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Reinforcement learning model 

We fitted choices on the two-step tasks to an established and validated dual-system 

reinforcement-learning model (Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Daw, Niv, & 

Dayan, 2005; Gläscher, Daw, Dayan, & O'Doherty, 2010). The original version of the two-step 

task consists of three states across two stages, both with two available actions (aA and aB), 

whereas our novel paradigm consists of four states across two stages, with two available actions 

at the first-stage states (aA and aB) and one action at the second-stage state (aC). Our models 

consist of model-based and model-free strategies that both learn a function Q(s, a) mapping each 

state-action pair to its expected future return (value). On trial t, the first-stage state is denoted by 

s1,t, the second-stage state by s2,t, the first- and second-stage actions by a1,t and a2,t, and the 

second-stage rewards as r1,t (always zero, there is only reward on the second stage) and r2,t. 

Model-free strategy. The model-free agent uses the SARSA(λ) temporal difference 

learning algorithm (Rummery & Niranjan, 1994), which updates the value for each state-action 

pair (s, a) at stage i and trial t according to: 

𝑄"# 𝑠%,', 𝑎%,' = 𝑄"# 𝑠%.', 𝑎%,' + 𝛼𝛿%,'𝑒%,' 𝑠, 𝑎  

where 

 

𝛿%,' = 𝑟%,' + 𝑄"# 𝑠%01,', 𝑎%01,' − 𝑄"# 𝑠%,', 𝑎%,'  

is the reward prediction error, α is the learning rate parameter (which determines to what degree 

new information is incorporated), and 𝑒%,' 𝑠, 𝑎  is an eligibility trace set equal to 0 at the 

beginning of each trial and updated according to 

𝑒%,' 𝑠%,', 𝑎%,' = 	 𝑒%41,' 𝑠%,', 𝑎%,' + 	1 



before the Q-value update. The eligibilities of all state-action pairs are then decayed by λ after 

the update. 

We now describe how these learning rules apply specifically to the two-step task. The 

reward prediction error is different for the first two stages of the task. Since r1,t is always zero, 

the reward prediction error at the first stage is driven by the value of the selected second-stage 

action 𝑄"# 𝑠7,', 𝑎7,' : 

𝛿1,' = 𝑄"# 𝑠7,', 𝑎7,' − 𝑄"# 𝑠1,', 𝑎1,'  

Since there is no third stage, the second-stage prediction error is driven by the reward r2,t: 

𝛿7,' = 𝑟7,' − 𝑄"# 𝑠7,', 𝑎7,'  

Both the first- and second-stage values are updated at the second stage, with the first-

stage values receiving a prediction error down-weighted by the eligibility trace decay, λ. Thus, 

when λ = 0, only the values of the current state get updated.  

Model-based strategy. The model-based algorithm works by learning a transition 

function that maps the first-stage state-action pairs to a probability distribution over the 

subsequent states, and then combining this function with the second-stage model-free values 

(i.e., the immediate reward predictions) to compute cumulative state-action values by iterative 

expectation. In other words, the agent first decides which first-stage action leads to which 

second-stage state, and then learns the reward values for the second-stage actions. 

At the second stage, the learning of the immediate rewards is equivalent to the model-free 

learning, since those Q-values are simply an estimate of the immediate reward r2,t. As we showed 

above, the SARSA learning rule reduces to a delta-rule for predicting the immediate reward. This 

means that the two approaches coincide at the second stage, and so we set 𝑄"9 = 𝑄"# at this 

stage. 



The model-based values are defined in terms of Bellman’s equation (Sutton & Barto, 

1998), which specifies the expected values of each first-stage action using the transition structure 

P (assumed to be fully known to the agent): 

𝑄"9 𝑠:, 𝑎; = 𝑃 𝑠9 𝑠:, 𝑎; 𝑚𝑎𝑥
?∈{?B,?C}

𝑄"# 𝑠9, 𝑎 + 𝑃 𝑠E 𝑠:, 𝑎; 𝑚𝑎𝑥
?∈{?B,?C}

𝑄"# 𝑠E, 𝑎  

where we have assumed these are recomputed at each trial from the current estimates of 

the transition probabilities and second-stage reward values. 

Decision rule. To connect the values to choices, the Q-values are mixed according to a 

weighting parameter w: 

𝑄FG' 𝑠:, 𝑎; = 𝑤𝑄"9 𝑠:, 𝑎; + 1 − 𝑤 𝑄"# 𝑠:, 𝑎; . 

To accommodate our stake manipulations, we defined two different weights that operated on 

different trial types. We set w = wlow on trials with low stakes, and w = whigh on high stakes trials. 

For the model in Experiment 2, at the second stage the decision is made using only the 

model-free values, whereas there was no choice at the second stage in Experiment 1. We used 

the softmax rule to translate these Q-values to actions. This rule computes the probability for an 

action, reflecting the combination of the model-based and model-free action values weighted by 

an inverse temperature parameter. At both states, the probability of choosing action a on trial t is 

computed as 

𝑃 𝑎%,' = 𝑎|𝑠%,' =
exp 𝛽 𝑄FG' 𝑠%,', 𝑎 + 𝜋 ∙ 𝑟𝑒𝑝 𝑎 + 𝜌 ∙ 𝑟𝑒𝑠𝑝 𝑎
exp 𝛽 𝑄FG' 𝑠%,', 𝑎R + 𝜋 ∙ 𝑟𝑒𝑝 𝑎R + 𝜌 ∙ 𝑟𝑒𝑠𝑝 𝑎R?S

 

where the inverse temperature β determines the randomness of the choice. Specifically, 

when 𝛽 → ∞ the probability of the action with the highest expected value tends to 1, whereas for 

𝛽 → 0 the probabilities over actions becomes uniform. The indicator variable rep(a) is defined as 

1 if a is a first-stage action and is the same one as was chosen on the previous trial, zero 



otherwise. Multiplied with the ‘stickiness’ parameter π, this captures the degree to which 

participants show perseveration (π > 0) or switching (π < 0) at the first stage. The indicator 

variable resp(a) is defined as 1 if a is a first-stage action selecting the same response key as the 

key that was pressed on the previous trial, zero otherwise. Multiplied with the ‘response 

stickiness’ parameter ρ, this captures the degree to which participants repeated (ρ > 0) or 

alternated (ρ < 0) key presses at the first stage. We introduced this parameter since the 

spaceships’ positions were not fixed, hence participants could show perseveration in spaceship 

choices, button presses, or both. 

Model fitting procedure. We used maximum a posteriori estimation with empirical 

priors, implemented using the mfit toolbox (Gershman, 2016) parameters to fit the free 

parameters in the computational models to observed data. Based on prior work (Gershman, 

2016), we used weak priors for the distributions for the inverse temperature, β ~ Gamma(4.82, 

0.88), and stickiness parameters, π, ρ ~ 𝒩(0.15, 1.42), and flat priors for all other parameters. To 

avoid local optima in the estimation solution, we ran the optimization 100 times for each 

participant with randomly selected initializations for each parameter. The final estimations for β, 

α, π, ρ, and w, were extracted from the run with the maximal log-likelihood and are reported in 

Table 1. 

  

  



Exhaustive reinforcement-learning model 

It is possible that the difference between of weighting parameters of the two stake-size 

conditions was affected by changes in behavior that were unrelated to a difference in allocation 

between model-based and model-free reinforcement-learning strategies. In the model described 

above, we only varied the weighting parameter, possibly forcing other behavioral changes caused 

by the stake manipulation only on this parameter. To address this concern, we developed a 

version of the reinforcement-learning model that varies all parameters between the high- and 

low-stake conditions. 

Specifically, depending on the trial’s stake size, this exhaustive model made its choices 

between actions and updated their values using either for βlow, αlow, πlow, ρlow, and wlow, or βhigh, 

αhigh, πhigh, ρhigh, and whigh. Everything else was identical to the dual-system reinforcement-

learning model described above. For both experiments, we used the same maximum a posteriori 

estimation with empirical priors to obtain estimates for these 12 parameters. 

Results. The results of these analyses are given in Table S1. The inverse temperature 

parameter β was affected by the stake size for both Experiment 1 [t(97) = 3.95, p < 0.001, 

Cohen’s d = 0.40], and Experiment 2 [t(99) = 4.00, p < 0.001, Cohen’s d = 0.40]. For both 

studies, this effect indicated that participants showed more exploiting behavior when the stakes 

were high. Replicating our previous findings we still obtained a significant effect of stake size on 

the weighting parameter in Experiment 1 [t(97) = 3.15, p = 0.002, Cohen’s d = 0.32], but not for 

Experiment 2 [t(99) = 0.48, p = 0.63, Cohen’s d = 0.05]. The difference in these effects also 

reached statistical significance, t(196) = 2.47, p = 0.014, Cohen’s d = 0.35. The remaining 

parameters in either experiment did not significantly differ between the high- and low-stake 

conditions for Experiment 1, ps > 0.10, and Experiment 2, ps > 0.50. This pattern of results 



suggests that the increase in the weighting parameter on high stakes trials in Experiment 1 cannot 

be fully explained by changes in behavior unrelated to the difference in reinforcement-learning 

strategies. They also indicate that the lack of an effect in Experiment 2 was not simply caused by 

participants’ lack of attention to the stake cues, since they still showed an increase in exploitation 

behavior when the stakes were high. 

 
Table S1. Best-fitting parameter estimates of the exhaustive model shown as median plus 
quartiles across participants for both experiments. 

 Percentile βlow βhigh  αlow  αhigh  llow lhigh  πlow  πhigh  ρlow  ρhigh  wlow  whigh 
Exp. 1 25th  0.49 0.68 0.01 0.01 0.00 0.00 -0.12 -0.07 -0.31 -0.27 0.00 0.48 
 Median 0.79 1.04 0.70 0.69 0.49 0.3 0.08 0.08 -0.11 -0.12 0.65 0.87 
 75th 3.25 3.38 1.00 1.00 1.00 0.92 0.61 0.46 0.1 0.04 0.97 1.00 
              
Exp. 2 25th 2.50 3.00 0.01 0.00 0.30 0.40 0.01 0.04 -0.02 -0.02 0.00 0.00 
 Median 3.35 3.57 0.15 0.16 0.66 0.60 0.17 0.15 0.05 0.03 0.17 0.31 
 75th 3.82 4.34 0.47 0.48 1.00 1.00 0.32 0.30 0.15 0.15 0.83 0.66 

 

 

  
 
 
  



Multilevel logistic regression analysis 

In addition to the model-fitting procedure described above, we also investigated choice behavior 

on this task by analyzing the probability of repeating choices from trial to trial using multilevel 

logistic regression models. These analyses were carried out with Matlab’s fitlme function. 

 

Experiment 1 

In this paradigm of Experiment 1, the implicit equivalence between the two first-stage states 

allows for a dissociation between habitual and goal-directed choice (Doll et al., 2015) based on 

the probability with which participants repeat the second-stage state. The model-based strategy 

uses the experiment’s structure to plan towards the second-stage model-free values, allowing it to 

generalize knowledge learned from both starting states. Thus, outcomes at the second stage 

equally affect first-stage preferences, regardless of whether this trial starts with the same starting 

state as the previous trial. This contribution is reflected in a main effect of the prediction error 

sign on stay probability, since the model-based strategy is insensitive to changes in starting state. 

For the model-free strategy, however, rewards that are received following one start state should 

not affect subsequent choices from the other start state. The model-free learner only shows 

increased stay probability when the current start state is the same as that on the previous trial, 

and this is reflected as an interaction between previous outcome and starting state. 

To test our cost-benefit hypothesis, we used a multilevel logistic regression analysis to 

investigate whether the stake manipulation affected the strength of these two effects. This model 

predicted whether participants repeated the previous trial’s second-stage state (i.e., “staying 

behavior”) as a function of the similarity of the previous trial’s first-stage state, the previous 

trial’s prediction error sign (estimated using the computational model and individual parameter 



fits), and the stake condition. Specifically, the dependent variable was whether the current 

second-stage choice was the same as that on the previous trial. For each trial, the predictors for 

this analysis were the sign of the prediction error on the previous trial on the previous trial (RPEi-

1), whether the previous starting state was the same or different from the current starting state 

(samei), and the size of the stake on the current trial (stakei). The final multilevel regression 

model included these three predictors, their interactions and the intercept. We modeled all 

coefficients as random effects, varying between participants around a group mean. 

In this regression analysis, the main effect of RPEi-1 represents the model-based 

contribution, since it carries over to the next trial even when the start states are different, whereas 

the interaction term RPEi-1 × samei captures effects that are specific to the state in which they 

were received and therefore represent the model-free contribution. 

The results from this regression analysis are given in Table S2. We found significant 

effects of the regressors for the main effect of the sign of the previous trial’s prediction error, 

indicating a model-based contribution, and the interaction effect between previous prediction 

error and the similarity of the current and previous first-stage states, indicating the model-free 

contribution, ps < 0.001. Importantly, we found that the model-based effect, i.e., the previous 

trial’s prediction error’s main effect, was significantly stronger on high stake trials, [t(17919) = 

4.10, p < 0.001]. The model-free effect, the strength of the interaction between starting similarity 

and previous prediction error sign, was not modulated by the stakes manipulation, [t(17919) < 1]. 

The finding that the model-free component was not affected by stake size seems 

inconsistent with a model in which the systems are in direct competition. However, a subsequent 

series of multilevel logistic regression analyses on 100 simulated data sets using the median fits 

and the computational model reported in Table 1 show that the model-based component was 



affected by stake size in 99% of simulations, but the model-free component in only 9% of 

simulations. This shows that these logistic regression analyses have differential sensitivity in 

estimating the strength of the two effects, and therefore that the logistic regression result does not 

contradict our computational model. 

 

Table S2. Regression coefficients from multilevel logistic regression analysis for Experiment 1, 
indicating the effect of outcome of previous trial, similarity of previous starting state to current 
starting state, and stake condition, on repetition of second-stage choice. 

Coefficient Estimate (SE) p 
(Intercept) .64 (.07) < .001 
Previous RPE .31 (.03) < .001 
Same starting state .11 (.03) < .001 
Stake size condition .03 (.01) < .001 
RPE × Same .07 (.02) < .005 
RPE × Stake size .03 (.01) < .001 
Same × Stake size .01 (.01) .30 
RPE × Same × Stake size -.00 (.01) .94 

 

Experiment 2 

In addition to computation model analysis, we again investigated behavior on this task using a 

multilevel logistic regression analysis. 

Here, the dissociation between model-based and model-free control in our novel 

paradigm follows a different logic than in Experiment 1. Since the model-free strategy is 

insensitive to the task structure, it will simply increase the probability of staying with the 

previous action if it led to reward, regardless of the type of transition on the previous trial. This 

contribution is reflected as a main effect of previous outcome on the stay probability. The model-

based strategy is reflected by an interaction between previous transition type and outcome, 

because it decreases the stay probability after a reward and a rare transition in order to achieve a 

higher likelihood to get to the previously rewarded second-stage state. After a rare transition and 



a loss, the model-based strategy is more likely to stick with the original action, since this 

decreases the likelihood of getting to the unrewarded state. 

We again used a multilevel logistic regression analysis to investigate whether the stake 

manipulation affected the strength of the model-based and model-free components. This model 

predicted whether the current trial’s first stage choice was the same the previous trial’s first-stage 

choice state (i.e., “staying behavior”) as a function of whether the previous trial produced a 

reward (ri-1), what type of transition occurred on that trial (commoni), and the size of the stake on 

the current trial (stakei). The multilevel regression model included these three predictors, their 

interactions and the intercept. All these coefficients were included as random effects, varying 

between participants around a group mean. 

In this regression analysis, the main effect of ri-1 represents the model-free contribution, 

since it captures reward effects that are independent from the transition type on the previous trial, 

whereas the interaction term ri-1 × commoni captures reward effects that are modulated by the 

transition type on the previous trial and therefore represents the model-based contribution. 

The results from the logistic regression for the Daw paradigm are given in Table S3. The 

regressor for the main effect of the outcome of the previous trial was significant, p < 0.001, 

indicating a model-free contribution. The regressor for the interaction between previous outcome 

and previous transition type was significant as well, p < 0.001, indicating a model-free 

contribution. Most importantly, we found that that neither model-free effect (i.e., the main effect 

of the previous outcome), nor the model-based effect (the interaction between the previous 

outcome and previous transition type) were significantly affected by the stake size manipulation, 

[t(18393) = 1.37, p = 0.17] and [t(18393) < 1], respectively. 



Table S3. Regression coefficients from multilevel logistic regression analysis for Experiment 1, 
indicating the effect of outcome of previous trial, similarity of previous starting state to current 
starting state, and stake condition, on repetition of second-stage choice. 
 

Coefficient Estimate (SE) p 
(Intercept) .83 (.09) < .001 
Previous outcome .22 (.04) < .001 
Previous transition .04 (.02) 0.06 
Stake size .02 (.02) .25 
Outcome × Transition .16 (.03) < .001 
Outcome × Stake size .03 (.02) .17 
Transition × Stake size .00 (.02) .97 
Outcome × Transition × Stake size -.00 (.02) .85 
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