional policy compression introduces an additional information source, in 
this case the state on the previous trial 𝑠𝑡−1. This side information source is available to both encoder and decoder. (B) A Venn diagram visual of the relationship between multiple 
information theoretic quantities: the state distribution on the current trial (𝑆𝑡), the action distribution on the current trial (𝐴𝑡), and the state distribution on the previous trial (𝑆𝑡−1). 
The policy complexity is the information shared by the state and action distribution, while the conditional policy complexity is the unique information between states and actions 
after accounting for the information provided by the previous state. (C) In the unconditional policy compression model, the optimal policy combines state–action values 𝜃(𝑠𝑡 , 𝑎𝑡)
with a marginal action probability term 𝑃 (𝑎𝑡) that biases the policy towards actions that are chosen frequently across all states (in this example it is assumed to be uniform). The 
trade-off term, 𝛽, determines the relative contribution of 𝜃(𝑠𝑡 , 𝑎𝑡) and 𝑃 (𝑎𝑡), thereby controlling how state-dependent action selection is. Example distributions depict action selection 
in one state. (Inset) Example state sequence, where 𝑠𝑡 reliably follows 𝑠𝑡−1, and therefore, the agent learns to choose 𝑎3 after 𝑎1. The unconditional model does not capture the 
temporal dependence of 𝑎1 on 𝑠𝑡1  in the marginal distribution. (D) In the conditional policy compression model, the optimal policy combines 𝜃(𝑠𝑡 , 𝑎𝑡) with a conditional marginal 
action probability term 𝑃 (𝑎𝑡|𝑠𝑡−1) that biases the policy towards actions that are frequently chosen given a particular previous state. Given the example state sequence in (C), 𝑎3
has high probability in the marginal term. Under the same value of 𝛽, the conditional complexity cost is less than the complexity cost, as the deviation between the action policy 
and the marginal distribution is smaller in the former.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
learn reward-maximizing policies subject to an upper bound on their
conditional policy complexity : 

argmax
𝜋

𝑉 𝜋

subject to 𝐼𝜋 (𝑆𝑡;𝐴𝑡|𝑆𝑡−1) ≤ 𝐶
(2)

where 𝐶 is the agent’s capacity limit and 𝑉 𝜋 = E[𝑟|𝜋], the expected 
reward (𝑟) conditional on policy 𝜋. This optimization problem can be 
solved in a Lagrangian form: 

𝜋∗ = argmax
𝜋

𝛽𝑉 𝜋 −𝐼𝜋 (𝑆𝑡;𝐴𝑡|𝑆𝑡−1)+
∑

𝑠𝑡

𝜆(𝑠𝑡)

(

∑

𝑎𝑡

𝜋(𝑎𝑡|𝑠𝑡, 𝑠𝑡−1) − 1

)

, (3)

with Lagrange multipliers 𝛽 ≥ 0 and 𝜆(𝑠) ≥ 0 (the 3rd term en-
sures proper normalization, which we leave implicit in subsequent 
equations).
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2.1. Learning action chunks

We can now adapt our cost-sensitive actor-critic learning model to 
the problem of action chunking. The optimization problem that the 
agent faces (expressed in terms of an expectation over states) is: 

𝜋∗ = argmax
𝜋

E
[

𝛽𝑟 − log
𝜋(𝑎𝑡|𝑠𝑡, 𝑠𝑡−1)
𝑃 (𝑎𝑡|𝑠𝑡−1)

]

. (4)

To find the optimal policy 𝜋∗, the cost-sensitive agent must find the 
policy parameters 𝜃∗ that maximize expected reward relative to the 
conditional policy complexity cost. We use the term cost to refer to 
the trial-by-trial cost (i.e., log 𝜋(𝑎𝑡|𝑠𝑡 ,𝑠𝑡−1)

𝑃 (𝑎𝑡|𝑠𝑡−1)
), and complexity to refer to its 

expectation (i.e., 𝐼(𝑆𝑡;𝐴|𝑆𝑡−1)).
For our task, we can employ a tabular parametrization with param-

eters 𝜃 for simplicity, although our model can also accommodate con-
tinuous state spaces (via function approximation), making it applicable 
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to a wider range of environments: 
𝜋𝜃(𝑎𝑡 = 𝑎|𝑠𝑡 = 𝑠, 𝑠𝑡−1) ∝ exp[𝛽𝜃(𝑠, 𝑎) + log𝑃 (𝑎𝑡 = 𝑎|𝑠𝑡−1)]. (5)

This parametrization was chosen because it corresponds to the optimal 
functional form of the policy under the Lagrangian specified above. The 
parameter 𝛽 determines the relative contribution of 𝜃 and 𝑃 (𝑎|𝑠𝑡−1), 
thereby controlling how dependent action selection is on the previous 
state. As described in previous work (Lai & Gershman, 2021), 𝛽 also 
implicitly indexes an agent’s capacity constraint, with higher values 
indicating higher capacities and therefore, a higher dependence of 
actions on the current state.

After taking action 𝑎𝑡 in state 𝑠𝑡 and observing reward 𝑟, the policy 
parameters are updated via the policy gradient (i.e., the gradient of the 
Lagrangian with respect to the policy parameters): 

𝛥𝜃(𝑠, 𝑎) =

{

𝛼𝜃𝛿[1 − 𝜋𝜃(𝑎𝑡|𝑠𝑡 = 𝑠, 𝑠𝑡−1)]𝛽 if 𝑎𝑡 = 𝑎
−𝛼𝜃𝛿𝜋𝜃(𝑎𝑡|𝑠𝑡 = 𝑠, 𝑠𝑡−1)𝛽 if 𝑎𝑡 ≠ 𝑎

(6)

where 𝛼𝜃 is the actor learning rate and 

𝛿 = 𝛽𝑟 − log
𝜋𝜃(𝑎𝑡|𝑠𝑡, 𝑠𝑡−1)
𝑃 (𝑎𝑡|𝑠𝑡−1)

− 𝑉 (𝑠𝑡), (7)

is the prediction error of the critic 𝑉 (𝑠), which is updated according to: 

𝛥𝑉 (𝑠𝑡) = 𝛼𝑉 𝛿, (8)

where 𝛼𝑉  is the critic learning rate. We estimate the marginal action 
probabilities with an exponential moving average: 
𝛥𝑃 (𝑎𝑡|𝑠𝑡−1) = 𝛼𝑃 [𝜋𝜃(𝑎𝑡|𝑠𝑡, 𝑠𝑡−1) − 𝑃 (𝑎𝑡|𝑠𝑡−1)], (9)

where 𝛼𝑃  is a learning rate parameter and 𝑃 (𝑎𝑡|𝑠𝑡−1) is the probability 
of taking action 𝑎𝑡 given that the previous state was 𝑠𝑡−1.

Finally, the trade-off parameter 𝛽 is adaptively optimized to increase 
the conditional policy complexity up to the agent’s capacity constraint, 
𝐶: 
𝛥𝛽 = 𝛼𝛽

(

𝐶 − 𝐼
)

, (10)

where 𝐼 is the agent’s estimate of its own conditional policy complexity, 
updated with an exponential moving average: 

𝛥𝐼 = 𝛼𝐼

[

log
𝜋𝜃(𝑎𝑡|𝑠𝑡, 𝑠𝑡−1)
𝑃 (𝑎𝑡|𝑠𝑡−1)

− 𝐼
]

, (11)

with learning rate 𝛼𝐼 . We will refer to this as the ‘‘conditional policy 
compression’’ model.

2.2. The relationship between conditional policy complexity and response 
times

To generate response times (RTs) from our models, we made two 
linking assumptions. The first comes from the algorithmic relationship 
between policy complexity and decoding time. RTs partly reflect how 
long it takes to decode a policy, which in turn depends linearly on 
the code length under standard algorithms like Huffman decoding (Lai 
& Gershman, 2021, 2024). We therefore assumed that RT is linearly 
related to the policy cost (the code length for the policy on a given 
trial), which indexes the cost of taking a specific action 𝑎 in the 
current state 𝑠 by quantifying the deviation of the policy 𝜋(𝑎𝑡|𝑠𝑡, 𝑠𝑡−1)
from the conditional action probability 𝑃 (𝑎𝑡|𝑠𝑡−1): log 𝜋𝜃 (𝑎𝑡|𝑠𝑡 ,𝑠𝑡−1)

𝑃 (𝑎𝑡|𝑠𝑡−1)
. Policy 

complexity is the expectation of the policy cost. Under this assumption, 
RTs will be slower on trials with greater deviation between the current 
policy and the conditional action distribution.

The second assumption comes from learning effects: empirical RTs 
are known to decrease over time, since greater ‘‘action uncertainty’’ at 
the onset of learning produces slower initial RTs (Hick, 1952; McDougle 
& Collins, 2020; Proctor & Schneider, 2018). As a policy is learned, it 
becomes less stochastic as participants discover the correct action to 
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take in each state. We assumed that RT is monotonically related to the 
entropy of the policy on a given trial: 
𝐻 = −

∑

𝑎𝑡

𝜋𝜃(𝑎𝑡|𝑠𝑡, 𝑠𝑡−1) log𝜋𝜃(𝑎𝑡|𝑠𝑡, 𝑠𝑡−1). (12)

To summarize, conditional policy cost measures how much influence 
the previous state has on action selection in the current state, and 
policy entropy measures how variable the policy is at the current 
timestep. Combining these two quantities, we can specify a simple 
linear regression model relating policy cost and entropy to response 
time (in milliseconds; see also Ballard and McClure (2019)): 

logRT = log
[

𝑡0 + 𝑏1

(

log
𝜋𝜃(𝑎𝑡|𝑠𝑡)
𝑃 (𝑎𝑡)

)

+ 𝑏2𝐻
]

+ 𝜖, (13)

where 𝑡0 is non-decision time and 𝜖 ∼ 𝑁(0, 𝜎2) is Gaussian random 
noise.

3. Experimental methods

3.1. Instrumental learning task

We developed an instrumental learning task that allows us to test 
the predictions of our theoretical framework. A key feature of this 
task is the presence of structured transitions between states on some 
blocks. We predicted that participants would exploit these structured 
transitions to compress their policies via chunking.

Participants had to learn the correct key press response (action) 
associated with each image (state) through trial-and-error (Fig.  3A). 
Specifically, participants were presented with one image at a time, 
and had to learn which key to press to obtain a deterministic reward. 
On each trial, the image was presented for a maximum duration of 
2.5 s and the trial ended as soon as a key press was made. If no key 
was pressed after 2.5 s, the next trial began automatically. Feedback 
was presented after each trial as either an orange border (correct) 
or no border (incorrect) around the image, indicating a reward value 
of +1 or 0, respectively (Fig.  3B). Each stimulus was presented 20 
times. Participants were instructed to respond as accurately and fast as 
possible to obtain a performance-based monetary bonus proportional 
to the amount of average reward they earned in the task.

Each state was uniquely associated with one rewarded action. De-
spite the one-to-one correspondence between states and correct actions, 
we tried to encourage independent learning of actions across states 
by instructing the participants that finding the correct action for one 
state was not informative about the correct action for another state, so 
that multiple states could share the same correct action. Each block 
of the experiment was either a ‘‘Random’’ block or a ‘‘Structured’’ 
block. In Random blocks, the sequence order of states was completely 
random, meaning that the transition probability from one state to 
another was uniform across the state space. In Structured blocks, 
sequences of two states where one state was deterministically followed 
by another (e.g., 𝑠1 is always followed by 𝑠3) consistently reappeared 
in the block, and the rest of the states were randomly distributed 
in the sequence (Fig.  3C). This meant that the states that were part 
of the deterministic state sequence always appeared together in the 
block, and never independently. We designed the Structured block 
in this way assuming that participants might exploit this predictable 
temporal structure and learn corresponding action ‘‘chunks’’ (e.g., 𝑎3 →
𝑎1) that reduce their cognitive load. Participants were not given any 
block-specific instructions that distinguished Random from Structured 
blocks, though different stimuli were used each block to eliminate any 
confound of stimulus familiarity (i.e., each block was learned de novo).

To test our model’s prediction that a higher cognitive load should 
increase action chunking, we also manipulated the number of distinct 
states in a block (i.e., the set size). Each participant completed the 
four block types for two different set sizes, Ns = 4 and Ns = 6 (Ns: 
number of states). The number of actions also matched the number of 
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Fig. 3. Instrumental learning task. (A) The state and action space for the Ns = 4 task. Each state (image) has a unique correct action (key press). The state and action space for 
the Ns = 6 task was the same except that there were 6 distinct states and actions. (B) An example trial structure. Participants press a key and receive feedback in the form of 
an orange border around the image when the correct action was selected, and no border when the incorrect action was selected. Each stimulus is repeated for 20 iterations. (C) 
An example of a state ‘‘chunk’’ that may appear in the sequence of trials. In this case, the strawberry image always follows the orange image, encouraging participants to learn 
a 2-action chunk, 𝑎3 → 𝑎1. In Random blocks (red), all states are presented in a random sequence, while in Structured blocks (blue), the state chunk is embedded throughout 
the state sequence, and the non-chunk states are randomly intermixed in between. (D) Each participant completed both block types (Random and Structured) for both set size 
conditions (Ns = 4 and Ns = 6). Set size and block condition were randomized across subjects.  (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
states (4 actions for Ns = 4, 6 actions for Ns = 6), since there was a 
deterministic mapping from states to actions. Distinct sets of stimuli 
were also used across set sizes. Each participant completed both block 
conditions (Random and Structured) for one set size before moving 
onto the next set size (Ns = 4 and Ns = 6). The set size and block 
conditions were randomized across participants (3D). By comparing the 
task performance and RTs between the Random and Structured blocks, 
we can assess whether people are forming action chunks when there is 
temporal structure in their environment.

3.2. Participants

Eighty-one participants completed our study on Amazon Mechanical 
Turk and received monetary compensation. All subjects gave electronic 
written consent before beginning the study. Participants were paid a 
base pay of $4 and a performance bonus of up to $8 for completing 
the task. On average, the overall pay was $10.50. We excluded 5 
participants for nonsensical key-pressing behavior (i.e., pressing the 
same key over and over again with a response time < 200 ms) or a lack 
of responses for more than 20 consecutive trials (i.e., the participant let 
the experiment run without engaging in the task). This left us with 76 
participants for data analysis.

3.3. Model fitting

We compared the conditional policy compression model with the 
unconditional policy compression model. The models only differ in 
what they are optimizing, either the policy complexity 𝐼(𝑆𝑡;𝐴𝑡), or the 
conditional policy complexity 𝐼(𝑆𝑡, 𝐴𝑡|𝑆𝑡−1), but otherwise share the 
same learning rules (in effect, the unconditional policy compression 
model replaces 𝜋(𝑎𝑡|𝑠𝑡, 𝑠𝑡−1) and 𝑃 (𝑎𝑡|𝑠𝑡−1) in Eqs. (2)–(11) with 𝜋(𝑎𝑡|𝑠𝑡)
and 𝑃 (𝑎𝑡), respectively; see also 2C and D). The two models were 
equivalent in their number of free parameters, which are summarized 
in Table  1.

We used maximum likelihood estimation to jointly fit the choice and 
response time data for each subject individually. Parameter constraints 
were defined according to Table  1. We fixed the non-decision time 𝑡0
to 300 ms and 𝜎 to 0.5 for all models, following previous work (Lai & 
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Table 1
Fitted parameters and their bounds.
 Parameter Range  
 𝐶 [0, 2]  
 𝛽0 [1, 10]  
 𝛼𝜃 [0, 1]  
 𝛼𝑉 [0, 1]  
 𝛼𝛽 [0, 1]  
 𝑏1 [0, 500] 
 𝑏2 [0, 500] 
 Total # Parameters 7  

Gershman, 2024). We also fixed the following learning rates to avoid 
degeneracy in the parameter space: 𝛼𝑝, 𝛼𝐼 , and 𝛼𝜌 = 0.01 (which are the 
learning rates for the default policy, policy complexity, and average 
reward, respectively). We note that fixing these parameters does not 
typically change the qualitative predictions of each model. We chose 
to focus on these qualitative predictions because standard quantitative 
model comparison metrics did not strongly discriminate between the 
models for these data.

3.4. Calculating empirical policy complexity

Empirical policy complexity was estimated from each subject’s be-
havior per task condition. We did this using a custom-written MATLAB 
package, which is available at https://github.com/lucylai96/chunking.

4. The benefits of chunking

To reiterate our main hypothesis, we argue that chunking and 
its benefits (reduced error and response time) arise as a result of 
the pressure to reduce conditional policy complexity when working 
memory is limited. In the Introduction, we defined policy complexity 
as a measure of the amount of memory that must be devoted to state 
information during action selection. As discussed earlier, one way of 
reducing complexity is by choosing the same action regardless of state, 
or in other words, by bringing the action distribution closer to the 
marginal action probability 𝑃 (𝑎 ) via the 𝛽 parameter in the policy
𝑡

https://github.com/lucylai96/chunking
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Table 2
Information measures for Random and Structured sequences. For simplicity, we represent states as numbers and assume a perfect agent that produces the correct action for each 
state. The first 20 states in the sequence are shown, but the information measures were calculated on a sequence of 80 states, with each state appearing 20 times (as in our 
experiment). State chunks are bolded in the Structured examples. Note that for both Random and Structured sequences, the unconditional policy complexity 𝐼(𝑆𝑡;𝐴𝑡) is the same. 
However, when state chunks are present, 𝐼(𝑆𝑡;𝑆𝑡−1) increases for the sequence, which decreases 𝐼(𝑆𝑡;𝐴𝑡|𝑆𝑡−1). 
 Block type Sequence 𝐼(𝑆𝑡;𝐴𝑡) 𝐼(𝑆𝑡;𝑆𝑡−1) 𝐼(𝑆𝑡;𝑆𝑡−1|𝐴𝑡) 𝐼(𝑆𝑡;𝐴𝑡|𝑆𝑡−1) 
 Random [4, 1, 1, 2, 2, 4, 2, 2, 4, 4, 3, 3, 3, 4, 1, 1, 3, 1, 3, 2...] 1.301 0.104 0.083 1.28  
 Random [3, 2, 1, 4, 3, 2, 2, 1, 3, 2, 4, 3, 4, 1, 4, 1, 2, 3, 4, 1...] 1.302 0.159 0.087 1.229  
 Structured [4, 3, 3, 4, 2, 1, 4, 3, 3, 2, 1, 4, 4, 2, 1, 3, 3, 2, 1, 3...] 1.300 0.633 0.120 0.788  
 Structured [2, 1, 3, 2, 1, 4, 3, 3, 2, 1, 3, 4, 2, 1, 3, 4, 2, 1, 4, 3...] 1.301 0.626 0.119 0.793  
(Fig.  2C). Chunks are another particular way of ignoring state informa-
tion during action selection, by bringing the action distribution closer 
to the conditional action probability 𝑃 (𝑎𝑡|𝑠𝑡−1). The conditional policy 
compression model implements the benefits of action chunking by 
allowing the agent to leverage information from the previous state and 
ignore some incoming information about the current state for action 
selection. As a result, actions are selected faster and more accurately, 
because the agent can simply ‘‘look up’’ its next action based on the pre-
vious state. This is an important departure from previous applications 
of policy compression, because we are asserting that the behaviorally-
relevant unit of cognitive load (given redundancy in the environment) 
is the conditional policy complexity.

Viewed another way, the benefits of chunking are enabled by 
the fact that temporal predictability from 𝑠𝑡−1 → 𝑠𝑡 increases both 
𝐼(𝑆𝑡;𝑆𝑡−1) and 𝐼(𝑆𝑡;𝑆𝑡−1|𝐴𝑡) and thus decreases the conditional pol-
icy complexity 𝐼(𝑆𝑡;𝐴𝑡|𝑆𝑡−1), which can be seen in the following 
decomposition derived from the chain rule of mutual information: 
𝐼(𝑆𝑡;𝐴𝑡|𝑆𝑡−1) = 𝐼(𝑆𝑡;𝐴𝑡) − 𝐼(𝑆𝑡;𝑆𝑡−1) + 𝐼(𝑆𝑡;𝑆𝑡−1|𝐴𝑡). (14)

The higher 𝐼(𝑆𝑡;𝑆𝑡−1) is (the more redundancy between 𝑆𝑡 and 𝑆𝑡−1), 
the greater the benefits of chunking should be. The quantity 𝐼(𝑆𝑡;𝑆𝑡−1|

𝐴𝑡) measures how much information the previous state 𝑆𝑡−1 provides 
about the current state 𝑆𝑡 after conditioning on the agent’s current 
action 𝐴𝑡. For perfect action selection in a Random environment, 
𝐼(𝑆𝑡;𝑆𝑡−1|𝐴𝑡) ≈ 𝐼(𝑆𝑡;𝑆𝑡−1)2 and the two terms cancel out, while in 
Structured environments, 𝐼(𝑆𝑡;𝑆𝑡−1) > 𝐼(𝑆𝑡;𝑆𝑡−1|𝐴𝑡) > 0. Know-
ing the current action may account for some of the relationship be-
tween 𝑆𝑡 and 𝑆𝑡−1 when an agent is in a state chunk (𝐼(𝑆𝑡;𝑆𝑡−1) >
𝐼(𝑆𝑡;𝑆𝑡−1|𝐴𝑡)); however, even after conditioning on the action, the pre-
vious state may still provide additional information about the current 
state (𝐼(𝑆𝑡;𝑆𝑡−1|𝐴𝑡) > 0).

To illustrate the relationships from Eq.  (14) more concretely, Table 
2 shows the corresponding information measures for four example se-
quences, two Random and two Structured (from the Ns = 4 condition). 
Note that while the unconditional policy complexity 𝐼(𝑆𝑡;𝐴𝑡) is similar 
across all sequences (assuming a perfect agent that always produces 
the correct action for each state), the conditional policy complexity 
𝐼(𝑆𝑡;𝐴𝑡|𝑆𝑡−1) is significantly reduced for the Structured sequences.

In the following sections, we test the conditional policy compression 
model against the unconditional policy compression model to confirm 

2 Theoretically, if there are truly no statistical regularities in the Random 
blocks, then the conditional and unconditional policy complexities should be 
approximately equal: 𝐼(𝑆𝑡;𝐴𝑡|𝑆𝑡−1) = 𝐼(𝑆𝑡;𝐴𝑡). The small discrepancies in Table 
2 and Fig.  6 can be explained by the fact that Random blocks may still 
contain some unintended patterns or regularities because of our pseudorandom 
experimental design (‘‘pseudo’’ because we had to ensure that every stimulus 
appeared 20 times). We verified this by generating random sequences of four 
or six states and calculating the mutual information between the current and 
previous state 𝐼(𝑆𝑡;𝑆𝑡−1) for different numbers of trials per state (stimuli). It 
seems that for the number of trials in our experiment, there will always be 
a small discrepancy between the conditional and unconditional complexities 
(i.e., 𝐼(𝑆𝑡;𝑆𝑡−1) ≈ 0.1) in Random blocks. If we increase the number of trials 
per stimuli, this discrepancy decreases. The remaining discrepancies may have 
to do with variance in our mutual information estimator.
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four hypotheses: (1) chunking increases accuracy and reduces response 
time when there is structure in the environment, (2) people seek to 
maximize reward while reducing conditional policy complexity, (3) 
chunking increases under a higher cognitive load, and (4) chunk-
ing frees cognitive resources for the benefit of other, not-chunked 
information.

5. Task produces behavioral features of action chunking

We first showed that our task was able to produce behavioral 
evidence of action chunking similar to previous studies. Previous work 
using the serial reaction time task (which our task is a simplified 
version of) has reported faster learning, higher accuracy, and shorter 
response times in conditions where there exists a predictable sequence 
of states (Desmurget & Turner, 2010; Matsuzaka et al., 2007; Sakai 
et al., 2003).

Fig.  4A shows how participants’ accuracy evolves as a function 
of the number of trials per stimulus. Participants learned faster in 
Structured blocks than in Random blocks, and in the Ns = 4 (dotted 
lines) versus Ns = 6 (solid lines) set size conditions. Participants achieve 
higher average accuracy in Structured blocks than in Random blocks 
[mixed-effects ANOVA: F(1300) = 16.93, p < 0.001] and in the Ns = 4 
versus Ns = 6 set size condition [F(1300) = 32.56, p < 0.001]. There 
was no interaction between block type and set size [F(1300) = 0.19, 
p = 0.660].

The difference in performance between Random and Structured 
blocks is mirrored by the conditional policy compression model
(Fig.  4B), but not by the unconditional policy compression model 
(Fig.  4C). This highlights an important qualitative difference between 
the models in how well they capture participants’ use of structured 
temporal information. However, as expected, both models are able to 
reproduce the performance difference between set sizes, as sensitivity 
to memory load is a key feature of policy compression.

Next, we analyzed how participants’ RTs evolved over the course of 
learning (Fig.  5A). Participants’ average RT was shorter in Structured 
blocks than in Random blocks [mixed-effects ANOVA: F(1300) = 28.41, 
p < 0.001], and for the Ns = 4 versus Ns = 6 condition [F(1300) =
59.63, p < 0.001]. Again, we see that the difference in RTs between 
Random and Structured blocks is captured by conditional policy com-
pression (Fig.  5B), but not by the unconditional policy compression 
(Fig.  4C), though both models do reflect the RT difference between 
set size conditions. This is because, as hypothesized, participants are 
leveraging information from the previous state to make action selection 
faster in the current state. Since the unconditional policy compression 
model does not have access to previous state information, it cannot 
account for this RT benefit in Structured blocks.

6. Chunking reduces conditional policy complexity

One assumption of the conditional policy compression model is 
that participants’ conditional policy complexity, which quantifies the 
unique information shared by states and actions given the previous 
state, is upper-bounded by their capacity constraint. In contrast, the 
unconditional policy compression model assumes that the constraint 
applies instead to participants’ (marginal) policy complexities. The 
two models make qualitatively different predictions when it comes to 
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Fig. 4. Accuracy increases during learning. (A) Participants’ average accuracy as a function of the number of trials (per stimulus). (B) Same as (A) for data simulated from the 
conditional policy compression model. (C) Same as (A) for data simulated from the policy compression model. (D) Participants’ average accuracy as a function of set size. (E) 
Same as (D) for data simulated from the conditional policy compression model. (D) Same as (D) for data simulated from the policy compression model. All error bars indicate 
standard error.
Fig. 5. Response time decreases during learning. (A) Participants’ average response times (RT) as a function of the number of trials (per stimulus). (B) Same as (A) for data 
simulated from the conditional policy compression model. (C) Same as (A) for data simulated from the policy compression model. (D) Participants’ average RTs as a function of 
set size. (E) Same as (D) for data simulated from the conditional policy compression model. (D) Same as (D) for data simulated from the policy compression model. All error bars 
indicate standard error.
empirical data: assuming that the task demands exceed participants’ 
capacity limit, the unconditional policy compression model predicts 
that participants’ policy complexities should approach a roughly similar 
value across block types and set size conditions (a result we observed 
in Gershman & Lai, 2021), while the conditional policy compression 
model predicts the same pattern for the conditional policy complexity.
7 
To analyze these two possibilities, we computed the empirical con-
ditional and unconditional policy complexities for each participant in 
each experimental block and set size condition (see Methods). Fig.  6A 
and B shows participants’ average reward plotted as a function of policy 
complexity, broken down by set size and block type, while Fig.  6E and F 
show the same for conditional policy complexity. Several features of the 
data stand out: average policy complexity was higher in Structured than 
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Fig. 6. Reward-complexity trade-offs. (A) Participants’ average reward as a function of policy complexity for the Ns = 4 condition. Each data point on the plot represents a single 
subject’s performance in one block condition (Structured or Random). (B) Participants’ average reward as a function of policy complexity for the Ns = 6 condition. (C) Average 
policy complexity as a function of set size. (D) Participants’ average reward as a function of conditional policy complexity for the Ns = 4 condition. (E) Participants’ average 
reward as a function of conditional policy complexity for the Ns = 6 condition. (F) Average conditional policy complexity as a function of set size. All error bars indicate standard 
error.
in Random blocks (Fig.  6C) [mixed-effects ANOVA: F(1300) = 20.84, 
p < 0.001] and for the Ns = 4 versus Ns = 6 condition [F(1300) =
21.75, p < 0.001] (Fig.  6C). However, conditional policy complexity was
lower on average in Structured versus Random blocks (Fig.  6F) [mixed-
effects ANOVA: F(1300) = 58.86, p < 0.001], and higher for the Ns =
6 condition [F(1300) = 174.98, p < 0.001] (Fig.  6G).

Given these data, we argue that action chunking allows capacity-
limited agents to leverage temporal structure in the environment to 
reduce their conditional policy complexity. Not only does this signifi-
cantly reduce cognitive load, it also defines a new relationship between 
reward and complexity. As defined in the general policy compression 
framework, the reward-complexity trade-off curve defines the optimal 
frontier of performance for a range of policy complexities. As seen 
in Fig.  6A and B, policy complexity in both Random and Structured 
blocks fall on the same trade-off curve. This means that the only way to 
increase reward is to increase one’s policy complexity. However, when 
considering conditional policy complexity, temporal structure changes 
the relationship between reward and complexity, making it possible 
to earn more reward with a less complex policy. By maximizing re-
ward while minimizing conditional policy complexity, people leverage 
temporal structure to achieve the benefits of action chunking.

7. Chunking increases under a higher cognitive load

We next tested the prediction that action chunking increases under 
a higher cognitive load, which forces resources to be distributed over 
a greater number of items (Ma et al., 2014; Sims et al., 2012). In these 
situations, it is advantageous to chunk, as one can reduce demands on 
memory by eliminating the need to encode some state information: 
by selecting an action with high marginal probability conditional on 
the previous state, the agent no longer needs to pay attention to the 
upcoming state.

We expected several behavioral consequences resulting from higher 
cognitive load, which we validated in our initial analysis: (1) more 
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overall error (which we quantified as lower accuracy) in Ns = 6, 
as a higher demand on cognitive resources means that each state is 
encoded with less precision, and (2) overall higher RTs in Ns = 6, 
because it takes longer to decode the correct action from the state when 
the state–action space is larger. We also expect several advantages 
of chunking to be more pronounced under higher load: (1) a greater 
reduction of intra-chunk errors in Ns = 6 Structured blocks and (2) 
a greater reduction in intra-chunk RTs in Ns = 6 Structured blocks, 
because action selection is faster and more accurate when the state 
sequence is predictable. We chose to specifically examine the errors and 
response times in the state that is fully predicted by the preceding state 
(hence, ‘‘intra-chunk’’) as opposed to looking at all of the errors/RTs, 
because behavior in the intra-chunk state directly captures the benefit 
of temporal predictability. For example, if the state sequence was [𝑠2 →
𝑠1], the intra-chunk error would be the proportion of trials where the 
incorrect action was selected, and the intra-chunk RT would be the time 
it takes to select an action, in response to 𝑠1.

In Fig.  7A and B, we plot the intra-chunk error as a function of intra-
chunk trials for both set sizes. Intra-chunk error decreased overall over 
the course of learning in all task conditions. We found a weak effect of 
block type [mixed-effects ANOVA: F(1300) = 12.69, p = 0.108] and a 
significant effect of set size [F(1300) = 12.69, p < 0.001]. Contrary to 
our prediction, we did not find a significant difference in the decrease in 
intra-chunk error between the two set sizes [paired-sample t-test: t(75) 
= −0.52, p = 0.60]. As expected, the conditional policy compression 
model does predict a greater reduction of intra-chunk errors from the 
Random to Structured block in the higher load condition (Fig.  7E–
H), while the unconditional policy compression model does not (Fig. 
7I–L). We believe the lack of a significant decrease in intra-chunk 
errors between set sizes may reflect between-subject variability in how 
participants exploit temporal structure: some individuals may leverage 
chunking more effectively as cognitive load increases. Additionally, we 
point out that the group-averaged data in Fig.  7A–D resemble a hybrid 
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Fig. 7. Reduction in intra-chunk error during learning. (A) Participants’ intra-chunk error as a function of intra-chunk trials for the Ns = 4 set size condition. Shaded region 
indicates standard error. (B) Participants’ intra-chunk error as a function of intra-chunk trials for the Ns = 6 set size condition. (C) Asymptotic intra-chunk error (averaged over 
the last 5 trials) as a function of set size. (D) The decrease in intra-chunk error (Random-Structured) as a function of set size. (E–H) Same as (A–D) but for data stimulated from 
the conditional policy compression model. (I–L) Same as (A–D) but for data stimulated from the unconditional policy compression model.
of the conditional and unconditional policy compression models, which 
further supports the idea that participants differ in the extent to which 
they utilize temporal regularities to guide action selection.

Next, we analyzed intra-chunk RTs. In Fig.  8A and B, we plot the 
intra-chunk RT as a function of intra-chunk trials for both set sizes. 
When the stimulus sequence is predictable (Structured), intra-chunk 
RTs decrease with learning. In contrast, when the stimulus sequence 
is Random, reaction times do not decrease substantially during the 
course of learning, a result that is consistent with previous empirical 
findings and models (Dezfouli & Balleine, 2012). Overall, intra-chunk 
RT was significantly faster in Structured blocks [mixed-effects ANOVA: 
F(1300) = 7.63, p = 0.006] and in the Ns = 6 condition [F(1300) =
24.42, p < 0.001]. Additionally, the decrease in intra-chunk RTs from 
Random to Structured blocks was greater in Ns = 6 [F(1300) = 4.39, 
p = 0.036; paired-sample t-test: t(75) = −2.06, p = 0.043] (Fig.  8C and 
D), confirming our hypothesis. Only the conditional policy compression 
model was able to predict a greater reduction of intra-chunk RTs from 
the Random to Structured block in the higher load condition (Fig.  7E–
H), while the unconditional policy compression model makes no such 
distinction (Fig.  7I–L).

In summary, we found partial evidence (from RTs but not errors) 
that participants chunked more under a higher memory load. Temporal 
structure in the state sequence helps people select actions faster, though 
not necessarily more accurately, under a higher cognitive load. This 
is uniquely predicted by the conditional policy compression model, 
in which actions that are commonly chosen after certain states are 
cognitively ‘‘cheaper,’’ and therefore faster, to execute.
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8. Chunking frees cognitive resources for not-chunked informa-
tion

Previous work investigating the effects of chunking on cognitive 
load have suggested that by reducing overall working memory load, 
chunking benefits should be observed not only for the chunked, but 
also for other, non-chunked information (Kowialiewski et al., 2022; 
Mathy et al., 2024; Thalmann et al., 2019). Though neither of our 
policy compression models robustly predicts this,3 we analyzed the 
proportion of errors and RTs in non-chunk trials to test the hypothesis 
that chunking confers benefits beyond just the intra-chunk states.

We first examined how non-chunk error changes as function of block 
type and set size (Fig.  9A and B). Non-chunk error decreased over 

3 In principle, the conditional model should be able to predict this result 
under certain parameters, because the conditional action probability is also 
informative for non-chunk action selection. Though the effect should be 
less drastic than in intra-chunk states, the conditional provides additional 
information in the policy about what action to not select (as only one action 
should be exclusively expressed in intra-chunk states, leaving a high likelihood 
for the other three possible actions), which should improve accuracy. This 
information should also reduce RT by bringing the policy slightly closer to 
the marginal in Structured, but not Random, blocks. Unfortunately, this effect 
is not clearly predicted with our current set of fitted parameters. We leave a 
more detailed investigation for future modeling work.
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Fig. 8. Reduction in intra-chunk response times under higher cognitive load. (A) Participants’ intra-chunk RT as a function of intra-chunk trials for the Ns = 4 set size condition. 
Shaded region indicates standard error. (B) Participants’ intra-chunk RT as a function of intra-chunk trials for the Ns = 6 set size condition. (C) Asymptotic intra-chunk RTs 
(averaged over the last 5 trials) as a function of set size. (D) The decrease in intra-chunk RT (Random-Structured) as a function of set size. (E–H) Same as (A–D) but for data 
stimulated from the conditional policy compression model. (I–L) Same as (A–D) but for data stimulated from the unconditional policy compression model.
learning but, similar to intra-chunk error, was not significantly dif-
ferent between Structured and Random blocks [mixed-effects ANOVA: 
F(1300) = 0.503, p = 0.478]. As expected, intra-chunk error was overall 
higher in the Ns = 6 condition [F(1300) = 17.94, p < 0.001], and 
block type weakly interacted with set size: the decrease in non-chunk 
error from Random to Structured blocks was slightly greater in Ns 
= 6 [F(1300) = 3.05, p = 0.081; paired-sample t-test: t(75) = 3.29, 
p = 0.071].

We then analyzed non-chunk RTs: in Fig.  9E and F, we plot non-
chunk RT as a function of non-chunk trials. Like intra-chunk RTs, 
non-chunk RTs also decrease with learning. Overall, non-chunk RT was 
significantly faster in Structured blocks [mixed-effects ANOVA: F(1300) 
= 8.64, p = 0.003] and in the Ns = 6 condition [F(1300) = 45.96, p 
< 0.001]. There was also a weak interaction between block type and 
set size: the decrease in non-chunk RTs from Random to Structured 
blocks was slightly greater in Ns = 6 [F(1300) = 3.05, p = 0.081; 
paired-sample t-test: t(75) = −1.71, p = 0.092].

Taken together, we found moderate evidence from both non-chunk 
errors and RTs that chunking frees cognitive resources for not-chunked 
information, and that people take more advantage of this benefit under 
a higher cognitive load (Ns = 6). While this hypothesis was based on 
the result of previous work and not directly on model predictions, our 
analysis of non-chunk states is consistent with the general idea that 
degree of policy compression should scale with the scarcity of cognitive 
resources.
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9. Discussion

In this paper, we addressed a fundamental puzzle in action selection: 
why and under what circumstances does action chunking occur? The 
answer we provide here is that chunking is a natural consequence 
of limitations on policy complexity. We found that (1) people utilize 
structured temporal information to reduce their conditional policy com-
plexity and response times, and (2) people chunk more under a higher 
working memory load. Our empirical findings were consistent with 
a model that optimizes reward subject to a constraint on conditional 
policy complexity.

Our results challenge influential models that attribute action chunk-
ing primarily to the cost of time. For instance, Dezfouli and Balleine 
(2012) proposed that action chunks form when the future reward 
gained from faster responding outweighs potential losses from chunk 
errors. Similarly, Wu et al. (2023) showed that human chunking behav-
ior adapts to sequence structure and task demands in ways predicted by 
a rational model that optimizes for both speed and accuracy. However, 
these and similar models cannot explain two key features of our data: 
(1) longer average response times at larger set sizes, and (2) greater 
chunking under higher cognitive load. In these frameworks, time costs 
are assumed to remain constant across set sizes, and chunk formation 
is not sensitive to the number of states. Relatedly, Ramkumar et al. 
(2016) demonstrated that monkeys use motor chunking to reduce com-
putational complexity—the time required to plan physical actions—by 
planning shorter motor trajectories early in learning. Across these 
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Fig. 9. Chunking frees resources to improve performance in non-chunk states. (A) Participants’ non-chunk error as a function of non-chunk trials for the Ns = 4 set size condition. 
Shaded region indicates standard error. (B) Participants’ non-chunk error as a function of non-chunk trials for the Ns = 6 set size condition. (C) Asymptotic non-chunk error 
(averaged over the last 10 trials) as a function of set size. (D) The decrease in non-chunk error (Random-Structured) as a function of set size. (E) Participants’ non-chunk RT as 
a function of non-chunk trials for the Ns = 4 set size condition. Shaded region indicates standard error. (F) Participants’ non-chunk RT as a function of non-chunk trials for the 
Ns = 6 set size condition. (G) Asymptotic non-chunk RTs (averaged over the last 10 trials) as a function of set size. (H) The decrease in non-chunk RT (Random-Structured) as a 
function of set size.
approaches, the central focus is on minimizing the time costs of action. 
In contrast, our model emphasizes minimizing the memory demands 
required to store and retrieve action policies, or policy complexity. 
Importantly, our framework not only addresses memory costs but also 
predicts response time benefits, which we confirmed empirically. In 
many real-world settings, both pressures likely interact: less memory-
intensive policies are also faster to compute and execute, reflecting the 
fundamental relationship between response times and policy complex-
ity (Bradmetz & Mathy, 2008; Lai & Gershman, 2021, 2024) (though 
see Lazartigues et al. (2021) for an alternative perspective).

As noted in the Introduction, the idea that chunking supports work-
ing memory efficiency through information compression is well estab-
lished. Several models have leveraged this principle, either by com-
pressing based on feature similarity (Chekaf et al., 2016; Kowialiewski 
et al., 2022; Mathy et al., 2024; Pothos, 2007) or by extracting structure 
from sequential input, as in the PARSER model (Perruchet & Vinter, 
1998). These models effectively demonstrate how learners form chunks 
to reduce representational demands. Although they do not include 
mechanisms for action selection and therefore cannot be directly com-
pared to our model, we suggest that these types of models could be 
extended by conceptualizing them as part of a two-stage process: an 
initial unsupervised chunking phase that forms state chunks based on 
structure in sequences, followed by a second phase that learns a policy 
conditioned on these learned state chunks. When a state chunk is 
encountered in the environment, a corresponding sequence of actions 
is produced. Such a model might be appropriate in tasks where people 
are exposed to sequences before engaging in action selection. Even so, 
it assumes that participants are ignoring actions entirely during chunk 
learning, which is inconsistent with our task design, where action 
selection and sequence learning occur simultaneously. The integrated 
nature of our paradigm requires models that address both processes 
concurrently.

Our work contributes to a growing body of research that applies 
information-theoretic principles specifically to action chunking. The 
options framework (Botvinick et al., 2009; Sutton et al., 1999) de-
scribes multi-step policies that group action chunks into higher-level 
units. Harb et al. (2018) demonstrated that meaningful options can 
emerge when deliberation costs for switching options are incorporated. 
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Similarly, Jiang et al. (2022) showed that a compression objective 
can yield skills (similar to action chunks) that extract statistical reg-
ularities from offline data. Perhaps most closely related, the DADS 
framework (Sharma et al., 2019) optimizes conditional mutual infor-
mation between states and skills given previous states, using a similar 
objective to ours but applied to a different problem of learning diverse 
skills. This builds on earlier work such as DIAYN (Eysenbach et al., 
2018), which focused on optimizing unconditional mutual information 
to encourage skill discovery. However, a key distinction is that these 
studies maximize mutual information for skill discovery, while our 
approach minimizes it by grouping actions into structured chunks. Both 
methods improve task performance but with different goals: DADS 
focuses on enhancing skill diversity and predictability, while we aim 
to reduce policy complexity to improve efficiency and reduce cognitive 
load. Additionally, unlike previous studies that focused exclusively on 
theoretical frameworks or computational agents, we have provided 
empirical validation of these information-theoretic principles, linking 
capacity limits directly to observed human behavior. More generally, 
our results add to a larger body of work suggesting that chunking 
serves as a form of memory compression (Bates & Jacobs, 2020; Bates 
et al., 2019; Brady et al., 2009; Mathy & Feldman, 2012; Nassar et al., 
2018; Norris & Kalm, 2021; Sims, 2016; Sims et al., 2012). By replacing 
highly correlated items with a compact chunk, agents reduce memory 
demands.

Our findings also align with and extend prior experimental work on 
hierarchical action composition. Eckstein and Collins (2020) and Xia 
and Collins (2021) showed that humans can learn and reuse hierar-
chical options to accelerate learning in new environments. Eckstein 
and Collins (2021) further demonstrated that humans can learn useful 
action chunks that predict task-relevant states, resulting in faster intra-
chunk RTs and fewer errors over learning. Notably, they also found that 
disrupting the temporal structure of learned chunks impaired transfer 
learning. This result is consistent with our model’s prediction that 
sudden changes in temporal structure should degrade performance, as 
an agent will lose out on reward if she continues to employ previously 
learned action chunks that do not match the structure of a new en-
vironment. However, our work offers an explicit connection between 
capacity limits and human behavior, as we empirically demonstrate 
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that action chunking emerges from an information-theoretic model 
that seeks to maximize reward while minimizing conditional policy 
complexity.

While few studies directly examine the relationship between work-
ing memory and action chunking within individuals, Bo and Seidler 
(2009) found that people with higher visuospatial working memory ca-
pacity formed longer chunks during sequence learning. Additionally, Bo 
et al. (2011) showed that greater capacity was also associated with 
more chunking during sequence blocks compared to random blocks. 
Though these results initially seem to contradict our findings—where 
greater memory load leads to more chunking—direct comparisons are 
difficult, as we manipulated memory load within participants rather 
than correlating it with individual capacity measures.

Our work is also closely related to sequential sampling models of 
decision making (Forstmann et al., 2016). In these models, prior proba-
bilities can shift the starting point of an evidence accumulator, offering 
a potential explanation for the benefits of statistical learning (Dayan 
& Daw, 2008). The starting point reflects prior knowledge that can 
speed up decision-making (Kelly et al., 2021). Notably, Wu et al. (2023) 
used an accumulator model to explain response times in a similar 
chunking task, showing that chunk structure biases the starting point 
and leads to faster responses. A biased starting point effectively reduces 
policy complexity by decreasing the stimulus-dependency of choices, 
providing a complementary perspective on the relationship between 
policy complexity and response time. However, models like Wu et al. 
(2023)’s rely on ad hoc assumptions (e.g., biased starting points) to 
fit RT data, whereas our framework derives these behaviors from first 
principles and additionally offers a normative explanation for set size 
effects.

Several open questions remain. Our study focused on how memory 
limitations drive chunk formation and use but did not address how 
longer action chunks are formed during learning. Because our chunks 
were all of length two, future work could explore how capacity con-
straints affect the formation of more complex action sequences. Our 
model also assumes that agents condition actions on the previous state 
to reduce policy complexity. However, this strategy requires maintain-
ing a history of states and storing a default policy—both of which place 
additional demands on memory resources. Although our experiment 
only required memory of a single state prior to action selection, we 
acknowledge that scaling this approach to longer state and action 
chunks would impose additional memory burdens not captured by our 
current framework. Despite these additional costs, our data remain 
consistent with a model in which people maintain a default policy 
and retain state history to exploit temporal structure. Future work 
should examine whether individuals also weigh the cognitive costs of 
maintaining historical dependencies and default policies, and how these 
costs factor into overall capacity constraints. Furthermore, our model 
primarily applies to environments with statistical regularities that exist 
independently of the agent’s actions. In controllable environments, 
where the agent’s actions determine the next states, a policy that 
depends only on the current state would be sufficient. However, even 
in such model-based scenarios where the policy itself may be relatively 
simple, maintaining a detailed world model can still be informationally 
costly. To generalize our theory to such settings, it must account for 
both policy complexity and the cost of storing the world model.

In sum, we have shown that conditional policy compression offers a 
compelling account of when and why action chunking occurs. Although 
our model is not a comprehensive theory of action sequence learning, 
it highlights how humans consider conditional policy complexity when 
learning cost-efficient behaviors.
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