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Evaluating stimuli along a good–bad dimension is a fundamental
computation performed by the human mind. In recent decades,
research has documented dissociations and associations between
explicit (i.e., self-reported) and implicit (i.e., indirectly measured)
forms of evaluations. However, it is unclear whether such dissoci-
ations arise from relatively more superficial differences in mea-
surement techniques or from deeper differences in the processes
by which explicit and implicit evaluations are acquired and repre-
sented. The present project (total N = 2,354) relies on the compu-
tationally well-specified distinction between model-based and
model-free reinforcement learning to investigate the unique and
shared aspects of explicit and implicit evaluations. Study 1 used a
revaluation procedure to reveal that, whereas explicit evaluations
of novel targets are updated via model-free and model-based pro-
cesses, implicit evaluations depend on the former but are imper-
vious to the latter. Studies 2 and 3 demonstrated the robustness of
this effect to (i) the number of stimulus exposures in the revalua-
tion phase and (ii) the deterministic vs. probabilistic nature of
initial reinforcement. These findings provide a framework, going
beyond traditional dual-process and single-process accounts, to
highlight the context-sensitivity and long-term recalcitrance of im-
plicit evaluations as well as variations in their relationship with
their explicit counterparts. These results also suggest avenues for
designing theoretically guided interventions to produce change in
implicit evaluations.
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The human mind continuously assigns subjective value to in-
formation encountered in the environment (1). Such evalu-

ations of humans, abstract concepts, and physical objects are
crucial to structuring thinking, feeling, and behavior. A wealth of
research conducted over the past 30 y has shown that evaluations
can be revealed not only via traditional self-report measures (i.e.,
explicit evaluations) but also via more indirect measures of re-
sponse interference (i.e., implicit evaluations) (2). One such
measure, the Implicit Association Test (IAT) (2), indexes rela-
tive evaluations of two targets (e.g., social groups, individuals, or
objects) by using a comparison of response latencies across two
speeded sorting tasks: a first sorting task in which one of the
targets shares a response key with positive items and the other
target shares a response key with negative items, and a second
sorting task in which the mapping of targets to valences is re-
versed. For instance, an implicit evaluation is inferred based on
the speed and accuracy to associate the concept “flower” (e.g.,
tulip, daisy) with pleasant attributes (e.g., angel, success) while
associating the concept “insect” (e.g., bug, fly) with negative
attributes (e.g., devil, failure) vs. the opposite pairing of flower
with negative attributes and insect with positive attributes.
Implicit evaluations have been shown to predict behavior beyond

their explicit counterparts in a range of consequential settings, in-
cluding intergroup relations, consumer choice, psychopathology,
and close relationships (3, 4). For instance, implicit evaluations
of African American targets measured at the level of geographic
areas predict police brutality (5), implicit evaluations of products
predict product usage and brand recognition (6), implicit evalua-

tions of the self and self-injury predict suicidal behavior (7), and
implicit evaluations of one’s romantic partner predict long-term
relationship success (8). As such, understanding the processes by
which implicit evaluations emerge and are updated is not only of
theoretical interest across several areas of psychology but also of
considerable practical and societal importance.
Implicit and explicit evaluations differ from each other in terms

of the method by which they are measured. Implicit evaluations
are usually indexed by tasks that bypass effortful control, with
typical measures involving speeded responses to preselected pairs
of stimuli. By contrast, explicit evaluations are usually measured
by using self-report (e.g., via responses to Likert items). Dominant
dual-process theories of evaluation posit that, beyond differences
in measurement, explicit and implicit evaluations also differ from
each other in more profound ways. Crucially, explicit and implicit
evaluations are commonly hypothesized to originate from funda-
mentally different learning processes. Specifically, the learning
processes giving rise to explicit evaluations are posited to be flexible
and rule-governed and to rely on propositional information, whereas
the learning processes giving rise to implicit evaluations are posited
to be slow and gradual and to rely on associative regularities en-
countered in the environment (9–11).
Even though this dual-process perspective on evaluative learning

has inspired much empirical work on the acquisition and change of
explicit and implicit evaluations, it suffers from some notable
shortcomings. First, in opposition to the theory, it has been
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repeatedly demonstrated that implicit evaluations can be flex-
ibly updated via purely verbal instructions and that such
updating need not involve direct experience with any stimulus
(12). The preponderance of such findings has prompted some
to abandon a dual-process perspective on evaluative learning
altogether and to replace it with a model of evaluative learning
that relies on a single propositional process (13–15).
Second, dual-process theories of evaluation, as currently

conceived, are difficult to falsify, and the same applies to single-
process alternatives. For instance, whether learning is quick or
slow is a matter of judgment, and, as such, researchers with
different theoretical commitments may make widely divergent
inferences from the very same data. Moreover, it is unclear what
kind of empirical evidence would be sufficient to discern whether
evaluative information is represented in the form of conceptual
associations (e.g., flower–good), as posited by dual-process the-
ories of evaluation, or equivalence relationships (e.g., “flowers
are good”), as posited by propositional alternatives.
Third, implicit evaluations exhibit a host of characteristics that

are not accounted for by theories that claim that they are sub-
served by a set of enduring associative representations accumu-
lated over time. For instance, implicit evaluations have been
shown to be situationally malleable (16). Specifically, implicit
evaluations respond to motivational states, such as nicotine
deprivation, thirst, and hunger (17), as well as to higher-order
goals, such as the goal to be egalitarian (18). At the same time,
contrary to the prediction by a single-process propositional
perspective, implicit evaluations are not indiscriminately sensi-
tive to verbal interventions that have been demonstrated to shift
explicit evaluations (19).
Finally, dual-process and single-process theories of evaluation

both make extreme predictions about the relationship that should
emerge between explicit and implicit evaluations. According to
dual-process theories, explicit and implicit evaluations are sub-
served by different learning processes, and, as such, any conver-
gence between the two is unexpected. By contrast, according to
single-process theories, explicit and implicit evaluations are sub-
served by a single learning process, and, as such, there is no reason
to expect them to diverge. However, the overwhelming majority of
empirical data fall between the two extremes: explicit and implicit
evaluations are typically correlated with each other but are rarely
redundant (20), with the magnitude of the correlation modulated
by the domain. For instance, explicit and implicit evaluations of
political candidates have been found to be highly correlated,
whereas explicit and implicit evaluations of racial groups often
show considerably lower levels of correlation (20).
Even though current dual-process theories of evaluation do

not explain all of the available evidence on the updating of im-
plicit evaluations, they are not easily falsifiable, and are silent on
a host of phenomena related to the malleability of implicit
evaluations, it may be premature to abandon the class of dual-
process theories altogether (21). In this paper, we use reinforce-
ment learning algorithms, which originate from the study of ani-
mal learning (22) and now play an important role in computer
science and artificial intelligence (23), to provide a test of the
manner in which explicit and implicit evaluations are acquired and
updated. Specifically, we investigate whether explicit and implicit
evaluations are equally or differentially sensitive to model-free
and model-based learning. If both respond in similar ways, we
can conclude that, despite differences in measurement tech-
niques, the representations underlying explicit and implicit
evaluations are likely similar to each other. If, on the contrary,
the two differ in their sensitivity to model-free and model-based
learning, we can conclude that the data are more suggestive of
differences in learning and representation.
In a reinforcement learning framework, an agent interacts with

its environment and, via such interaction, pursues two distinct
but interrelated goals: (i) to learn about the actions that produce

the largest amount of long-term reward and (ii) to adjust be-
havior in line with this learning. Given the generality of this
framework, rewards can range from primary reinforcers such as
food or sex to more abstract rewards like points in a game or
even social reinforcers like smiles and group inclusion. To solve
the reinforcement learning problem just described (i.e., to
maximize long-term reward), an agent must create internal
representations of the subjective value associated with taking
different actions. Most important for the present purposes, such
representations can be created in two fundamentally different
ways (23): by using model-free or model-based algorithms. The
distinction between model-free and model-based processes has
already been used with great success to elucidate phenomena
across diverse areas of psychology, including moral cognition
(24), impression formation (25), and addiction (26). Here we use
it to study the acquisition and shift of implicit evaluations.
Even though model-free and model-based algorithms solve the

same problem of maximizing long-term reward, they differ from
each other in the way they learn and the kind of information they
are able to represent. In the present studies (Fig. 1), participants
made choices between two fictitious social targets (Laapians vs.
Niffians). Depending on their choice, they were then exposed to
an intervening stimulus (a horizontal vs. a vertical bar), followed
by a win or a loss. In this setting, the goal of both model-free and
model-based algorithms is to learn whether, in the long run,
choosing a Laapian target or choosing a Niffian target is the
more advantageous action. However, they accomplish this goal
in fundamentally different ways.
Model-free algorithms operate over an unordered list of ac-

tions, each of which is associated with a positive or negative
scalar value. For instance, in the present studies, the model-free
system may represent two actions (“choose Laapian” vs. “choose
Niffian”) and, in the absence of prior learning, associate an initial
value of zero with each. Over the course of the task, learning
unfolds incrementally and based on direct experience: each time
the agent performs an action (e.g., choosing a Laapian target), it
updates the value associated with that action based on its out-
comes. For instance, if choosing a Laapian target results in a
positive outcome (e.g., winning points), the agent increases the
value associated with that action, and if it results in a negative
outcome (e.g., losing points), the agent decreases the value asso-
ciated with it. Incremental updating is performed until the pre-
diction error is reduced to zero, i.e., there is no more discrepancy
between the reward expected and actually received. Such an al-
gorithm is computationally cheap: it creates action–value pairs,
which constitute a highly compressed representation of the history
of rewards. However, the simplicity of this algorithm comes at a
cost of reduced flexibility. Specifically, action–value pairs can be
updated only upon performing an action. Moreover, given that
specific outcomes of actions (e.g., Laapians leading to horizontal
bars leading to wins) are not represented, the model-free system
has no way to modulate its behavior based on higher-level goals
(e.g., “I want to get to the horizontal bar”).
Unlike model-free algorithms that operate exclusively over

action–value pairs (e.g., Laapian, +5; Niffian, −5), model-based
algorithms operate over a considerably richer cognitive map of
the environment that represents the specific outcomes of actions.
For instance, in the context of the present experiments, a model-
based agent would create a causal model linking first-stage
stimuli to second-stage stimuli [e.g., “whenever I choose Laa-
pians, I get to a horizontal bar” or P(horizontal j Laapian) = 1]
and second-stage stimuli to rewards [e.g., “whenever I see a
horizontal bar, I win five points” or P(+5 j horizontal) = 1]. This
representation involves considerably more detail than the highly
compressed representation created by model-free learning.
Crucially, by virtue of representing specific outcomes of actions
[e.g., P(horizontal j Laapian) = 1], model-based learning can
bypass the trial-by-trial updating that characterizes model-free
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learning. Instead, model-based representations enable mental sim-
ulation of different courses of action by considering the goal to be
achieved (e.g., getting to the horizontal bar) and the probabilities

with which different actions (e.g., choosing Laapians) can bring
about the desired goal. As such, unlike model-free algorithms,
model-based algorithms are highly flexible. However, their flexibility

Fig. 1. Overview of the learning-phase procedure for studies 1–3. The number of trials (for each part of the learning phase where applicable) is noted after
the name of the condition. A hand symbol indicates a choice made by the participant. The assignment of first-stage stimuli [Laapians (Laap) vs. Niffians (Niff)]
to second-stage stimuli (horizontal vs. vertical bars) as well as the assignment of second-stage stimuli to outcomes (+5 vs. −5 points) was counterbalanced
across participants. Transitions between first-stage stimuli, second-stage stimuli, and outcomes were deterministic, with the exception of the control condition
in study 1, in which second-stage stimuli were randomly followed by wins or losses, and study 3, in which initial learning in both conditions was probabilistic
(one second-stage stimulus followed by wins on 75% of trials and by losses on 25% of trials and the other second-stage stimulus followed by losses on 75% of
trials and by wins on 25% of trials). In the control (study 1) and baseline learning (studies 1–3) conditions, all dependent measures (transition memory, explicit
evaluation, and implicit evaluation) were administered following the learning phase. In all remaining conditions, transitionmemory and explicit evaluation items
were administered following each part of the learning phase, whereas implicit evaluations were measured only after the second part of the learning phase.
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comes at a cost: effortful planning over different courses of action
may be prohibitively complex and time-consuming, especially if the
number of potential actions and outcomes to plan over is large.
Nonhuman animals (27, 28) and humans (29, 30) have been

shown to exhibit model-free and model-based learning. Under
some conditions, model-free and model-based algorithms are
difficult to tease apart because they converge on the same be-
havioral output. For instance, learning in the baseline learning
condition of the present experiments (Fig. 1) can be accom-
plished via model-free or model-based processes: that is, par-
ticipants may simply learn to associate higher value with the
stimulus that led to a positive outcome in the past (e.g., Laapian,
+5; Niffian, −5). Alternatively, participants may explicitly rep-
resent the structure of the task, i.e., create a mental model of
transition probabilities [e.g., P(horizontal j Laapian) = 1, P(+5 j
horizontal) = 1, P(vertical j Niffian) = 1, P(−5 j vertical) = 1].
However, the results of model-free and model-based learning

can diverge when the environment changes in such a way as to
modify the motivational relevance of a known stimulus. Specif-
ically, a paradigm commonly referred to as reward revaluation
has been used to discern whether nonhuman animals (27, 28)
and humans (29, 30) rely on model-free or model-based learning.
In these studies, participants undergo initial learning that es-
tablishes that an action (e.g., pressing a lever or choosing an
abstract image) is rewarding (e.g., results in the participant re-
ceiving food pellets or monetary rewards). In a second stage, the
rewarding quality of the reinforcer is eliminated in the absence
of the participant taking any relevant action: for instance, the
previously satiating food pellets are paired with illness or the
previously winning image is paired with monetary loss.
The signature difference between model-free and model-based

learning is then revealed when participants are again allowed to
take the action that produced the previously rewarding outcome.
Model-free algorithms are backward-looking and inflexible and, as
such, can update values associated with an action only after that
action has been performed and a reward has been experienced.
Therefore, participants pursuing a purely model-free strategy will
continue to consistently perform the action (e.g., pressing the lever
or selecting the image) even following revaluation because of its
history of producing reward. By contrast, model-based algorithms
are forward-looking and flexible and, as such, have the ability to
incorporate information about the new state of affairs. As such,
participants pursuing a purely model-based strategy now expect
that ingesting the food pellets will induce sickness or choosing the
abstract image will result in a loss, and will thus consistently refrain
from performing the previously reinforced action. In such para-
digms, human participants usually pursue a mixture of both strat-
egies (29, 30); however, importantly, any decrease in the tendency
to perform the initially reinforced action the can be interpreted as
reflecting the contributions of model-based learning.

The Present Project
The present project has three interrelated goals. First, a large
body of research has provided evidence that value representa-
tions in humans, as revealed by explicit measures of self-report,
can be updated on the basis of the rewards received as a result of
interacting with a given stimulus (29–33). However, despite a
similarly large body of research investigating the effects of mere
exposure (34), Pavlovian learning (35), approach–avoidance
training (36), and verbal instructions (12) on implicit evaluations,
to our knowledge, the effects of reinforcement learning, i.e.,
rewarding or punishing participants for taking actions involving
motivationally relevant stimuli, on implicit evaluations has never
been investigated. As such, the first goal of the present project is
to establish whether implicit evaluations of novel stimuli can be
effectively shifted via this form of learning.
Second, and most important, the present project was designed

to probe whether explicit and implicit evaluations of novel tar-

gets are equally sensitive to model-free and model-based learn-
ing. As mentioned here earlier, explicit evaluations revealed by
self-report have been demonstrated to be responsive to both
model-free and model-based learning (29–33). However, whether
their implicit counterparts are characterized by the same or dif-
ferent patterns of updating is an open question, with different
theoretical perspectives and lines of empirical work making op-
posing predictions about the pattern of data that should emerge.
A prediction of convergence between explicit and implicit

evaluations can be made based on propositional theories of
implicit evaluation (13–15), widely replicated patterns of em-
pirical data, and the nature of the IAT (2), which was used as the
dependent measure in all three studies reported in the present
paper. Specifically, propositional theories of implicit evaluation
posit that explicit and implicit evaluations do not differ in un-
derlying learning processes or mental representations. As such, if
the present revaluation paradigm successfully shifts explicit
evaluations of a stimulus, such learning should also be reflected
by implicit measures of evaluation. Second, in studies involving
novel targets, such as the present one, patterns of convergence
between explicit and implicit evaluations are common because
participants do not have access to any information about the
targets other than the information provided by the experimenter
(12). Moreover, in this setting, pressures to act in a socially de-
sirable manner, known to result in dissociations between explicit
and implicit evaluations (20), are unlikely to operate. Finally, the
IAT, unlike most implicit measures, requires participants to hold
two to four categories in working memory while completing the
task. This feature of the procedure may activate model-based
representations.
On the contrary, dual-process theories of evaluative learning

(9–11) generally predict dissociations between explicit and im-
plicit evaluations. Specifically, reward revaluation, which can be
accomplished via model-based but not via model-free processes,
should be expected to shift explicit but not implicit evaluations:
the use of information that is not represented in precompiled
form to evaluate a stimulus may require effortful processing
characteristic of the explicit system. Moreover, recent empirical
work has revealed that placing participants under cognitive load
while performing a reinforcement learning task shifts them to-
ward reliance on the computationally cheap model-free system
and away from reliance on the computationally expensive model-
based system (31). Most implicit measures of evaluation, such as
the IAT, place participants under similar cognitive constraints
given that they involve responding under time pressure. As such,
this difference in the availability of cognitive resources across the
explicit vs. implicit evaluation tasks may also contribute to a
pattern of explicit–implicit dissociation.
Third, to the extent that the present project provides evidence

for a dissociation between explicit and implicit evaluations, it is
important to demonstrate that such dissociation is accounted for by
a computational difference between model-free and model-based
reinforcement learning. However, in a standard revaluation
paradigm, use of model-free vs. model-based strategies is con-
founded with primacy vs. recency. Specifically, model-free
learning would be revealed via reliance on initially learned in-
formation and model-based learning would be revealed via suc-
cessful updating. Importantly, it has been shown that implicit
evaluations, including implicit evaluations of novel targets, may
be difficult to change once they are in place (37). As such, any
convincing claim about explicit–implicit dissociation being a re-
sult of the model-free vs. model-based distinction has to involve
a condition controlling for the temporal confound inherent in
the reward revaluation paradigm.

Study 1
Design. The experiment in study 1 consisted of a learning phase
and one or two test phases (depending on condition). In the
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learning phase, participants interacted with two novel groups
(Laapians vs. Niffians) and received rewards (positive points)
or punishments (negative points) as a result of their choice
behavior. In the test phases, participants provided forced-
choice judgments probing (i) transition memory and (ii) the
value of the Laapian and Niffian targets (explicit evaluation),
followed by (iii) an IAT (2) probing implicit evaluation of the
same targets.
Crucially, for the learning phase of the experiment, partici-

pants (final n = 1,740) were assigned to one of five between-
subjects conditions (Fig. 1). In the control and baseline learning
conditions, the learning phase consisted of a single part, whereas
in the reward revaluation, transition revaluation, and relearning
conditions, the learning phase consisted of two parts.
Across all five learning conditions, the first part of the learning

phase required participants to complete 20 learning trials on
which they made a choice between a Laapian and a Niffian target
(first-stage stimuli; Materials and Methods). Depending on their
choice, participants were exposed to a horizontal or a vertical bar
(second-stage stimulus), followed by a positive outcome (+5 points)
or a negative outcome (−5 points). Participants were instructed to
maximize the points received. The relationship between first-stage
and second-stage stimuli was deterministic in all five conditions
(e.g., Laapians were always followed by horizontal bars and Niffians
by vertical bars). In the control condition, second-stage stimuli
were randomly followed by wins or losses, thus providing a mea-
sure of relative preference at baseline. In all four remaining
conditions, the transition between second-stage stimuli and re-
wards was deterministic (e.g., horizontal bars were always followed
by wins and vertical bars by losses).
In the reward revaluation, transition revaluation, and relearning

conditions, the first part of the learning phase was followed by a
second part, also consisting of 20 trials. In the reward revaluation
condition, the transition between second-stage stimuli and re-
wards was reversed compared with the first part of the learning
phase (without participants making any choices or experiencing
any first-stage stimuli). In the transition revaluation condition, the
transition between first-stage and second-stage stimuli was re-
versed compared with the learning phase (without participants
making any choices or experiencing any rewards). The relearning
condition was similar to the reward revaluation condition in that
the transition between second-stage stimuli and rewards was re-
versed; however, unlike in the reward revaluation condition,
participants experienced the full transition structure from first-
stage stimuli to second-stage stimuli to rewards and, rather than
passively observing stimuli, they made choices between Laapian
and Niffian targets.
In the control and baseline learning conditions, the learning

phase was followed by (i) a set of explicit transition memory items
probing memory for the transition between first-stage and second-
stage stimuli, (ii) a set of explicit evaluation items probing self-
reported subjective value assigned to each target (Laapians vs.
Niffians), and (iii) an IAT probing relative implicit evaluation of
Laapians vs. Niffians. In the reward revaluation, transition re-
valuation, and relearning conditions, the explicit transition mem-
ory and explicit evaluation items were administered twice, once
after the first part of the learning phase and once after the second
part of the learning phase. However, to prevent participant fa-
tigue, the IAT was administered only once, following the second
part of the learning phase.
The logic of the statistical analyses reported here later is as

follows. First, a comparison involving the control and baseline
learning conditions can be used to establish whether the rewards
and punishments used in the present task were effective in
shifting participants’ explicit and implicit evaluations of first-
stage stimuli. Explicit evaluations have been demonstrated to
shift as a result of similar manipulations numerous times (29–
33); the present project also provides a test of whether a binary

choice between two targets, followed by rewards and punishments,
can successfully shift implicit evaluations as measured by the IAT.
Second, a crucial comparison involving the baseline learning

and reward revaluation conditions can be used to probe whether
explicit and implicit evaluations are sensitive to model-based
learning. As noted here earlier, successful updating of subjective
value in the reward revaluation condition is commonly inter-
preted to rely only on model-based processes given that the
second part of the learning phase did not involve any experience
with first-stage stimuli. Similar to the first comparison, the ef-
fectiveness of reward revaluation in shifting explicit evaluations
has already been demonstrated (29–33); by contrast, to our
knowledge, whether reward revaluation can shift implicit evalu-
ations has not been investigated before.
Third, a comparison involving the baseline learning and

transition revaluation conditions can be used to probe whether
explicit and implicit evaluations are sensitive to a different
kind of change in the environment. The predictions for this
comparison are less straightforward than for the reward re-
valuation condition given that updating in this condition may
occur via model-free or model-based processes or a combi-
nation of both: model-based updating may be performed if
participants use their explicit model of the task to cognitively
link the second-stage stimuli to rewards (as experienced in the
first part of the learning phase). However, because second-
stage stimuli were paired with wins and losses in the first part
of the learning phase, they might act as valenced stimuli
themselves, thus enabling model-free learning (akin to second-
order conditioning).
Fourth, a comparison involving the baseline learning and

relearning conditions can be used to help disambiguate the
results of the reward revaluation condition by revealing whether
implicit evaluations are differentially sensitive to (i) model-free
vs. model based learning or (ii) initial learning vs. subsequent
updating (i.e., a primacy effect) (37). Specifically, if implicit
evaluations were to be insensitive to model-based learning,
such insensitivity would be reflected by statistically equivalent
responding in the baseline learning and reward revaluation
conditions (as detailed earlier). However, this pattern of
responding may also be the result of implicit evaluations being
generally more responsive to initial learning than to updating
based on novel information. If this is the case, and implicit
evaluations are generally impervious to updating, no difference
would be expected between the baseline learning and relearn-
ing conditions given that the relearning condition, just like the
reward revaluation condition, involves initial learning followed
by updating. By contrast, if the defining difference is between
model-free and model-based processes, the relearning condi-
tion, unlike the reward revaluation condition, should show
change given that, in the former, unlike in the latter, learning
can be accomplished via model-free processes.

Results.The pattern of results obtained with explicit evaluation as
the dependent measure (Fig. 2) was in line with expectations
formulated on the basis of similar studies conducted in the past
(29–33) and, as such, underscores the soundness of the design
and manipulations.
Specifically, baseline learning was found to be effective in

shifting explicit evaluations compared with the control condition
[t(548.86) = 9.88, P < 0.0001, Bayes Factor in favor of the al-
ternative hypothesis (BF10) = 3.40 × 1018, Cohen’s d = 0.82], thus
establishing the general effectiveness of the learning task used in
the present study (for further evidence see SI Appendix, Supple-
mentary Studies S1 and S2). Also in line with expectations, reward
revaluation was effective in shifting explicit evaluations com-
pared with the baseline learning condition [t(474.09) = 14.49, P <
0.0001, BF10 = 5.89 × 1038, Cohen’s d = 1.22], thus replicating
the widely observed finding that explicit evaluations respond to

Kurdi et al. PNAS | March 26, 2019 | vol. 116 | no. 13 | 6039

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820238116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820238116/-/DCSupplemental


model-based learning (for further evidence see SI Appendix, Sup-
plementary Study S1).* A similar result was observed for the com-
parison involving baseline learning and transition revaluation
[t(502.54) = 10.44, P < 0.0001, BF10 = 5.06 × 1020, Cohen’s d =
0.86], which should not be surprising given that such updating could
have occurred via model-free or model-based processes. Finally,
although not of major theoretical relevance for the present pur-
poses, the relearning condition was also found to effectively shift
explicit evaluations compared with the baseline learning condition
[t(793.91) = 24.55, P < 0.0001, BF10 = 1.62 × 1085, Cohen’s d =
1.59; for further evidence see SI Appendix, Supplementary Study S3].
Given that learning in the baseline learning and relearning

conditions could have been accomplished in a model-free or a
model-based way, we investigated (i) whether explicit evalua-
tions differed from neutrality at chance level responding to the
transition memory item (a signature of model-free processes)
and (ii) whether accuracy of transition memory predicted explicit
evaluations (a signature of model-based processes) in each
condition. As revealed by a significant intercept, explicit evalu-
ations differed from neutrality at chance level responding to the
transition memory item in the baseline learning condition [b =
0.90, t(307) = 11.76, P < 0.0001] and in the relearning condition

[b = 0.47, t(573) = 6.07, P < 0.0001], thus providing evidence
for the operation of model-free processes. At the same time,
accurate transition memory positively predicted explicit evalua-
tions in both conditions [b = 0.43, t(307) = 8.77, P < 0.0001; and
b = 0.38, t(573) = 8.83, P < 0.0001], revealing the contribution of
model-based processes to the acquisition of explicit evaluations.
A comparison involving the control and baseline learning

conditions revealed that implicit evaluations, like explicit eval-
uations, were sensitive to reinforcement learning: scores on the
IAT exhibited significant change away from control as a result of
the rewards received in the baseline learning condition
[t(565.06) = 4.35, P < 0.0001, BF10 = 9.11 × 102, Cohen’s d = 0.36;
for further evidence see SI Appendix, Supplementary Studies S1 and
S2). The crucial comparison in this experiment involved the
baseline learning vs. reward revaluation conditions given that this
comparison establishes whether implicit evaluations responded to
model-based reinforcement learning. This comparison provided
evidence in favor of the null hypothesis [t(569.05) = 1.06, P =
0.287, Bayes Factor in favor of the null hypothesis (BF01) = 6.22,
Cohen’s d = 0.09], suggesting that implicit evaluations are im-
pervious to model-based updating (for further evidence see SI
Appendix, Supplementary Study S1). In line with the expectation
that updating in the transition revaluation condition may emerge
from model-free or model-based processes, we found weak evi-
dence that the transition revaluation condition may have differed
from the baseline learning condition [t(591.29) = 2.47, P = 0.013,
BF10 = 1.85, Cohen’s d = 0.20].
Finally, given that we found no updating compared with

baseline in the reward revaluation condition, a comparison in-
volving the baseline learning and relearning conditions can be
used to establish whether such lack of updating occurred as a
result of a general primacy effect or the more specific effect of
implicit evaluations being impervious to model-based, but not

Fig. 2. Study 1 (n = 1,740): mean explicit and implicit evaluations by learning condition. For explicit evaluations (Left), the y axis shows percentage of re-
sponses in line with initial learning; for implicit evaluations (Right), the y axis shows IAT D scores (44) computed such that higher values indicate responses in
line with initial learning. For explicit and implicit evaluations, effects of revaluation or relearning are revealed by values closer to 0% or negative D scores,
respectively. In the control condition, responses indicating preference in favor of Laapians over Niffians were arbitrarily coded as positive. For visualization
purposes, IAT scores have been mean-centered by using the mean of the control condition. Error bars show 95% CIs.

*In this condition, as well as the transition revaluation and relearning conditions, partic-
ipants completed two sets of explicit evaluation items, one following the first part of the
learning phase (initial learning) and one following the second part of the learning phase
(revaluation or relearning). To ensure compatibility of analyses across conditions and
across explicit and implicit measures, here were report comparisons between the base-
line learning condition and the second set of explicit evaluation items completed fol-
lowing revaluation or relearning. In the SI Appendix, we report additional within-
participant analyses comparing the first set vs. the second set of explicit evaluation items
in the reward revaluation, transition revaluation, and relearning conditions. These
within-participant analyses reinforce the conclusions reported here.
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model-free, updating. The baseline learning and relearning condi-
tions were found to significantly differ from each other [t(649.58) =
6.04, P < 0.0001, BF10 = 2.40 × 106, Cohen’s d = 0.42], suggesting
that already-established implicit evaluations can be effectively
updated provided that the updating can be performed via model-
free mechanisms. As such, this result eliminates a general primacy
effect as an explanation for the present findings (for further evi-
dence see SI Appendix, Supplementary Study S3).

Studies 2 and 3
Design. Study 1 has provided initial evidence that, unlike their
explicit counterparts, implicit evaluations are impervious to
model-based learning. Studies 2 and 3 were designed to provide
a direct replication of this result as well as to produce evidence
about its generality (Fig. 1).
In line with our primary focus on the sensitivity of implicit

evaluations to model-based learning, studies 2 and 3 consisted
only of baseline learning and reward revaluation conditions. In
study 2 (final n = 245), in addition to the baseline learning
condition, two versions of the reward revaluation condition were
implemented. In the first version (revaluation 20 condition),
participants were exposed to 20 revaluation trials. As such, this
condition provides a direct replication of the reward revaluation
condition from study 1. In the second version (revaluation
40 condition), participants were exposed to 40, rather than 20,
revaluation trials. As such, in this condition, participants expe-
rienced twice as many trials in the second part of the learning
phase (i.e., revaluation) than in the first part (i.e., initial learn-
ing). If a comparison of implicit evaluations across the baseline
learning and revaluation 40 conditions reveals no difference, this
would suggest that the lack of updating observed in study 1 was
likely a result of the insensitivity of implicit evaluations to model-
based learning rather than a lack of sufficient training in the
second part of the learning phase.
In study 3 (final n = 369), reinforcement in the baseline

learning condition and in the first part of the revaluation con-
dition (i.e., initial learning) was probabilistic rather than de-
terministic, with one of the targets (e.g., Laapians) followed by
wins 75% of the time and the other target (e.g., Niffians) fol-
lowed by losses 75% of the time. To provide a conservative test
of the null hypothesis of model-based learning being ineffective
in shifting implicit evaluations, revaluation was deterministic.
This study was designed to probe whether the insensitivity of
implicit evaluations to model-based learning, as established by
study 1, may be modulated by the ambiguity of the initially re-
ceived evaluative information. As such, the reinforcement con-
tingencies in this study were more ecologically realistic than
contingencies in studies 1 and 2, in which one of the targets was
deterministically followed by wins and the other target was de-
terministically followed by losses.

Results. In study 2, explicit evaluations shifted significantly as a
result of revaluation in the revaluation 20 condition [t(124.17) =
8.31, P < 0.0001, BF10 = 2.04 × 1012, Cohen’s d = 1.33] and the
revaluation 40 condition [t(115.47) = 7.42, P < 0.0001, BF10 =
1.44 × 1010, Cohen’s d = 1.22; SI Appendix, Fig. S1], thus repli-
cating the results obtained in study 1. In study 3, explicit evalu-
ations were also found to shift significantly as a result of reward
revaluation, although the evidence in favor of change was con-
siderably weaker than in studies 1 and 2 [t(351.96) = 2.16, P =
0.031, BF10 = 1.10, Cohen’s d = 0.23; SI Appendix, Fig. S2].
Crucially, replicating the results of study 1, implicit evaluations

were found to be impervious to reward revaluation in study 2 (SI
Appendix, Fig. S1) and study 3 (SI Appendix, Fig. S2). Specifi-
cally, study 2 provided evidence in favor of the null hypothesis
when the number of trials was the same across the first and
second parts of the learning phase [baseline learning vs. re-
valuation 20 conditions, t(154.74) = −0.87, P = 0.381, BF01 =

4.19, Cohen’s d = −0.14]. A similar result was obtained in the
revaluation 40 condition in which the number of revaluation
trials was double the number of the initial learning trials
[t(152.71) = −0.51, P = 0.612, BF01 = 5.28, Cohen’s d = −0.08].
Implicit evaluations also remained impervious to reward re-
valuation in study 3, demonstrating that their insensitivity to
model-based learning does not depend on the deterministic vs.
probabilistic nature of initial reinforcement [t(366.99) = 0.32,
P = 0.747, BF01 = 8.26, Cohen’s d = −0.03].

Results Combined Across Experiments
Bayesian meta-analyses were conducted to obtain an aggregate
measure of differences across the baseline learning and reward re-
valuation conditions in studies 1–3. Explicit evaluations were found
to be sensitive to model-based learning (BF10 = 2.58 × 1043, Cohen’s
d = 0.87, 95% highest-density interval (HDI) = [0.77; 0.99]; SI
Appendix, Fig. S3), replicating previous work (29–33). By contrast,
implicit evaluations were found to be impervious to model-based
learning (BF01 = 13.18, Cohen’s d = 0.03, 95% = [−0.08; 0.15]; SI
Appendix, Fig. S4). Additional meta-analyses conducted only with
participants who had perfect transition memory revealed the same
pattern of results (SI Appendix, Figs. S5 and S6), suggesting that
lack of updating in implicit evaluations did not result from an
erroneous representation of the structure of the environment.
To further compare the relative importance of transition

memory in shaping implicit vs. explicit evaluations, we conducted
a small-sample–corrected robust metaregression (38) with corre-
lation between transition memory and evaluation as the depen-
dent measure, a fixed effect for type of evaluation (implicit vs.
explicit), and a random effect for study and condition to account
for dependency in the data. For implicit measures, no relationship
was found between transition memory and evaluation [b = 0.013,
95% CI (−0.028 to 0.054), t(7.91) = 0.75, P = 0.476]. By contrast,
for explicit measures, transition memory positively and signifi-
cantly predicted evaluations [b = 0.237, 95% CI (0.072–0.390),
t(7.91) = 3.29, P = 0.011]. As such, this meta-analysis provides
additional correlational evidence for the idea that explicit, but not
implicit, evaluations are responsive to model-based learning.

Discussion
We conducted three experiments relying on the distinction be-
tween model-free and model-based reinforcement learning (23,
29) and involving novel stimuli to arrive at a better understanding
of the updating of implicit (indirectly measured) evaluations.
Model-free algorithms are backward-looking, incremental, and
computationally cheap: they adjust the value of an action upon
experiencing its motivationally relevant outcomes. By contrast,
model-based algorithms are forward-looking, flexible, and com-
putationally expensive: they perform planning over a causal model
of the environment to choose the best course of action in light of
current goals.
The model-free vs. model-based distinction seemed ideal as a

theoretical basis for this investigation because, unlike existing
dual-process and single-process theories of evaluation, it is com-
putationally well-specified: the signatures of model-free vs. model-
based processes can be revealed in a so-called revaluation paradigm
(27–30). In this paradigm, subjective evaluation of a well-known and
previously rewarding stimulus is measured after the stimulus loses its
rewarding quality. Change in choice behavior as a result of this new
information reveals the operation of model-based learning, whereas
persistence of the old choice behavior is characteristic of a model-
free strategy. Explicit evaluations have been known to reflect a
combination of model-free and model-based processes (29–33),
and here we replicate this result.
The contribution of the present project is twofold. First, we

show that, in addition to other forms of evaluative learning such
as mere exposure (34), Pavlovian learning (35), approach–
avoidance training (36), and verbal instructions (12), implicit
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evaluations of stimuli, similar to their explicit counterparts, are
amenable to updating as a result of reinforcement learning, i.e.,
experience with the positive and negative outcomes of actions
involving those stimuli. Second, we demonstrate a commonality
and a difference in the computations underpinning the updating
of explicit vs. implicit evaluations via reinforcement learning: just
like explicit evaluations, implicit evaluations were found to be
responsive to model-free processes at baseline and following
initial model-free learning with different reinforcement contin-
gencies. However, unlike their explicit counterparts, implicit
evaluations were insensitive to model-based learning.
Such dissociation between explicit and implicit evaluations is

surprising for a number of reasons. First, our own previous work
has shown that implicit evaluations can shift in the face of
propositional processes traditionally thought of as uniquely
influencing explicit evaluations, suggesting underlying common-
ality in learning (12). However, here we provide clear evidence
for a theoretically meaningful explicit–implicit dissociation.
Second, to conduct a conservative test of dissociation, explicit
items were always administered to participants before the IAT,
and, as such, responding on the IAT could have been influenced
not only by the learning manipulations but also by responding on
the explicit measure of evaluation. However, no spillover effects
were observed, suggesting separate underlying representations.
Third, the IAT, used as a measure of implicit evaluation in the
present studies, involves explicit categorization of stimuli, which
may have been predicted to activate model-based value repre-
sentations, but the data showed no such evidence. Fourth, all
three experiments involved novel social groups as targets. This
feature should have minimized social desirability concerns, which
are known to contribute to explicit–implicit dissociations in tests
of real social targets (20).†

However, although the present studies created a pattern of
dissociation between explicit and implicit evaluations, it should be
noted that a reinforcement learning perspective, unlike a tradi-
tional dual-process perspective (9–11), does not make an un-
qualified prediction of explicit–implicit dissociations, for multiple
reasons. First, in many situations, including the baseline learning
condition of the present studies, model-free and model-based al-
gorithms converge on the same value representation. Second, as
demonstrated by the present studies, explicit and implicit evalu-
ations can both be updated by model-free processes. This shared
learning process should generally lead to some degree of associ-
ation between explicit and implicit evaluations. Third, recent re-
search has shown that model-free and model-based learning need
not be antagonistic: on the contrary, a model of the environment
can be used to modulate model-free value representations via
simulated experience (33, 39). Future work may test this idea in
the context of implicit evaluations by imposing a delay between
the revaluation and test phases of the experiment.
In addition, the distinction between model-free and model-

based learning processes provides a theoretical framework to
explain why certain interventions, even those that do not involve
valenced feedback upon performing an action, can successfully
shift implicit evaluations, whereas others seem to be ineffective.
Among 17 interventions implemented in a recent large-scale
collaboration, with individual investigators submitting their
chosen intervention, eight shifted implicit evaluations of African
American subjects toward neutrality, whereas nine produced no
change (19). Among the eight interventions that were effective,
five were clearly better characterized as model-free: they in-

cluded direct experience with African American exemplars
paired with positive stimuli or outcomes [e.g., evaluative con-
ditioning (35)]. The remaining three manipulations that were
effective required a mental model given that they were based on
verbal instructions rather than direct experience; however, this
mental model was of the simplest possible form: P(positive j
African American) = 1 and P(negative j white American) = 1.
This group of interventions included a vivid story in which the
protagonist was assaulted by a white American and saved by a
black American, as well as two manipulations involving imple-
mentation intentions (40). From a reinforcement learning
perspective, it could be argued that the causal model involved
in the latter group of interventions is sufficiently simple to be
able to train model-free values almost immediately (see also
ref. 12).
By contrast, among the nine ineffective interventions, eight

involved a complex causal model of the environment, including a
model of another person’s mind, a model of a positive encounter
with an outgroup member, and a model of racial injustice.
Crucially, unlike the successful interventions described here
earlier, this set of interventions did not provide participants with
precompiled value representations (e.g., African American,
good; white American, bad) that could be activated quickly and
effortlessly while responding under time pressure on an implicit
task. Given this time pressure, participants may not have had
sufficient opportunity to discern what modulation of existing
value representations a complex causal model would imply. Fi-
nally, the only model-free intervention that remained ineffective
involved pairings of both black and white Americans with (i)
positive and negative facial expressions and (ii) positive and
negative feedback. Given the nature of reinforcement provided
in this intervention, no change in the model-free values associ-
ated with each target should be expected.
This perspective on the results reported in ref. 19 is consistent

with the idea that evaluative representations acquired in ways
other than via reinforcement learning may generally be able to
effectively drive responding on implicit measures such as the IAT
only if they are sufficiently compressed to enable automatic ac-
tivation under time pressure. Future work will be able to offer
more systematic tests of this idea. For instance, the model-free
vs. model-based distinction underpinning the present project
may be used to probe whether implicit evaluations are amenable
to revaluation in a Pavlovian setting (41). Moreover, when it
comes to purely language-based learning (12, 13), the present
results suggest that the effectiveness of verbal statements in
updating implicit evaluations may be moderated by the com-
plexity of the propositional reasoning required to assign
the appropriate truth value to those verbal statements or, in the
terminology of reinforcement learning, by the complexity of the
implied causal model.
Moreover, the present results, as well as a general reinforcement

learning framework, provide a perspective on what is usually de-
scribed as the sensitivity of implicit evaluations to higher-order
goals (17, 18). In studies of this kind, activation of a goal (e.g.,
hunger, achievement, or egalitarianism) leads to a modulation of
implicit evaluations such that objects that can contribute to
achieving the goal are temporarily evaluated more positively until
the goal is successfully completed. These findings are seemingly at
odds with the present results, given that, as mentioned earlier, only
model-based, and not-model free, value representations can be
modulated in the face of higher-order goals.
However, the contradiction between both perspectives may be

illusory. One group of variables investigated in this set of studies
(including nicotine deprivation, thirst, and hunger) are more
appropriately described as motivational states rather than goals.
Sensitivity of model-free reinforcement learning to motivational
states is compatible with the theoretical formulation of model-
free algorithms (42) and empirical findings (22): based on past

†Even though the stimuli were introduced to participants as “names [. . .] com[ing] from
two groups,” it should be pointed out that the stimuli were not imbued with any further
social meaning, nor did we replicate the present experiments using stimuli explicitly
described as nonsocial. As such, we leave a direct comparison of social vs. nonsocial
and novel social vs. real social stimuli in the present paradigm to future work.

6042 | www.pnas.org/cgi/doi/10.1073/pnas.1820238116 Kurdi et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1820238116


experience, a model-free learner can represent multiple value
estimates associated with the same action (e.g., smoking a ciga-
rette). Smoking a cigarette in a nicotine-deprived state is highly
rewarding, and smoking a cigarette in a nicotine-satiated state is
much less so. Accordingly, over time, a smoker should learn to
associate higher value with cigarettes in the former compared
with the latter context and activate the appropriate value rep-
resentation depending on their current motivational state.
A second set of variables used in this literature can be de-

scribed as genuine higher-order goals (such as achievement or
egalitarianism). However, the general finding involving such
goals is that they modulate responding on implicit measures only
to the extent that participants have protracted past experience
with them (e.g., professional athletes or chronic egalitarians). In
a reinforcement learning framework, such past experience is
equivalent to having accumulated corresponding model-free
value representations over time. These model-free representa-
tions can then be activated automatically upon encountering the
relevant motivational state without such activation requiring
genuine goal-directed behavior involving effortful planning over
a causal model. As such, in line with our observation described
earlier, motivational states and goals seem to modulate implicit
evaluations only to the extent that they provide a precompiled
value representation that can be activated automatically and
effortlessly during an implicit task.
The present findings demonstrating the sensitivity of implicit

evaluations to model-free learning and their insensitivity to
model-based learning may be expanded upon in a number of ways
in future work. For instance, as mentioned earlier, model-free
learning is inherently state-dependent, which may provide an ex-
planation for the highly contextualized nature of implicit evalua-
tion (16) as well as its resistance to long-term change (43). By
mapping out the space of relevant states and providing model-free
training across a large number of them, change in implicit eval-
uations may become more robust, enduring, and generalizable.
Moreover, as mentioned earlier, the present studies were designed
to produce a dissociation between model-free and model-based
learning; however, recent work on offline updating of model-free
value representations via model-based algorithms (33, 39) suggests
that model-based interventions may also be successfully used to
shift implicit evaluations. Beyond these specific proposals for fu-
ture work, it is our hope that the theoretical framework outlined
here will generally inspire much insightful theorizing and empiri-
cal research on when, how, and why implicit evaluations change.

Materials and Methods
Institutional Approval and Informed Consent. All studies reported here were
granted ethical approval by the Committee on the Use of Human Subjects at
Harvard University. Participants provided informed consent at the beginning
of each study.

Participants. Participants in all studies were American adult volunteers
recruited from the Project Implicit educational Web site (implicit.harvard.
edu). Exclusion criteria are reported in the SI Appendix.

Learning Phase. In the initial part of the learning phase of studies 1 and 2,
participants completed 20 forced choice trials. In study 3, the number of
forced choice trials was increased to 30. On each trial, a Laapian stimulus
(randomly selected from Caalap, Feelslap, Gabeelap, Ineelap, and Maasolap)
and a Niffian stimulus (randomly selected from Ibbonif, Jabbunif, Lebbunif,
Mettanif, and Oballnif) were presented side-by-side on the screen. Partici-
pants selected the left-hand stimulus by pressing the E key or the right-hand
stimulus by pressing the I key. The side on which Laapian and Niffian stimuli
were presented was randomly selected for each trial. Following participants’

choice, a second-stage stimulus (horizontal or vertical bar) was displayed.
When participants had pressed the space bar, the second-stage stimulus was
removed and a reward (+5 or −5) appeared. The next trial started upon
pressing the space bar. The transition from first-stage stimuli (Laapians vs.
Niffians) to second-stage stimuli (horizontal vs. vertical bars) to rewards
(+5 vs. −5 points) was counterbalanced across participants.

The learning phase of the control (study 1) and baseline learning (studies
1–3) conditions consisted of only the initial learning described earlier. In the
reward revaluation (studies 1–3), transition revaluation (study 1), and
relearning (study 1) conditions, a second part followed. In study 1, the sec-
ond part of the learning phase consisted of 20 trials; in study 2, it consisted
of 20 or 40 trials (depending on condition); and, in study 3, it consisted of
30 trials. In the reward revaluation conditions, participants were exposed to
a randomly selected second-stage stimulus (horizontal or vertical bar) on
each trial. When they had pressed the C key, a reward (+5 or −5 points) was
revealed. The next trial started upon the participant pressing the space bar.
The transition revaluation condition was similar, with the exception that
participants were exposed to first-stage stimuli (Laapians or Niffians) and,
upon pressing the C key, a second-stage stimulus (horizontal or vertical bar)
appeared. The second part of the learning phase in the relearning condition
of study 1 was identical to the first part, with the exception that the tran-
sition from second-stage stimuli (horizontal vs. vertical bars) to rewards
(+5 vs. −5 points) was reversed.

Explicit Evaluation. Explicit evaluation items were identical to the forced-
choice trials used in the first part of the learning phase; however, on
these trials, participants received no feedback. Participants in the control and
baseline learning conditions completed a single set of four explicit evaluation
items, whereas participants in the reward revaluation, transition revaluation,
and relearning conditions completed two sets of four explicit evaluation
items: one set following the first part of the learning phase (initial learning)
and a second set following the second part of the learning phase (revaluation
or relearning). Responses on each set of explicit evaluation items were
summed (1 = normatively accurate response, 0 = normatively inaccurate
response) to create an index of explicit evaluation.

Transition Memory. Transition memory items were identical to the explicit
evaluation items, with the exception that participants were asked to select the
first-stage stimulus (Laapian vs. Niffian) that would lead to a certain second-
stage stimulus (horizontal vs. vertical bar) rather than to a positive outcome.
The administration of transition memory items followed the same schedule as
the administration of explicit evaluation items. Responses on each set of
transitionmemory items were summed (1 = normatively accurate response, 0 =
normatively inaccurate response) to create an index of transition memory.

Implicit Evaluation. Implicit evaluations were measured by using a standard
five-block IAT (2). The categories were “Laapians” and “Niffians” and the
attributes were “good” and “bad.” Category items were identical to the
items used during the learning phase. Good attribute items included love,
peace, joy, happy, peace, glory, and lucky; bad attribute items included hate,
war, devil, bomb, bitter, agony, and grief. Implicit evaluations were calcu-
lated by using the improved scoring algorithm (44) such that higher D-scores
indicate evaluations in line with initial learning. Further details of the IAT
procedure are reported in the SI Appendix.

Statistical Analyses. All statistical analyses were conducted in the R statistical
computing environment. The R code for all analyses, as well as data files
(including trial-level IAT data), are freely available from the Open Science
Framework (https://osf.io/f8pg3/) (45). The Bayesian t tests and Bayesian
meta-analyses were performed by using the BayesFactor package (46). The
small-sample–corrected robust variance metaregression was conducted by
using the robumeta package (47).
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