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Abstract

W Decision-making algorithms face a basic tradeoff between
accuracy and effort (i.e., computational demands). It is widely
agreed that humans can choose between multiple decision-
making processes that embody different solutions to this trade-
off: Some are computationally cheap but inaccurate, whereas
others are computationally expensive but accurate. Recent
progress in understanding this tradeoff has been catalyzed
by formalizing it in terms of model-free (i.e., habitual) versus
model-based (i.e., planning) approaches to reinforcement
learning. Intuitively, if two tasks offer the same rewards for

INTRODUCTION

It is not always obvious how hard to think. Whether plan-
ning a route home, writing a shopping list, or estimating
the financial returns of an investment, we face a basic
tradeoff: Thinking harder about a task means doing better
at it (a benefit), but it takes time and also diverts attention
from other tasks (costs). Thus, many psychological theo-
ries agree that humans perform some kind of cost-benefit
analysis when allocating “mental effort” to a task (Shenhav
et al., 2017; Kurzban, Duckworth, Kable, & Myers, 2013).

To refine these theories, researchers have devoted in-
creasing attention to developing experimental paradigms
in which (1) mental effort is linked to both costs and
benefits, (2) the costs and benefits can be exogenously
manipulated, or (3) their tradeoff is amenable to formal
analysis, for instance, within the reinforcement learning
(RL) framework. Progress has been made on several of
these fronts independently (Kool, Gershman, & Cushman,
2017; Kool, Cushman, & Gershman, 2016; Boureau, Sokol-
Hessner, & Daw, 2015; Kool, McGuire, Rosen, & Botvinick,
2010). The aim of this study is to accomplish them simul-
taneously. Specifically, we assess whether people flexibly
adjust the degree of advantageous planning effort devoted
to an RL task as the complexity of the planning required is
manipulated.
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accuracy but one of them is much more demanding, we might
expect people to rely on habit more in the difficult task: Devot-
ing significant computation to achieve slight marginal accuracy
gains would not be “worth it.” We test and verify this prediction
in a sequential reinforcement learning task. Because our para-
digm is amenable to formal analysis, it contributes to the devel-
opment of a computational model of how people balance the
costs and benefits of different decision-making processes in a
task-specific manner; in other words, how we decide when hard
thinking is worth it. |l

An RL Approach

Several theories in psychology and neuroscience (Kahneman,
2011, Dickinson, 1985) have proposed that there exist two
systems that we can use to evaluate the available actions:
a slow and deliberative goal-directed system that plans
actions so as to obtain a desired goal and a fast and auto-
matic system that relies on habit, associating rewards
directly to the actions that produced them without consid-
ering the structure of the environment.

Contemporary research has formalized the distinction
between habit and planning using RL theory (Dolan &
Dayan, 2013; Daw, Gershman, Seymour, Dayan, & Dolan,
2011; Daw, Niv, & Dayan, 2005), a computational ap-
proach that describes how agents ought to choose be-
tween actions to maximize future cumulative reward. In
this dual-system theory, the habitual system corresponds
to model-free RL, which reinforces actions that previously
led to reward (Thorndike, 1911). This system is computa-
tionally cheap but inflexible, because it needs direct ex-
perience to incrementally update its value function to
accommodate sudden changes. The goal-directed system
corresponds to model-based RL and achieves flexibility by
planning in an explicit causal model of the environment. This
system is comparatively flexible because sudden changes
can directly be incorporated into the causal model, but this
comes at the cost of increased computational costs.

Following a seminal paper (Daw et al., 2011), a variety
of related sequential decision-making tasks have emerged
as the standard behavioral paradigm to dissociate model-
free and model-based control strategies in humans (for a
review, see Kool, Cushman, & Gershman, in press). This
paradigm has afforded rapid progress in determining
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the neural correlates of the two systems (Doll, Duncan,
Simon, Shohamy, & Daw, 2015; Smittenaar, FitzGerald,
Romei, Wright, & Dolan, 2013; Wunderlich, Smittenaar, &
Dolan, 2012; Daw et al., 2011), the cognitive mechanisms
that implement them (Gillan, Otto, Phelps, & Daw, 2015;
Otto, Skatova, Madlon-Kay, & Daw, 2015; Otto, Raio,
Chiang, Phelps, & Daw, 2013), and their clinical implications
(Patzelt, Kool, Millner, & Gershman, submitted for pub-
lication; Gillan, Kosinski, Whelan, Phelps, & Daw, 2016).

Here, we adapt this family of tasks to investigate
whether people become less likely to devote profitable
mental effort to model-based control due to increases
in the complexity of the planning task (in our task, due
to the increased depth of a decision tree).

Allocation of Mental Effort

In recent years, researchers have devoted increasing
attention to the question of how, from moment to mo-
ment, people decide to allocate mental effort. Several
foundational studies established that people assign a
subjective cost to allocating cognitive control and that
this can be offset by the prospect of reward (Dixon &
Christoff, 2012; Kool et al., 2010; Botvinick, Huffstetler,
& McGuire, 2009). Most importantly, Westbrook, Kester,
and Braver (2013) showed that participants’ willingness to
perform a cognitive task decreases as its effort demands
increase. These studies manipulate the demand of mental
effort by imposing working memory or executive function
engagement (for reviews, see Kool, Shenhav, & Botvinick,
2017; Shenhav et al., 2017; Botvinick & Braver, 2015) but
do not make direct contact with the RL framework.

Meanwhile, several other studies implicate a key role
for cognitive control in model-based action selection.
For example, model-based control is significantly re-
duced under cognitive load (Otto, Gershman, Markman,
& Daw, 2013), and the degree to which people are prone
to use model-based strategies correlates with measures
of cognitive control ability such as working memory
capacity (Otto, Raio, et al., 2013) and performance on
response interference tasks (Otto et al., 2015). These
findings suggest that the exertion of model-based control
is itself dependent on executive functioning or cognitive
control and therefore carries an effort cost.

Recently some effort has been made to integrate these
literatures by exploring sensitivity to costs and benefits of
cognitive control within RL tasks. Here, the rationale is
that people attach an intrinsic cost to model-based con-
trol through its reliance on cognitive control and that this
cost is factored into a cost-benefit analysis that deter-
mines the allocation of metacontrol. Initial evidence for
this hypothesis came from a study in which people ex-
erted more model-based control in response to amplified
reward, but only when this strategy was likely to earn
more reward than model-free control (Kool, Gershman,
et al., 2017). These results suggest that people adaptively
arbitrate between model-free and model-based control
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through cost-benefit analysis. However, this study tested
only sensitivity to increased benefits. Keramati, Smittenaar,
Dolan, and Dayan (2016) have provided some initial evi-
dence that people are able to use a mixture of planning
and habit to navigate multistage decision-making tasks
and that increased time pressure reduces the influence of
the goal-directed system on this spectrum. However, it re-
mains unclear whether this balance between habit and
planning merely reflects the capacity to engage in model-
based control or whether it is determined by a value-based,
cost-benefit tradeoft.

We hypothesize that by increasing the demands on
planning, by increasing the depth of the causal structure,
participants will be less willing to incur the increased
costs of model-based control and thus rely on the less
accurate model-free system.

EXPERIMENT 1

Participants completed a novel multistage decision-
making task in which planning demands, but not available
rewards, varied from trial to trial. We hypothesized that par-
ticipants would show a reduced willingness to exert model-
based control in response to increased planning complexity.

Participants

One hundred one participants (range = 22-64 years,
mean = 306 years, 44 women) were recruited on Amazon
Mechanical Turk to participate in the experiment. Partic-
ipants gave informed consent, and the Harvard Commit-
tee on the Use of Human Subjects approved the study.

Participants were excluded from analysis if they timed
out on more than 20% of all trials (more than 40), and we
excluded all trials on which participants timed out (aver-
age 4.2%). After applying these criteria, data from 98 par-
ticipants were used in subsequent analysis for the
multistage paradigm.

Multistage Decision-making Paradigm
Materials and Procedure

The experiment was designed to test whether choice be-
havior shows a reduction in model-based control in re-
sponse to an increase in the complexity of the planning
demands. Our paradigm (Figure 1A) was an extended
form of a recently developed two-step task (Kool et al.,
2016). This task can dissociate model-free and model-
based control by capitalizing on the ability of the model-
based system to plan over an internal model of the task
toward goals, whereas the model-free system requires
direct experience of response-reward associations to
inform its decisions.

Each trial of the task involved either one or two choices
between several stimuli, “space stations” or “spaceships,”
that appeared on a blue earth-like planet background. As

Volume 30, Number 10



A B °
| ' l C
® \ F |
L 58 o ' \'
w 1 I
O oo 3
2 5 £l
I

< Il ‘
=] . " I
I %< 0 20 40 60 80 100 120 140 160 180 200

" Trial

2 C  Low-effort tral High-effort trial

&

n

2
5
= o
o n
2 -
o
-

Figure 1. Design of Experiment 1. (A) State transition structure. Low-effort trials (bottom) require a choice between three spaceships that
deterministically transition to one of three final-stage states. High-effort trials first require a choice between two randomly selected space stations that
deterministically transition to a pair of spaceships. These spaceships then transition to the same final-stage states as in the low-effort trials. Each final
stage is associated with a scalar reward. For each level of the transition structure, it is indicated how the stage is indexed by the computational
model. (B) The rewards at each final-stage state changed across the duration of the experiment according to a Gaussian random walk with o = 2
between 0 and 9. (C) Timeline of events for low- and high-effort trials. At the start of each trial, empty containers indicate whether the following trial
would be either a low-effort (three containers) or a high-effort (two containers) trial. After transitioning to the final-stage state, the participant is

provided with a scalar reward.

explained in detail below, sometimes these choices in-
volved three options, and at other times they involved
two options. The choices were presented side by side,
and each choice option had an equal probability of ap-
pearing in any position on the screen. Choices between
two options had to be made using the “F” or “H” button
keys for the left- and right-hand options, and the “G”
button key if there was a third option in the middle. All
choices had to be made within a response deadline of
2 sec. The selected spaceship and alien were highlighted
for the remainder of the response period.

At the start of each trial, it was randomly determined
whether it would involve either high- or low-effort de-
mands. Low-effort trials started randomly in one of two
possible first-stage states, each of which featured a choice
between a triplet of spaceships (Figure 1A, bottom part).
This choice deterministically controlled which final-stage
state (a purple, red, or yellow planet) would be visited.
In each first-stage state, there was always one spaceship
that led to each of the three planets.

High-effort trials followed a similar, but slightly differ-
ent, logic. Here, each trial began with a choice between
two of three randomly selected space stations (Figure 1A,
top part) in a “zeroth” stage. The zeroth-stage choice
deterministically controlled which of three possible
first-stage states would be visited. Each of these involved

a choice between two spaceships. This choice then deter-
mined which of the three final-stage planets would be
visited. The first-stage spaceships on the high-effort trials
were the same as those on the low-effort trials and transi-
tioned to the same planets as on the low-effort trials.
Spaceships that appeared in the same first-stage state
on the low-effort trials did not appear together on the
first-stage states on high-effort trials. As can be seen in
Figure 1A, each possible choice between space stations
afforded the possibility to visit any of the final-stage
planets. This meant that, on each trial of the task, any
planet could be visited.

At the start of each trial, the effort condition was cued
by a number of empty containers at the locations where
the choices were to appear. These were presented for
1 sec. Each final-stage state was associated with reward.
Specifically, on each planet, participants found a single
alien, and they were told that this alien “worked at a
space mine.” They were instructed to press the space bar
within the time limit to receive the reward. Participants
were told that sometimes the aliens were in a good part
of the mine and they paid off a high number of points or
“space treasure,” whereas at other times the aliens were
mining in a bad spot and this yielded fewer pieces of
space treasure. The payoffs of these mines changed over
the course of the experiment according to independent
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random walks. One of the alien’s reward distributions was
initialized randomly within a range of 1-3 points, one
within a range of 4-6 points, and the last within a range
of 7-9 points. They then drifted according to a Gaussian
random walk (o = 2), with reflecting bounds at 0 and
9 (for an example, see Figure 1B). New sets of drifting
reward sequences were generated for each participant.
Participants were given 1¢ for every 10 points. The run-
ning score was always presented in the top right corner
of the screen.

Each participant completed 25 practice trials followed
by 200 rewarded trials (see Figure 1C for an example
sequences). Before these, participants were instructed
about the reward distributions of the aliens. Next, they
practiced traveling to each of the three planets from
the low-effort arm and then from the high-effort arm.
Specifically, they were required to transition to each planet
10 times in a row separately for the low- and high-effort
transition structures. In these practice sessions, there
was no time limit for responding.

Experimental Logic

This paradigm is able to distinguish between model-free
and model-based influences on choice. To see this, con-
sider the first stage of the low-effort arm in Figure 1A.
Crucially, the choices between the three spaceships are
equivalent between the two first-stage states. For each
triplet, one spaceship always led to the purple planet,
one always to the red planet, and one always to the
yellow planet. Only the model-based value update capi-
talizes on this equivalency because it recomputes the
expected value of all actions in a manner sensitive to
the representation of terminal rewards. In contrast, the
model-free update applies only to the specific sequence
of actions that preceded reward (Doll et al., 2015).
Therefore, on trials that start in a different starting
state than the previous trial, only a model-based agent’s
action values will reflect the reward outcome of the
previous trial, because it plans toward the final-stage
actions. The model-free system, on the other hand, re-
lies purely on locally learned action—reward associations
and is therefore not able to generalize between starting
states.

Similar logic applies to the high-effort condition
(Figure 1A). Because the model-based system evaluates
actions by planning toward the final-stage actions, it can
recompute the value of all actions upon learning new in-
formation about their rewards. Therefore, if the space
station selected on the previous trial is not present in
the current trial (two of three space stations get ran-
domly selected on each high-effort trial), only the model-
based system will be able to use the previous reward
outcome to inform choice. Using the full structure of
the experiment, the model-based system is even able to
transfer reward information learned in the low-effort
condition to the high-effort condition and vice versa,
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because these conditions share the same final-stage
planets and spaceships.

Dual-system RL Model

To estimate the probability of model-free versus model-
based control at each choice point, we used an estab-
lished and validated dual-system RL model (Daw et al.,
2005, 2011; Gldscher, Daw, Dayan, & O’Doherty, 2010).
This model consists of a model-free system and a model-
based system that both represent values for the actions at
the zeroth and first stages. The systems differ in the way
they estimate those values. The model-free system learns
“cached”values for all actions in all stages through a
simple temporal difference learning algorithm (Sutton
& Barto, 1998). In essence, this system simply increases
the value of actions that lead to outcomes that are more
positive than expected and decreases the value of actions
that lead to outcomes that are less positive than ex-
pected. The model-based system plans through an inter-
nally represented model of the experiment to find the
expected final-stage outcomes for each action. The model
includes three weighting parameters (Wiow, Whigh,op, and
Whigh middle) that encode the probability of choosing
model-based (vs. model-free) value estimates on the first
stage of the low-effort arm and on the zeroth and first
stages of the high-effort arm, respectively. We predicted
a decreased probability of model-based control at the start
of high-effort trials as compared with the low-effort
trials, reflecting the increased demands of goal-directed
planning and, by hypothesis, increased subjective effort
cost.

Our multistage decision-making task consists of 12 pos-
sible actions distributed across three stages. Low-effort
trials start at the first stage (s = 1) with three available
actions the identity of which is determined by the first-
stage state ({aq ., a18, and a; ¢} or {a; p, a1 5, and
ay x}; see bottom part of Figure 1A) and then determin-
istically transitions to one of the final-stage (s = 2) states
with one available action. High-effort trials involve an ad-
ditional zeroth stage (s = 0) with two randomly selected
actions out of a set of three possible actions {ag a, @o s,
aoct before transitioning to the first stage, where there
are two available actions the identity of which is deter-
mined by the stage 0 choice ({a1 4, a1x}, {a18, @15},
or {aic, aip}; see top part of Figure 1A). Our models
consist of model-based and model-free strategies that
both learn a function Q(s, @) mapping each stage-action
pair to its expected future return (value). On trial #, the
zeroth-, first-, and final-stage actions are denoted by a,
aiy, and a, 4, and each stage’s rewards as 7, 1, (always
zero, there is only reward on the final stage), and 7.

Model-free Strategy

The model-free agent uses the SARSA(A) temporal differ-
ence learning algorithm (Rummery & Niranjan, 1994),
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which updates Q value for each chosen stage—action pair
(s, @) at stage s and trial ¢ according to

OnE (S, dts,0) = Owmr (S, ds,) + abs ies,(s, @)

where

Osy = Ty + Omr (5 + 1aa3+1,t) — Owmr (5761.\1;)

is the reward prediction error, as, is the chosen action
at stage s and trial ¢, « is the learning rate parameter,
and e, (s, a) is an eligibility trace set equal to O at the
beginning of each trial and updated according to

(s ass) = e 14(s,as,) +1

before the Q-value update. The eligibilities of all state—
action pairs are then decayed by 4 after the update.

We now describe how these learning rules apply
specifically to our task. The reward prediction error is
different between the stages of the task. Since 7y, and
r1, are always zero, the reward prediction error at the
zeroth and first stages are driven by the value of the
selected first- and final-stage actions Qumr(1, a1,,) or

Omr (2, az,),
61,0 = Owr(2,a2,4) — Owr(1,a1,)

and for high-effort trials,

80,0 = Qur (1, a1,1) — Oume (0, a0,)

Because the trial ends after the final stage, the predic-
tion error on this stage is driven by the reward 7, ,,

021 =724 — QMF(Z,az,z)

The first-stage values are updated at the final stage, with
the first-stage values receiving the final-stage prediction
error down-weighted by the eligibility trace decay, 4.
On high-effort trials, the zeroth-stage values are also up-
dated with the final-stage prediction error, but down-
weighted by A%, Thus, when A = 0, only the values of
the final stage get updated.

Model-based Strategy

The model-based algorithm works by learning a transi-
tion function that maps the first-stage and zeroth-stage
actions to the subsequent states and then combining
this function with the final-stage model-free values to
compute cumulative state—action values by iterative
expectation. In other words, the agent first decides which
zeroth-stage and first-stage actions lead to which final-
stage state and then looks up the reward values for these
final-stage actions.

At the final stage, learning of the immediate rewards is
equivalent to the model-free update, because those Q
values are simply an estimate of the immediate reward
r3,. As we showed above, the SARSA learning rule re-
duces to a delta rule for predicting the immediate re-

ward. This means that the two approaches coincide at
the final stage, and so we set Qyp = Owmr at this stage.

The model-based values are defined in terms of
Bellman’s equation (Sutton & Barto, 1998), which spec-
ifies the expected values of each first-stage action using
the transition structure P (assumed to be fully known
to the agent). For the first-stage, where there is only
one available action at the next (final) stage, they are
defined as

Ous(1,a1,:) = Qur(2,A(1,a1,))

where A(1, a,) is the final-stage action that becomes
available after taking the first-stage action a; given the
deterministic transition structure P.

For the zeroth stage, where there are two available
actions at the next stage, the model-based actions values
are defined as

Omi(0,a0,) = max  QOwg(1,a)

ae{A(O,aw) }

where A(0, ay) is the set of actions that becomes available
after taking the zeroth-stage action a, using transition
structure P. We assume that these model-based esti-
mates are recomputed on each trial using the transition
structure P and the final-stage reward values.

Decision Rule

To connect the values to choices, for the zeroth and first
stage in the paradigm, the model-free and model-based
Q values are mixed according to a weighting parameter
w (Daw et al.,, 2011):

Onet(s,a;) = wOwgs(s,a;) + (1 — w)Owr(s, a;)

To accommodate our effort manipulation, we defined
three different weights that operated on different trial
and choice stages. We set w = w).y for the first stage
of the low-effort trials, w = wyigh op for the zeroth
stage of the high-effort trials, and w = wpgh midaie for
the first stage of the high-effort trials. There was no
choice at the final stage.

We used the softmax rule to translate these Q values to
actions. This rule computes the probability for an action,
reflecting the combination of the model-based and model-
free action values weighted by an inverse temperature
parameter. At both states, the probability of choosing
action a on trial # is computed as

eXp(ﬁQnet (Sv Cl))
Za, GXp(BQnet (Sa ﬂ,))

Plas, =als) =

where a’ indexes the current available actions in stage s
and the inverse temperature 3 determines the random-
ness of the choice.
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Table 1. Best-fitting Parameter Estimates Shown as Median and
Quatrtiles across Participants and Experiments

Predictor B a N Wiw Wpighiop Whigh middie
Experiment 1

25th percentile  3.40 .30 0.01 048 024 0.53
Median 399 75 039 086 0.50 0.92
75th percentile 545 .93 0.80 1.00 0.77 1.00
Experiment 2

25th percentile 3.42 .61 0.00 0.80 0.53 0.71
Median 450 .88 0.64 1.00 0.79 0.98
75th percentile 5.72 1.00 1.00 1.00 0.94 1.00
Experiment 3

25th percentile 2.43 .07 0.11 031 0.06 0.18
Median 346 33 042 070 0.46 0.65
75th percentile 4.67 .65 0.75 1.00 0.78 1.00
Experiment 4

25th percentile 2.22 .07 0.00 024 0.19 0.35
Median 336 .41 039 081 0.53 0.85
75th percentile 4.63 .67 0.89 1.00 0.81 1.00

Model Fitting Procedure

We used maximum a posteriori estimation with empirical
priors, implemented using the mfit toolbox (Gershman,
2016) parameters to fit the free parameters in the com-
putational models to observed data, with weak priors for
the distributions for the inverse temperature, 8 ~ Gamma
(4.82, 0.88) and flat priors for all other parameters
(Gershman, 2016). We normalized the reward values to

span a range from 0 to 1. We ran the optimization 100 times
for each participant with randomly selected initializations
for each parameter. The final estimations for the parame-
ters were extracted from the estimation with the maximal
log-likelihood. The ¢ tests reported here are performed
on these subject-wise parameter estimates."

In addition to this, we also used a hierarchical Bayesian
modeling procedure, which simultaneously fits the
model’s parameters for each participant individually, as
well as group-level parameters. This method produces a
posterior probability distribution over the parameters in
our model. For each significant effect from the nonhier-
archical analysis, we set up a linear contrast with the
means and variances of these distributions and computed
the posterior probability that one of the variables (i.e.,
model parameters) was greater than the other, that is,
that the linear contrast was greater than 0 (for more de-
tail on the model-fitting method, see Huys et al., 2011).

Results

Table 1 reports the estimated parameters from our
model-fitting procedure. Consistent with prior findings,
we found that the weighting parameters indicated a mix-
ture of model-free and model-based decisions at all stages
(mean w = 0.64). Individual differences in the model-
based weighting parameters for all stages significantly
predicted the average number of points per trial (w)ow:
r=.57,p < .00L; whighop: 7 = .20, p < .05; Whigh middie:
r =.52,p < .001).

Most importantly, we found a significant planning
complexity effect: The degree of model-based control
was significantly smaller at the start (zeroth stage) of
high-effort trials (mean whigh op = 0.50) when compared
with the low-effort trials (mean w,,, = 0.70), ¢(97) =
4.46, p < .001, d = 0.45, posterior probability (PP) =
.98 (Figure 2A). Model-based control at the start of high-
effort trials was also reduced compared with the middle
stage of the high-effort trials (mean whigh midale = 0.71),

Figure 2. Results of

Experiment 1. (A) Degree A 1 B 0.1
of model-based control for each g

of the stages in the experiment. ° 0

We observed a decrease in ‘g’ 08 é 0.08
model-based control at the start ; o %
(zeroth stage) of the high-effort 8 06 T 5 006
trials compared with the start _g ° é

of the low-effort trials and the g g §

first stage of the high-effort g 0.4 8 E 0.04
trials. (B) Average reward 5 £
rates for low- and high-effort % 0.2 % 0.02
trials, corrected for chance :16; 2
performance. Participants (=] 0

carned significantly less reward Loweffot  Higheffort  High effort Loweffort  High effort
on high-effort trials. Error bars Top stage Middle stage

indicate within-subject SEM.

Dashed lines indicate 95%
confidence interval.
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t(97) = 4.68, p < .001, d = 0.47, PP = 1.00, but there
was no difference in model-based control between the
low-effort trials and the start of the high-effort trials
( < 1). In addition, we found that participants earned
less reward on high- versus low-effort trials, #(97) =
2.75,p < .01,d = 0.28 (Figure 2B).

One potential concern in the model-fitting procedure
above is that the weighting parameter was the only pa-
rameter that we allowed to vary between effort condi-
tions. This leaves open the possibility that the observed
pattern of weights across conditions was caused by differ-
ences in the degree of exploration between the decision
stages, which were the forced on the weighting parame-
ter by our fitting procedure. To rule out this alternative
explanation, we fit a version of the RL model that varied
both the weighting parameters and the inverse tempera-
ture for all stages of the task. The results from this analysis
replicated the planning complexity effect. Model-based
control was significantly lower at the start of the high-
effort trials (mean wygh 1op = 0.49) compared with the
low-effort trials (mean wy.y, = 0.70), £(97) = 4.51, p <
.001, d = 0.46, PP = .82. This result suggests that any
differences in the degree of exploration between choice
stages were not sufficient to explain the planning com-
plexity effect. However, we did find differences in the in-
verse temperature parameter between the start of the
high-effort trials and the low-effort trials, #(97) = 6.17,
p < .001,d = 0.62, PP = .71, between the top and
the middle stage of the high-effort trials, #(97) = 5.56,
p < .001,d = 0.56, PP = .66, but not between the low-
effort trials and the middle stage of the high-effort trials,
1(97) = 1.57,p = .12, d = 0.16.

Discussion

We found that people respond to increased planning
complexity by reducing model-based control. This find-
ing is consistent with the proposal that people arbitrate
between model-free and model-based control through
cost-benefit analysis. Under this account, the increased
planning demands on the high-effort trials amplified
the cost of model-based control and reduced the willing-
ness to engage in effortful planning.

EXPERIMENT 2

Although the findings from Experiment 1 are consistent
with the cost-benefit account, it is also possible that the
planning complexity effect was caused by reduced ability,
rather than reduced willingness, to exert model-based
control. For instance, people may have had difficulty re-
calling the transition structure of the “high-effort” task
simply because it involved a greater number of possible
transitions.

We adapted the paradigm from Experiment 1 to rule
out this concern. In this new task, participants were given
ample time for each decision (10 sec instead of 2 sec)

and were trained more extensively on the experiment’s
transition structure. These changes were introduced to
minimize the influence of processing limits on the de-
ployment of model-based control. In addition, we tested
this alternative hypothesis by embedding “probe” trials in
the multistage task. On these trials, participants were in-
structed that visiting one planet would lead to obtaining a
very large reward, whereas the other planets would result
in zero reward. We designed these probe trials in such a
way that there was always only one correct action that
would lead to the probed planet. Therefore, we were
able to use performance on these probe trials as a mea-
sure of the ability to plan in this task.

We hypothesized that the increased instruction phase
and extended response deadline would lead to an in-
crease in model-based control for all choice stages. How-
ever, our cost-benefit hypothesis predicts that, despite
this increased ability for goal-directed processing, the ef-
fort costs of planning in the high-demand condition
would still result in a complexity effect, even in partici-
pants with perfect performance on the probe trials.

Methods
Participants

One hundred two participants (range = 21-66 years,
mean = 37 years, 39 women) on Amazon Mechanical Turk
completed the experiment. No participants timed out on
more than 20% of all trials. We excluded all trials on
which participants timed out (average 0.6%).

Materials and Procedures

This paradigm was similar to Experiment 1, with a few
exceptions. First, we extended the response deadline
for all choices to 10 sec. The instruction phase of this
experiment was also more elaborate. Instead of learning
to transition to each planet separately, we interleaved the
planets within each effort condition. At the start of each
practice trial, participants were cued with a random planet.
Participants were required to visit the cued planet suc-
cessfully 15 times in a row. This phase was completed for
the low- and high-effort arms separately. We reasoned
that this new instruction phase would lead to a more
accurate internal model for goal-directed planning.

We also modified this task to include a subset of
12 probe trials. At the start of each of these probe trials,
a display indicated the presence of a large reward (a
“diamond”) on one particular planet (see Figure 3A).
On those trials, visiting the probed trial would lead to
earning this very large reward (200 points, compared
with a regular maximal point value of 9), whereas visiting
any of the other planets would result 0 points. On the
next trial, the final-stage rewards would return to being
determined by their drifting reward distributions. Our
participants were instructed on this feature of the task,
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compared with the low-effort trials.

and we only used the choices on the regular trials of the
dual-system RL model.”

The first probe trial was always presented on the 66th
trial, and from that moment every 12th trial would in-
volve a probe. Every planet was cued four times, because
for each of the two effort conditions there are always two
distinct paths toward that planet. For the high-effort
trials, there are two space stations that allow a transition
toward one particular planet. Therefore, we ensured that,
on high-effort probe trials, there was always one correct
space station choice at the start of the trial. The order of
the probes was determined randomly for each partici-
pant. For each effort condition, we calculated probe
accuracy as the proportion of trials on which the first
decision would lead to the cued planet, excluding trials
on which the participants timed out on this first choice.

Results

The estimated parameters for the dual-system RL model
are reported in Table 1. We again found that model-free
and model-based strategies were mixed in our popula-
tion (mean w = 0.76). Consistent with the hypothesis
that the increased response deadline and extensive
training on the transition structure would lead to a more
accurate internal model, we found that average model-
based control was significantly increased in Experiment 2
compared with Experiment 1 for the low-effort trials
(mean difference in woy = 0.19), £(198) = 4.08, p <
.001, d = 0.58, and for the start of high-effort trials (mean
difference in wpighop = 0.18), £(198) = 3.48, p < .001,
d = 0.49, but only numerically for the middle stage of the
high-effort trials (mean difference in wy;gn migaie = 0.07),
1(198) = 1.42, p = .16, d = 0.20.

We again found that individual differences in the model-
based weighting parameters correlated with the reward
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rate across for all stages (Wiow: 7 = .57, p < .001; Whigh top:
r=.38,p <.001; wWhigh middie: 7 = .57,p < .001). Participants
earned significantly less reward on high- versus low-effort
trials, #(101) = 2.22, p < .05,d = 0.22.

Even though our extended instruction phase led to a
greater reliance on model-based control, we still ob-
served a complexity effect (Figure 3B): Model-based con-
trol was significantly reduced at the start (zeroth stage) of
the high-effort trials (mean whigh (op = 0.69) compared
with the low-effort trials (mean w,,, = 0.82), #(101) =
3.19,p < .01,d = 0.32, PP = .73. Like in Experiment 1,
model-based control at the start of high-effort trials was
also reduced compared with the middle stage of the
high-effort trials (mean whigh migaie = 0.77), £(101) =
2.04, p < .05,d = 0.20, PP = 1.00, and there was again
no difference in model-based control between the low-
effort trials and the middle stage of the high-effort trials,
1(101) = 150, p = .14, d = 0.15.

We now turn to the key question of whether the com-
plexity effect merely reflects an inability to engage in
goal-directed processing by examining the performance
on the probe trials. Average accuracy scores were high
for both low-effort probe trials (mean = 0.92, SD =
0.18) and the high-effort probe trials (mean = 0.88, SD =
0.16). Most importantly, we observed significant com-
plexity effects when we restricted our analysis to partici-
pants with 100% accuracy on the high-effort probe trials,
t(58) = 2.49,p < .05,d = 0.32, PP = .98, the low-effort
probe trials, £(77) = 3.93, p < .001,d = 0.45, PP = .83, or
both, #(53) = 2.02, p < .05, d = 0.28, PP = .74. These
results are consistent with the cost-benefit framework:
Participants with a perfect internal model still withdrew
model-based control on regular high-effort trials.

We found a positive correlation between the planning
effect and probe accuracy for the low-effort trials (r = .24,
p < .05), but not for the high-effort trials (* = —.05,
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p = .60). Individual differences in probe accuracy be-
tween effort conditions was significantly correlated with
the planning complexity effect (r = .28, p < .01). Note
that this correlation validates our approach, as one
cannot plan accurately over an inaccurate model.

Discussion

Our new instruction phase and increased response dead-
line increased participants’ ability to employ model-based
control, yet we still observed a significant planning com-
plexity effect. Most importantly, we found that partici-
pants with perfect accuracy on probe trials showed a
reliable complexity effect.

EXPERIMENT 3

The results from the previous experiments are consistent
with our cost-benefit hypothesis, but also with two alter-
natives. First, in those experiments, rewards on low-effort
trials were delivered sooner after the first choice than in
high-effort trials (where those choices occurred one
“stage” earlier). Perhaps participants exhibited less effort
because of the reduced reward incentive due to temporal
discounting. Second, in both experiments, the degree of
model-based control correlated less with average reward
rate at Stage 0 then at Stage 1. We have previously shown
that people reduce model-based control when it cannot
reliably deliver a reward advantage (Kool, Gershman,
et al., 2017; Kool et al., 2016), potentially explaining the
reduced model-based control observed at Stage 0.
Experiment 3 addresses these alternatives. First, we de-
signed a new task where the correlation between w and
reward was equated between stages, as assessed by simu-
lation. Second, we equated the elapsed time between initial
choice and reward between the high- and low-effort tasks.

Simulations

We used a generative version of the dual-system RL model
to estimate the strength of the relationship between
model-based control and reward in our task. Specifically,
we simulated performance on 200 trials of either the low-
or high-effort arm for agents with RL parameters from the
median fits from Experiment 1, but which varied from
completely model-free (w = 0) to completely model-
based (w = 1). For the high-effort trials, we assumed that
w was the same in both stages. For each of these alloca-
tions between model-free and model-based control, we
recorded the reward rate and calculated the strength of
the relationship between w and the reward rate using lin-
ear regression. We repeated this process 10,000 times. We
found that the reward—control tradeoff was identical be-
tween the two conditions (Figure 4A). Next, we adopted
the same approach to test for differences in the tradeoff
between Stage 0 and Stage 1 decisions of the high-effort
task. When we varied w for one stage, we set w for

the other stage to 0.5. Mirroring our correlational results,
we observed that the control-reward tradeoff was lower
for the first stage compared with the second stage
(Figure 4B), which is consistent with the idea that the
planning effect was driven by differences in the control-
reward tradeoff between stages of the task.

Our next goal was to equate the control-reward corre-
lation both across tasks and across stages. We accom-
plished this by setting it to zero in all cases, guided by
an approach we employed in prior research (Kool
et al., 2016). Specifically, we (1) changed the reward dis-
tribution at the final stage from drifting scalar rewards to
reward probabilities and (2) changed the parameters of
our Gaussian random walk that determines the change
rate of the reward distributions so that they match that
of the original two-step paradigm (reflecting bounds at
0.25 and 0.75 and o = 0.025; Daw et al., 2011). The nar-
row bounds for this Gaussian walk reduce the distin-
guishability between final-stage action values, which
hurts the effectiveness of the model-based system. Fur-
thermore, the rate of change in this task is slow enough
for the model-free system to “catch up” with the model-
based system, which is typically better at incorporating
sudden changes in its value function.

As we expected, these changes equalized the tradeoff
at every choice stage of our task. In simulations, regard-
less of whether we contrasted the low- and high-effort
trials (Figure 4C) or the different stages of the high-effort
trials (Figure 4D), we observed no relationship between
model-based control and reward for all choice stages.

Methods
Participants

One hundred participants (range = 20-69 years, mean =
35 years, 45 women) were recruited on Amazon Mechan-
ical Turk. Two participants timed out on more than 20%
of all trials. We excluded all trials on which participants
timed out (average 4.8%).

Materials and Procedures

This paradigm was similar to Experiment 1, but there
were a few changes. We adopted the instruction phase
from Experiment 2. However, based on feedback from
participants in that experiment, we decreased the thresh-
old for passing the transition learning phase from 15 cor-
rect trials to 10 correct trials.

Participants were told that the aliens in the final stage
of the trial were sometimes in a good part of the mine,
where they were more likely to give a space treasure. At
other times, the aliens were mining in a bad spot, and
they were given treasure. The reward probabilities of
the three mines changed slowly according to a Gaussian
random walk with reflecting bounds at 0.25 and 0.75 and
o = 0.025. One mine was initialized with a probability of
.3, the other with a probability of .5, and the last with a
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Figure 4. Results of simulations of the control-reward tradeoff in Experiment 1 and Experiment 3. (A) The low- and high-effort conditions of
the multistage paradigm in Experiment 1 show a strong and similar relationship between model-based control and average reward. (B) Within the
high-effort trials of the multistage paradigm in Experiment 1, the relationship between model-based control and average reward was stronger for
the second choice stage compared with the start of the trial. (C) The multistage paradigm of Experiment 3 included stochastic instead of scalar
rewards and a different random Gaussian walk governing their drift. These changes eliminated the control-reward tradeoff in both the low- and
high-effort trials. (D) The revised design of our multistage paradigm similarly eliminated the relationship between model-based control and average
reward in both choice stages of the high-effort trials, resulting in an equal control-reward tradeoff between them.

probability of .7. At the end of the experiment, participants
received 9¢ for every 10 points they earned, so that the
maximal reward on each trial was worth the amount in cents
compared with the previous experiments (Experiments 1
and 2: 9 points; Experiment 3: 1 point; both 0.9¢).

We also equated the time between the start of the trial
and the reward outcome between effort conditions. As in
Experiment 1, the spaceship and alien were highlighted
on screen for the remainder of the response deadline.
Moreover, on low-effort trials (which has fewer choices),
the selected action was highlighted for an additional
1 sec to equate the time until the reward outcome with
the high-effort trials (high-effort trials 3 X 2 sec = 6 sec,
low-effort trials: 2 X 3 sec = 6 sec).

Results

The estimated parameters from the dual-system RL
model are reported in Table 1. Model-free and model-
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based strategies both influenced choice behavior (mean
w = 0.55). Consistent with our simulations, we found
that individual differences in the model-based weighting
parameters did not predict the participant’s reward rate
for all stages (Wiow: ¥ = .16, p = .11; Whighop: ¥ = —.03,
p = 77; Whighmiddie: ¥ = .17, p = .09). There was no
difference in reward between effort conditions (¢ < 1).

Despite our task modifications, we again replicated the
complexity effect (Figure 5A): Model-based control was
significantly reduced at the start of the high-effort trials
(mean whgh op = 0.47) compared with the low-effort tri-
als (mean wy,y, = 0.61), #(97) = 2.80, p < .01, d = 0.28,
PP = 1.00. We found that model-based control was
marginally reduced when comparing the middle stage
of the high-effort trials and the low-effort trials (mean
Whigh,middle = 0.58), 1(97) = 1.95,p = .05, d =020,PP =
.81. There was no significant difference in model-based
control between the low-effort trials and the middle stage
of the high-effort trials ¢ < 1).
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Discussion Results

In this experiment, we observed a significant planning
complexity effect, even though we controlled for the tim-
ing between the start of trial and the reward outcome, even
though we equated the control-reward tradeoff between
all choice stages, and even though participants again were
extensively trained on the experiment’s transition struc-
ture. These results suggest that the planning complexity
effect is best explained by a cost-benefit account.

EXPERIMENT 4

In this study, we included the probe trials from Experi-
ment 2 in the design of Experiment 3. We did this to rep-
licate the results from Experiments 2 and 3. In addition,
by comparing the degree of model-based control in Ex-
periment 2 to the current experiment, we were able to
test the effect of the reward—control tradeoff on meta-
control, because they matched on all other features
(e.g., the response deadline). We predicted that the ab-
sence of the model-based reward advantage in this study
would reduce its influence across all stages.

Methods
Participanis

One hundred two participants (range = 21-59 years,
mean = 34 years, 37 women) were recruited on Amazon
Mechanical Turk to participate in the experiment. No
participants timed out on more than 20% of all trials.
We excluded all trials on which participants timed out
(average 0.01%).

Procedure and Analysis

Experiment 4 involved the adapted version of the multi-
stage paradigm used in Experiment 3, but with the
probe trials as implemented in Experiment 2. The re-
sponse deadline for each choice was 10 sec. The analysis
of the performance on the probe trials was identical to
Experiment 23

The estimated parameters from the dual-system RL
model are reported in Table 1. As before, choice re-
flected a mixture of model-free and model-based control
(mean w = 0.59).

We found that individual differences in the model-
based weighting parameters did not predict the partici-
pant’s reward rate for all stages (W, 7 = .14, p = .16;
Whigh,top* 7' = 03,p = .73 Whigh,middle* 7" = 15, p = .15),
as predicted by the simulations of Experiment 3. There
was no difference in earned reward between effort
conditions (¢ < 1).

We also replicated the planning complexity effect
(Figure 5B). The degree of model-based control was sig-
nificantly lower at the start of the high-effort trials (mean
Whigh,iop = 0.50) compared with the low-effort trials
(mean wio, = 0.61), £(101) = 2.17,p < .05, d = 0.22,
PP = 1.00. Model-based control was also reduced when
comparing the middle stage of the high-effort trials and
the low-effort trials (mean whigh midaie = 0.67), £(101) =
3.04, p < .01,d = 0.30, PP = .92. There was no differ-
ence in model-based control between the low-effort trials
and the middle stage of the high-effort trials, #(101) =
1.20,p = 23,d = 0.12.

Probe accuracy was once again high for the low-effort
trials (mean = 0.89, SD = 0.20) and the high-effort trials
(mean = 0.81, SD = 0.20). Most importantly, we found a
significant complexity effect for participants with 100%
accuracy on the high-effort probe trials, #(41) = 3.39,
p <.01,d = 0.52, PP = .79, or the low-effort probe trials,
1(67) = 3.96,p < .001,d = 0.48, PP = .87, or both, 1(35) =
3.04,p < .01,d = 0.51, PP = 81.

Consistent with the idea that the brain is sensitive to
the reward—control tradeoff, we found that model-based
control was significantly decreased in Experiment 4 com-
pared with Experiment 2 for the low-effort trials (mean
difference in wy,, = 0.21), £(202) = 4.12, p < .001,
d = 0.57, the start of the high-effort trials (mean differ-
ence in Whighwop = 0.18), #(202) = 4.00, p < .001, d =
0.56, and the middle stage of the high-effort trials (mean
difference in whigh migaie = 0.11), £(202) = 2.08, p < .05,
d = 0.29. This result suggests that people adapt their
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control allocation according to the efficiency of the
model-based system. However, we found no difference
in the size of the complexity effect between experiments
(t < 1). This result is consistent with the cost-benefit
account, because the subjective effort cost of model-
based control should be tied to the planning demands
and not its reward efficiency.

GENERAL DISCUSSION

Humans use diverse decision-making mechanisms, and
these embody distinct tradeoffs between accuracy and
computational demand. The RL framework is widely used
to model this tradeoff. Yet, it remains poorly understood
how the brain decides from moment to moment which
system to use—whether to favor the accuracy of model-
based planning or instead the reduced cognitive de-
mands of model-free habits. We address one aspect of
this computation, asking whether people are sensitive
to task-specific variability in the complexity of planning
required. Specifically, we found that the influence of
the deliberative, model-based system was reduced when
its exertion required planning over a more complex inter-
nal model whereas the influence of the simpler habitual
or model-free system became relatively stronger. The
second experiment replicated this finding and demon-
strated a planning complexity even in participants with
perfect knowledge of the task, suggesting that it was at
least partly driven by a disinclination, rather than an in-
ability, to exert model-based control. The third and
fourth experiment also replicated the planning complex-
ity effect and ruled out that our findings were due to in-
creased temporal discounting when planning over a
deeper internal model or to a reduced reward advantage
of model-based control on the first step of the multistage
transition structure.

There is growing interest in the possibility that people
allocate control between model-based and model-free
decision-making strategies by performing some variety
of cost-benefit analysis. On this view, the planning com-
plexity of a task may participate in setting the task-specific
cost of mental effort. Within such a cost-benefit frame-
work, our findings suggest that the brain estimates the
expected reward of using each system but that it dis-
counts the estimate for the model-based control by its in-
creased effort costs. Indeed, in Experiments 1 and 2,
where model-based control had a reward advantage,
participants earned less reward on trials with high plan-
ning demands, indicating that they gave up some mone-
tary reward to relinquish model-based control.

The present results naturally complement the prior
finding that people increase model-based control on tri-
als with larger incentives, but only when this strategy
yielded more accurate performance (Kool, Gershman,
et al., 2017). Together, these studies lend complemen-
tary support to the cost-benefit hypothesis, because they
show that the arbitration between model-free and model-
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based control can be altered by manipulating either side
of the tradeoff: the rewards of accuracy and the costs of
computation.

Our findings leave open several possible mechanisms
for how planning costs are computed by the brain. Nota-
bly, this estimation of planning costs recapitulates the un-
avoidable tradeoff between accuracy and computational
demand. At one extreme, people could use simulation
of the planning process to gain an on-the-fly estimate
of its effort costs (see Pezzulo, Rigoli, & Chersi, 2013,
for a similar account of the estimation of model-based
values). However, such a process would itself impose
substantial cognitive demands. In other words, “model-
based” computation of expected effort costs can be
self-defeating or even introduces the specter of infinite
regress (Boureau et al., 2015), because a key goal of meta-
control is to precisely to minimize unwarranted effort
COSts.

At the other extreme, the metacontrol process could
operate with a cached (i.e., model-free) estimate of each
system’s costs and benefits, thus avoiding the computa-
tional cost of deriving these values via online planning
(Gershman, Horvitz, & Tenenbaum, 2015). There are
several ways that the cached value might be derived.
One possibility is that experienced rewards directly re-
inforce strategy selection—a “meta” level of model-free
learning (Braem, 2017). Another possibility is that the
brain uses a heuristic approach in estimating the effort
costs, without assessing the task-specific cognitive de-
mands. For example, Dunn, Lutes, and Risko (2016) have
argued that the perception of effort can be explained by
participants’ reliance on cues that are shaped by intuitive
theories rather than experienced effort costs. Under any
of these scenarios, our results provide initial footing for
a computational formulation of arbitration processes.

Our study does not afford direct inferences about
neural function, but some indirect inferences are war-
ranted. Research on cognitive costs and on the exertion
of model-based control suggests a key role for the dorso-
lateral pFC (dIPFC), a region of the brain that has long
been known to be critical for the exertion of cognitive
control (Miller & Cohen, 2001). For example, Smittenaar
and colleagues (2013) disrupted activity in dIPFC while
participants were performing a two-step task and ob-
served a decrease in model-based control (see also Lee,
Shimojo, & O’Doherty, 2014; Glascher et al., 2010). Mean-
while, McGuire and Botvinick (2010) showed that in-
creased activity in dIPFC during task switching predicted
increased subjective effort costs. It is interesting to con-
sider whether, in this study, the enhanced cost of planning
in high-effort trials was estimated by the required increase
in dIPFC activity as participants mentally navigated the
transition structure, resulting in an enhanced aversion to
exert model-based control on high-effort trials.

Finally, the current paradigm may have applications for
the understanding of clinical disorders resulting from dis-
rupted metacontrol. Recent findings have shown that
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subclinical measures of individual differences in psycho-
pathology are predicted by individual differences in the
model-based control index by the two-step task (Gillan
et al., 2016). From a cost-benefit framework, reduced
model-based control can be attributed either to an in-
crease in the subjective cost of planning or else to a re-
duction in the subjective value of its associated reward.
We have shown that psychopathology does not reduce
the effect of increased reward incentives on increased
model-based control (Patzelt et al., submitted for pub-
lication). This suggests that, in some clinical disorders,
such as obsessive-compulsive disorder, the shift in meta-
control primarily reflects an enhanced cost of model-
based control. The current paradigm may aid in further
developing this hypothesis; for instance, it predicts that
psychopathology should moderate the effect of the
complexity effect, because this manipulation is directly
related to participants’ sensitivity to the cost of planning.

Our results show that the allocation of model-based
control to a sequential task scales with the intensity of
planning demands. This comports with the proposal that
arbitration between habit and planning is a form of cost—
benefit decision-making.
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Notes

1. In addition to model-fitting techniques, researchers using
the two-step task often assess performance in a more “direct”
manner by inspecting the probability that the action (or termi-
nal state) of the previous trial is repeated as a function of the
main effect of the outcome of that trial (positive or negative)
and its interaction with some feature of the transition structure
(whether the same actions are available or the type of transition
of the previous trial). We do not perform these analyses for two
reasons. First, the reward structure of our task does not allow us
to unambiguously identify model-free control as a main effect of
the previous outcome (for a detailed review, see Feher da Silva
& Hare, 2018; Kool et al., 2016). Second, our use of continuous
rewards prevents the classification of trials as positive or nega-
tive based on just the points earned on that trial. This is because
a high number of points can still yield a negative prediction
error (if an even higher number of points was expected) and
a low number of points can still result in a positive prediction
error (if an even lower number of points was expected). Because

the estimation of prediction errors requires us to specify a com-
putational model of choice, any advantage of a “direct” measure
of control is mitigated.

2. Based on recommendations by a reviewer, we fit a model
that incorporated the reward outcomes on the probe trials into
the model-free action values, but this model (average Bayesian
Information Criterion [BIC] = 478) showed a significantly re-
duced fit to the data compared with the model used in the main
text (average BIC = 379; exceedance probability ~ 1.00).

3. As in Experiment 2, we also fit a model that incorporated
the reward outcomes on the probe trials into the model-free
action values. This model (average BIC = 467) again showed
a worse fit to the data compared with the model used in the
main text (average BIC = 417; exceedance probability ~ 1.00).

REFERENCES

Botvinick, M. M., & Braver, T. (2015). Motivation and cognitive
control: From behavior to neural mechanism. Annual Review
of Psychology, 66, 83-113.

Botvinick, M. M., Huffstetler, S., & McGuire, J. T. (2009). Effort
discounting in human nucleus accumbens. Cognitive,
Affective, & Behavioral Neuroscience, 9, 16-27.

Boureau, Y.-L., Sokol-Hessner, P., & Daw, N. D. (2015).
Deciding how to decide: Self-control and meta-decision
making. Trends in Cognitive Sciences, 19, 700-710.

Braem, S. (2017). Conditioning task switching behavior.
Cognition, 166, 272-276.

Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan,
R.J. (2011). Model-based influences on humans’ choices and
striatal prediction errors. Neuron, 69, 1204-1215.

Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based
competition between prefrontal and dorsolateral striatal
systems for behavioral control. Nature Neuroscience, 8,
1704-1711.

Dickinson, A. (1985). Actions and habits: The development of
behavioural autonomy. Philosophbical Transactions of the
Royal Society of London. Series B, Biological Sciences, 308,
67-78.

Dixon, M. L., & Christoff, K. (2012). The decision to engage
cognitive control is driven by expected reward-value: Neural
and behavioral evidence. PLoS One, 7, €51637.

Dolan, R. J., & Dayan, P. (2013). Goals and habits in the brain.
Neuron, 80, 312-325.

Doll, B. B., Duncan, K. D., Simon, D. A., Shohamy, D., & Daw,
N. D. (2015). Model-based choices involve prospective neural
activity. Nature Neuroscience, 18, 767-772.

Dunn, T. L., Lutes, D. J. C,, & Risko, E. F. (2016). Metacognitive
evaluation in the avoidance of demand. Journal of
Experimental Psychology: Human Perception and
Performance, 42, 1372-1387.

Feher da Silva, C., & Hare, T. A. (2018). A note on the analysis of
two-stage task results: How changes in task structure affect
what model-free and model-based strategies predict about
the effects of reward and transition on the stay probability.
PLoS One, 13, €0195328.

Gershman, S. J. (2016). Empirical priors for reinforcement
learning models. Journal of Mathematical Psychology, 71, 1-6.

Gershman, S. J., Horvitz, E. J., & Tenenbaum, J. B. (2015).
Computational rationality: A converging paradigm for
intelligence in brains, minds and machines. Science, 349,
273-278.

Gillan, C. M., Kosinski, M., Whelan, R., Phelps, E. A.; & Daw, N. D.
(2016). Characterizing a psychiatric symptom dimension
related to deficits in goal-directed control. eLife, 5, €11305.

Gillan, C. M., Otto, A. R,, Phelps, E. A., & Daw, N. D. (2015).
Model-based learning protects against forming habits.
Cognitive, Affective, & Bebavioral Neuroscience, 15, 523-536.

Kool, Gershman, and Cushman 1403



Glischer, J., Daw, N., Dayan, P., & O’Doherty, J. (2010). States
versus rewards: Dissociable neural prediction error signals
underlying model-based and model-free reinforcement
learning. Neuron, 66, 585-595.

Huys, Q. J. M., Cools, R., Golzer, M., Friedel, E., Heinz, A.,
Dolan, R. J., et al. (2011). Disentangling the roles of approach,
activation and valence in instrumental and Pavlovian
responding. PLoS Computational Biology, 7, €1002028.

Kahneman, D. (2011). Thinking, fast and slow. New York:
Farrar, Straus and Giroux.

Keramati, M., Smittenaar, P., Dolan, R. J., & Dayan, P. (2016).
Adaptive integration of habits into depth-limited planning
defines a habitual-goal-directed spectrum. Proceedings of the
National Academy of Sciences, U.S.A., 113, 12868-12873.

Kool, W., Cushman, F. A., & Gershman, S. J. (2016). When does
model-based control pay off? PLoS Computational Biology,
12, €1005090.

Kool, W., Cushman, F. A., & Gershman, S. J. (in press).
Competition and cooperation between multiple
reinforcement learning systems. In R. W. Morris, A. M.
Bornstein, & A. Shenhav (Eds.), Understanding goal-directed
decision making: Computations and circuits. Amsterdam:
Elsevier.

Kool, W., Gershman, S. J., & Cushman, F. A. (2017). Cost—
benefit arbitration between multiple reinforcement-learning
systems. Psychological Science, 28, 1321-1333.

Kool, W., McGuire, J. T., Rosen, Z. B., & Botvinick, M. M. (2010).
Decision making and the avoidance of cognitive demand.
Journal of Experimental Psychology: General, 139, 665-682.

Kool, W., Shenhav, A., & Botvinick, M. (2017). Cognitive control
as cost-benefit decision making. In T. Egner (Ed.), Wiley
handbook of cognitive control (pp. 167-189). Chichester,
United Kingdom: Wiley.

Kurzban, R., Duckworth, A. L., Kable, J. W.; & Myers, J. (2013).
An opportunity cost model of subjective effort and task
performance. Bebavioral and Brain Sciences, 36, 661-726.

Lee, S. W., Shimojo, S., & O’Doherty, J. P. (2014). Neural
computations underlying arbitration between model-based
and model-free learning. Neuron, 81, 687-699.

McGuire, J. T., & Botvinick, M. M. (2010). Prefrontal cortex,
cognitive control, and the registration of decision costs.
Proceedings of the National Academy of Sciences, U.S.A.,
107, 7922-7926.

1404  Journal of Cognitive Neuroscience

Miller, E. K., & Cohen, J. D. (2001). An integrative theory of
prefrontal cortex function. Annual Review of Neuroscience,
24, 167-202.

Otto, A. R.,, Gershman, S. J., Markman, A. B., & Daw, N. D.
(2013). The curse of planning: Dissecting multiple
reinforcement-learning systems by taxing the central
executive. Psychological Science, 24, 751-761.

Otto, A. R., Raio, C. M., Chiang, A., Phelps, E., & Daw, N. (2013).
Working-memory capacity protects model-based learning
from stress. Proceedings of the National Academy of
Sciences, U.S.A., 110, 20941-20946.

Otto, A. R., Skatova, A., Madlon-Kay, S., & Daw, N. D. (2015).
Cognitive control predicts use of model-based reinforcement
learning. Journal of Cognitive Neuroscience, 27, 319-333.

Patzelt, E. H., Kool, W., Millner, A. J., & Gershman, S. J.
(submitted for publication). Model-based control across the
psychopathology spectrum: Impaired, but responsive to
incentives.

Pezzulo, G., Rigoli, F., & Chersi, F. (2013). The mixed
instrumental controller: Using value of information to
combine habitual choice and mental simulation. Frontiers in
Psychology, 4, 92.

Rummery, G., & Niranjan, M. (1994). On-line Q-learning using
connectionist systems. Cambridge, United Kingdom:
Cambridge University.

Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths, T. L.,
Cohen, J. D,, et al. (2017). Toward a rational and mechanistic
account of mental effort. Annual Review of Neuroscience,
40, 99-124.

Smittenaar, P., FitzGerald, T. H. B., Romei, V., Wright, N. D., &
Dolan, R. J. (2013). Disruption of dorsolateral prefrontal
cortex decreases model-based in favor of model-free control
in humans. Neuron, 80, 914-919.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning:
An introduction. Cambridge, MA: MIT Press.

Thorndike, E. L. (1911). Animal intelligence: Experimental
studies. New York: Macmillan.

Westbrook, A., Kester, D., & Braver, T. S. (2013). What is the
subjective cost of cognitive effort? Load, trait, and aging effects
revealed by economic preference. PLoS One, 22, €68210.

Wunderlich, K., Smittenaar, P., & Dolan, R. (2012). Dopamine
enhances model-based over model-free choice behavior.
Neuron, 75, 418-424.

Volume 30, Number 10




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


