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Abstract Rate- distortion theory provides a powerful framework for understanding the nature 
of human memory by formalizing the relationship between information rate (the average number 
of bits per stimulus transmitted across the memory channel) and distortion (the cost of memory 
errors). Here, we show how this abstract computational- level framework can be realized by a model 
of neural population coding. The model reproduces key regularities of visual working memory, 
including some that were not previously explained by population coding models. We verify a novel 
prediction of the model by reanalyzing recordings of monkey prefrontal neurons during an oculo-
motor delayed response task.

Editor's evaluation
This important study describes a model neural circuit that learns to optimally represent its inputs 
subject to an information capacity limit. This novel hypothesis provides a bridge between the theo-
retical frameworks of rate- distortion theory and neural population coding. Convincing evidence is 
presented that this model can account for a range of empirical phenomena in the visual working 
memory literature.

Introduction
All memory systems are capacity limited in the sense that a finite amount of information about the 
past can be stored and retrieved without error. Most digital storage systems are designed to work 
without error. Memory in the brain, by contrast, is error- prone. In the domain of working memory, 
these errors follow well- behaved functions of set size, variability, attention, among other factors. An 
important insight into the nature of such regularities was the recognition that they may emerge from 
maximization of memory performance subject to a capacity limit or encoding cost (Sims et al., 2012; 
Sims, 2015; van den Berg and Ma, 2018; Bates et al., 2019; Bates and Jacobs, 2020; Brady et al., 
2009; Nassar et al., 2018).

Rate- distortion theory (Shannon, 1959) provides a general formalization of the memory optimi-
zation problem (reviewed in Sims, 2016). The costs of memory errors are specified by a distortion 
function; the capacity of memory is specified by an upper bound on the mutual information between 
the inputs (memoranda) and outputs (reconstructions) of the memory system. Systems with higher 
capacity can achieve lower expected distortion, tracing out an optimal trade- off curve in the rate- 
distortion plane. The hypothesis that human memory operates near the optimal trade- off curve allows 
one to deduce several known regularities of working memory errors, some of which we describe 
below. Past work has studied rate- distortion trade- offs in human memory (Sims et al., 2012; Sims, 
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2015; Nagy et al., 2020), as well as in other domains such as category learning (Bates et al., 2019), 
perceptual identification (Sims, 2018), visual search (Bates and Jacobs, 2020), linguistic communi-
cation (Zaslavsky et al., 2018), and decision making (Gershman, 2020; Lai and Gershman, 2021).

Our goal is to show how the abstract rate- distortion framework can be realized in a neural circuit 
using population coding. As exemplified by the work of Bays and his colleagues, population coding 
offers a systematic account of working memory performance (Bays, 2014; Bays, 2015; Bays, 2016; 
Schneegans and Bays, 2018; Schneegans et al., 2020; Taylor and Bays, 2018; Tomić and Bays, 
2018), according to which errors arise from the readout of a noisy spiking population that encodes 
memoranda. We show that a modified version of the population coding model implements the cele-
brated Blahut–Arimoto algorithm for rate- distortion optimization (Blahut, 1972; Arimoto, 1972). The 
modified version can explain a number of phenomena that were puzzling under previous population 
coding accounts, such as serial dependence (the influence of previous trials on performance; Kiyo-
naga et al., 2017).

The Blahut–Arimoto algorithm is parametrized by a coefficient that specifies the trade- off between 
rate and distortion. In our circuit implementation, this coefficient controls the precision of the popula-
tion code. We derive a homeostatic learning rule that adapts the coefficient to maintain performance 
at the capacity limit. This learning rule explains the dependence of memory performance on the 
intertrial and retention intervals (RIs) (Shipstead and Engle, 2013; Souza and Oberauer, 2015; Bliss 
et al., 2017). It also makes the prediction that performance should adapt across trials to maintain a set 
point close to the channel capacity. We confirm these performance adjustments empirically. Finally, we 
show that variations in performance track changes in neural gain, consistent with our theory.

Results
The channel design problem
We begin with an abstract characterization of the channel design problem, before specializing it to the 
case of neural population coding. A communication channel (Figure 1A) is a probabilistic mapping, 

 Q(θ̂|θ) , from input  θ  to a reconstruction  ̂θ . The input and output spaces are assumed to be discrete in 
our treatment (for continuous variables like color and orientation, we use discretization into a finite 
number of bins; see also Sims, 2015). We also assume that there is some capacity limit  C  on the 
amount of information that this channel can communicate about  θ , as quantified by the mutual infor-
mation  I(θ; θ̂)  between  θ  and the stimulus estimate  ̂θ  decoded from the population activity. We will 
refer to  R ≡ I(θ; θ̂)  as the channel’s information rate. To derive the optimal channel design, we also 
need to specify what distortion function d(θ, θ̂)  the channel is optimizing—that is, how errors are quan-
tified. Details on our choice of distortion function can be found below.

With these elements in hand, we can define the channel design problem as finding the channel  Q∗
  

that minimizes expected distortion  D ≡ E[d(θ, θ̂)]  subject to the constraint that the information rate  R  
cannot exceed the capacity limit  C :

 
Q∗ = arg min

Q:R≤C
D.

  (1)

For computational convenience, we can equivalently formulate this as an unconstrained optimization 
problem using a Lagrangian:

 
Q∗ = arg min

Q
R + βD,

  (2)

where  β  is a Lagrange multiplier equal to the negative slope of the rate- distortion function at the 
capacity limit:

 
β = − ∂R

∂D
.
  

(3)

Intuitively, the Lagrangian can be understood as expressing a cost function that captures the need 
to both minimize distortion (i.e., memory should be accurate) and minimize the information rate 
(i.e., memory resources should economized). The Lagrange parameter  β  determines the trade- off 
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between these two terms. Note that because the optimal trade- off function is always monotonically 
non- increasing and convex, the value of  β  is always positive and non- increasing in  D .

By integrating the ordinary differential equation defined in Equations 2 and 3 and using the 
Lagrangian formulation, one can show that the optimal channel for a discrete stimulus takes the 
following form:

 Q∗(θ̂|θ) ∝ exp[−βd(θ, θ̂) + log Q̄(θ̂)],   (4)
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Figure 1. Model illustration. (A) Top: Abstract characterization of a communication channel. A stimulus  θ  is sampled from an information source  P(θ)  
and passed through a noisy communication channel  Q(θ̂|θ) , which outputs a stimulus reconstruction  ̂θ . The reconstruction error is quantified by a 
distortion function,  d(θ, θ̂) . Bottom: Circuit architecture implementing the communication channel. Input neurons encoding the negative distortion 
function provide the driving input to output neurons with excitatory input ui and global feedback inhibition  b . Each circuit codes a single stimulus at a 
fixed retinotopic location. When multiple stimuli are presented, the circuits operate in parallel, interacting only through a common gain parameter,  β . 
(B) Tuning curves of input neurons encoding the negative cosine distortion function over a circular stimulus space. (C) Rate- distortion curves for two 
different set sizes ( M = 1  and  M = 4 ). The optimal gain parameter  β  is shown for each curve, corresponding to the point at which each curve intersects 
the channel capacity (horizontal dashed line). Expected distortion decreases with the information rate of the channel, but the channel capacity imposes 
a lower bound on expected distortion. (D) Example spike counts for output neurons in response to a stimulus ( θ = 0 , vertical line). The output neurons 
are color coded by their corresponding input neuron (arranged horizontally by their preferred stimulus,  ϕi  for neuron  i ; full tuning curves are shown 
in panel B). When only a single stimulus is presented ( M = 1 ), the gain is high and the output neurons report the true stimulus with high precision. (E) 
When multiple stimuli are presented  (M = 4) , the gain is lower and the output has reduced precision (i.e., sometimes the wrong output neuron fires).
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where the marginal probability  ̄Q(θ̂)  is defined by:

 
Q̄(θ̂) =

∑
θ

P(θ)Q∗(θ̂|θ).
  

(5)

These two equations are coupled. One can obtain the optimal channel by initializing them to uniform 
distributions and iterating them until convergence. This is known as the Blahut–Arimoto algorithm 
(Blahut, 1972; Arimoto, 1972).

For a channel with a fixed capacity  C  but variable  D  across contexts, the Lagrange multiplier  β  will 
need to be adjusted for each context so that  R = C . We can accomplish this by computing  R  for a 
range of  β  values and choosing the value that gets closest to the constraint  C  (later we will propose 
a more biologically plausible algorithm). Intuitively,  β  characterizes the sensitivity of the channel to 
the stimulus. When stimulus sensitivity is lower, the information rate is lower and hence the expected 
distortion is higher.

In general, we will be interested in communicating a collection of  M   stimuli,  θ = {θ1, . . . , θM} , with 
associated probing probabilities  π = {π1, . . . ,πM} , where  πm  is the probability that stimulus  m  will be 
probed (van den Berg and Ma, 2018). The resulting distortion function is obtained by marginalizing 
over the probe stimulus:

 
d(θ, θ̂) =

∑
m

πmd(θm, θ̂m).
  

(6)

Optimal population coding
We now consider how to realize the optimal channel with a population of spiking neurons, each 
tuned to a particular stimulus (Figure 1A). The firing rate of neuron  i  is determined by a simple Spike 
Response Model (Gerstner and Kistler, 2002) in which the membrane potential is the difference 
between the excitatory input, ui, and the inhibitory input,  b , which we model as common across 
neurons (to keep notation simple, we will suppress the time index for all variables). Spiking is gener-
ated by a Poisson process, with firing rate modeled as an exponential function of the membrane 
potential (Jolivet et al., 2006):

 ri = exp[ui − b].  (7)

We assume that inhibition is given by  b = log
∑

i exp[ui] , in which case the firing rate is driven by the 
excitatory input with divisive normalization (Carandini and Heeger, 2011):

 
ri = exp[ui]∑

j exp[uj]
.
  

(8)

The resulting population dynamics is a form of ‘winner- take- all’ circuit (Nessler et al., 2013). If each 
neuron has a preferred stimulus  ϕi , then the winner can be understood as the momentary channel 
output,  ̂θ = ϕi  whenever neuron  i  spikes (denoted  zi = 1 ). The probability that neuron  i  is the winner 
within a given infinitesimal time window is:

 q(θ̂ = ϕi|θ) = ri.  (9)

Importantly, Equation 9 has the same functional form as Equation 4, and the two are equivalent if the 
excitatory input is given by:

 ui = −βd(θ,ϕi) + wi,   (10)

where

 
wi = log

∑
θ

q(θ̂ = ϕi|θ)P(θ)
  

(11)

is the log marginal probability of neuron  i  being selected as the winner. We can see from this expres-
sion that the first term in Equation 10 corresponds to the neuron’s stimulus- driven excitatory input 
and the second term corresponds to the neuron’s excitability. The Lagrange multiplier  β  plays the role 
of a gain modulation factor.

https://doi.org/10.7554/eLife.79450
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The excitability term can be learned through a form of intrinsic plasticity (Nessler et al., 2013), 
using the following spike- triggered update rule:

 ∆wi = η
(
c exp[−wi]zi − 1

)
,  (12)

where  η  is a learning rate and  c  a gain parameter. After a spike ( zi = 1 ), the excitability is increased 
proportionally to the inverse exponential of current excitability. In the absence of a spike, the excit-
ability is decreased by a constant. This learning rule is broadly in agreement with experimental studies 
(Daoudal and Debanne, 2003; Cudmore and Turrigiano, 2004).

Gain adaptation
We now address how to optimize the gain parameter  β . We want the circuit to operate at the set point 
 R = C , where the channel capacity  C  is understood as some fixed property of the circuit, whereas the 
information rate  R  can vary based on the parameters and input distribution, but cannot persistently 
exceed  C . Assuming the total firing rate of the population is approximately constant across time, we 
can express the information rate as follows:

 
R = E

[
log Q(θ̂|θ)

Q̄(θ̂)

]
=

N∑
i=1

∑
θ

P(θ)E[log ri|θ] − E[log ri],
  

(13)

where  N   is the number of neurons. This expression reveals that channel capacity corresponds to 
a constraint on stimulus- driven deviations in firing rate from the marginal firing rate. When the 
stimulus- driven firing rate is persistently greater than the marginal firing rate, the population may 
incur an unsustainably large metabolic cost (Levy and Baxter, 1996; Laughlin et al., 1998). When 
the stimulus- driven firing rate is lower than the marginal firing rate, the population is underutilizing 
its information transmission resources. We can adapt the deviation through a form of homeostatic 
plasticity, by increasing  β  when the deviation is below the channel capacity, and decreasing  β  when 
the deviation is above the channel capacity. Concretely, a simple update rule implements this idea:

 ∆β = α(C − R),  (14)

where  α  is a learning rate parameter. We assume that this update is applied continuously. A similar 
adaptive gain modulation has been observed in neural circuits (Desai et al., 1999; Hengen et al., 
2013; Hengen et al., 2016). Mechanistically, this could be implemented by changes in background 
activity: when stimulus- driven excitation is high, the inhibition will also be high (the network is 
balanced), and the ensuing noise will effectively decrease the gain (Chance et al., 2002).

In this paper, we do not directly model how the information rate  R  is estimated in a biologically 
plausible way. One possibility is that this is implemented with slowly changing extracellular calcium 
levels, which decrease when cells are stimulated and then slowly recover. This mirrors (inversely) the 
qualitative behavior of the information rate. More quantitatively, it has been posited that the relation-
ship between firing rate and extracellular calcium level is logarithmic (King et al., 2001), consistent 
with the mathematical definition in Equation 13. Thus, in this model, capacity  C  corresponds to a 
calcium set point, and the gain parameter adapts to maintain this set point. A related mechanism has 
been proposed to control intrinsic excitability via calcium- driven changes in ion channel conductance 
(LeMasson et al., 1993; Abbott and LeMasson, 1993).

Multiple stimuli
In the case where there are multiple stimuli, the same logic applies, but now we calculate the infor-
mation rate over all the subpopulations of neurons (each coding a different stimulus). Specifically, the 
excitatory input becomes:

 uim = −βπmd(θm,ϕim) + wim,  (15)

where  m  indexes both stimuli and separate subpopulations of neurons tuned to each stimulus 
location (or other stimulus feature that individuates the stimuli). As a consequence,  β  will tend to be 
smaller when more stimuli are encoded, because the same capacity constraint will be divided across 
more neurons.

https://doi.org/10.7554/eLife.79450
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Memory maintenance
In delayed response tasks, the stimulus is presented transiently, and then probed after a delay. The 
channel thus needs to maintain stimulus information across the delay. Our model assumes that the 
excitatory input ui maintains a trace of the stimulus across the delay. The persistence of this trace is 
determined by the gain parameter  β . Because persistently high levels of stimulus- evoked activity may, 
according to Equation 13, increase the information rate above the channel capacity, the learning rule 
in Equation 14 will reduce  β  and thereby functionally decay the memory trace.

The circuit model does not commit to a particular mechanism for maintaining the stimulus trace. 
A number of suitable mechanisms have been proposed (Zylberberg and Strowbridge, 2017). One 
prominent model posits that recurrent connections between stimulus- tuned neurons can implement 
an attractor network that maintains the stimulus trace as a bump of activity (Wang, 2001; Amit and 
Brunel, 1997). Other models propose cell- intrinsic mechanisms (Egorov et al., 2002; Durstewitz and 
Seamans, 2006) or short- term synaptic modifications (Mongillo et al., 2008; Bliss and D’Esposito, 
2017). All of these model classes are potentially compatible with the theory that population codes are 
optimizing a rate- distortion trade- off, provided that the dynamics of the memory trace conform to the 
equations given above.

During time periods when no memory trace needs to be maintained, such as the intertrial interval 
(ITI) in delayed response tasks, we assume that the information rate is 0. Because the information 
rate is the average number of bits communicated across the channel, these ‘silent’ periods effectively 
increase the achievable information rate during ‘active’ periods (which we denote by  RA ). Specifically, 
if  TA  is the active time (delay period length), and  TS  is the silent time (ITI length), then the channel’s 
rate is given by:

 
R = TA

TA + TS
RA.

  
(16)

Equivalently, we can ignore the intervals in our model and simply rescale the channel capacity by 

 (TA + TS)/TA . This will allow us to model the effects of delay and ITI on performance in working memory 
tasks.

Implications for working memory
Continuous report with circular stimuli
We apply the framework described above to the setting in which each stimulus is drawn from a circular 
space (e.g., color or orientation),  θm ∈ (−π,π) , which we discretize. Reconstruction errors are evalu-
ated using a cosine distortion function:

 d(θ, θ̂) = −ω cos(θ − θ̂),  (17)

where  ω > 0  is a scaling parameter. This implies that the input neurons have cosine tuning curves 
(Figure 1B), and the output neurons have Von Mises tuning curves, as assumed in previous population 
coding models of visual working memory for circular stimulus spaces (Bays, 2014; Schneegans and 
Bays, 2018; Taylor and Bays, 2018; Tomić and Bays, 2018). All of our subsequent simulations use 
the same tuning curves.

As an illustration of the model behavior in the continuous report task, we compare performance 
for set sizes 1 and 4. The optimal trade- off curves are shown in Figure 1C. For every point on the 
curve, the same information rate achieves a lower distortion for set size 1, due to the fact that all of 
the channel capacity can be devoted to a single stimulus (a hypothetical capacity limit is shown by the 
dashed horizontal line). In the circuit model, this higher performance is achieved by a narrow bump of 
population activity around the true stimulus (Figure 1D), compared to a broader bump when multiple 
stimuli are presented (Figure 1E).

In the following sections, we compare the full rate- distortion model (as described above) with two 
variants. The ‘fixed gain’ variant assumes that  β  is held fixed to a constant (fit as a free parameter) 
rather than adjusted dynamically. The ‘no plasticity’model holds the neural excitability to a fixed value 
(fit as a free parameter). These two variants remove features of the full rate- distortion model which 
critically distinguish it from the population coding model of working memory (Bays, 2014). As a 
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strong test of our model, we fit only to data from Experiment 1 in Bays, 2014, and then evaluated the 
model on the other datasets without fitting any free parameters.

Set size
One of the most fundamental findings in the visual working memory literature is that memory preci-
sion decreases with set size (Bays et al., 2009; Bays, 2014; Wilken and Ma, 2004). Our model asserts 
that this is the case because the capacity constraint of the system is divided across more neurons as 
the number of stimuli to be remembered increases, thus reducing the recall accuracy for any one stim-
ulus. Figure 2A shows the distribution of recall error for different set sizes as published in previous 
work (Bays, 2014). Figure 2D shows simulation results replicating these findings.

Prioritization
Stimuli that are attentionally prioritized are recalled more accurately. For example, error variance 
is reduced by a cue that probabilistically predicts the location of the probed stimulus (Bays, 2014; 
Yoo et al., 2018). In our model, the cue is encoded by the probing probability  πm , which alters the 
expected distortion. This results in greater allocation of the capacity budget to cued stimuli than to 
uncued stimuli. Figure 2B, C shows empirical findings (variance and kurtosis), which are reproduced 
by our simulations shown in Figure 2E, F. Kurtosis is one way of quantifying deviation from normality: 
values greater than 0 indicate tails of the error distribution that are heavier than expected under a 
normal distribution. The ‘excess’ kurtosis observed in our model is comparable to that observed by 
Bays in his population coding model (Bays, 2014) when gain is sufficiently low. This is not surprising, 
given the similarity of the models.

Timing
It is well established that memory performance typically degrades with the RI (Pertzov et al., 2017; 
Panichello et al., 2019; Schneegans and Bays, 2018; Zhang and Luck, 2009), although the causes of 
this degradation are controversial (Oberauer et al., 2016), and in some cases the effect is unreliable 
(Shin et al., 2017). According to our model, this occurs because long RIs tax the information rate of 
the neural circuit. In order to stay within the channel capacity, the circuit reduces the gain parameter  β  
for long RIs, thereby reducing the information rate and degrading memory performance.

Memory performance also depends on the ITI, but in the opposite direction: longer ITIs improve 
performance (Souza and Oberauer, 2015; Shipstead and Engle, 2013). The critical determinant of 
performance is in fact the ratio between the ITI and RI. Souza and Oberauer, 2015 found that perfor-
mance in a color working memory task was similar when both intervals were short or both intervals 
were long. They also reported that a longer RI could produce better memory performance when it is 
paired with a longer ITI. Figure 3 shows a simulation of the same experimental paradigm, reproducing 
the key results. This timescale invariance, which is also seen in studies of associative learning (Balsam 
and Gallistel, 2009), arises as a direct consequence of Equation 16. Increasing the ITI reduces the 
information rate, since no stimuli are being communicated during that time period, and can therefore 
compensate for longer RIs.

Serial dependence
Working memory recall is biased by recent stimuli, a phenomenon known as serial dependence 
(Fischer and Whitney, 2014; Fritsche et al., 2017; Bliss et al., 2017; Papadimitriou et al., 2015). 
Recall is generally attracted toward recent stimuli, though some studies have reported repulsive 
effects when the most recent and current stimulus differ by a large amount (Barbosa et al., 2020; 
Bliss et al., 2017). Our theory explains serial dependence as a consequence of the marginal firing rate 
of the output cells, which biases the excitatory input ui (see Equation 10). Because the marginal firing 
rate is updated incrementally, it will reflect recent stimulus history.

An important benchmark for theories of serial dependence is the finding that it increases with the 
RI and decreases with ITI (Bliss et al., 2017). These twin dependencies are reproduced by our model 
(Figure 4). Our explanation of serial dependence is closely related to our explanation of timing effects 
on recall error: the strength of serial dependence varies inversely with the information rate, which 
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in turn increases with the ITI and decreases with the RI. Mechanistically, this effect is mediated by 
adjustments of the gain parameter  β  in order to keep the information rate near the channel capacity.

Serial dependence has also been shown to build up over the course of an experimental session 
(Barbosa and Compte, 2020). This is hard to explain in terms of theories based on purely short- term 

Figure 2. Set size effects and prioritization. (A) Error distributions for different set sizes, as reported in Bays, 2014. Error variability increases with set 
size. (B) Error variance as a function of set size for cued and uncued stimuli. Reports for cued stimuli have lower error variance. (C) Kurtosis as a function 
of set size for cued and uncued stimuli. Simulation results for the full model (D–F), model with fixed gain parameter  β  (G–I), and model without plasticity 
term  w  (J–L). Error bars represent standard error of the mean.

https://doi.org/10.7554/eLife.79450
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Figure 3. Timing effects. (A) Error distributions for different intertrial intervals (ITIs) and retention intervals (RIs), 
as reported in Souza and Oberauer, 2015. ‘S’ denotes a short interval, and ‘L’ denotes a long interval. (B) Error 
variance as a function of timing parameters. Longer ITIs are associated with lower error variance, whereas longer 
RIs are associated with larger error variance. Simulation results for the full model (C, D), model with fixed gain 
parameter  β  (E, F), and model without plasticity term  w  (G, H). Error bars represent standard error of the mean.

https://doi.org/10.7554/eLife.79450
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Figure 4. Serial dependence as a function of retention interval and intertrial interval. (A) Serial dependence 
increases with the retention interval until eventually reaching an asymptote, as reported in Bliss et al., 2017. Serial 
dependence is quantified as the peak- to- peak amplitude of a derivative of Gaussian (DoG) tuning function fitted 
to the data using least squares (see Methods). (B) Serial dependence decreases with intertrial interval. Simulation 

Figure 4 continued on next page
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effects, but it is consistent with our account in terms of the bias induced by the marginal firing rate. 
Because this bias reflects continuous incremental adjustments, it integrates over the entire stimulus 
history, thereby building up over the course of an experimental session (Figure 5).

If, as we hypothesize, serial dependence reflects a capacity limit, then we should expect it to 
increase with set size, since  β  must decrease to stay within the capacity limit. To the best of our knowl-
edge, this prediction has not been tested. We confirmed this prediction for color working memory 
using a large dataset reported in Panichello et al., 2019. Figure 6 shows that the attractive bias for 
similar stimuli on consecutive trials is stronger when the set size is larger (p < 0.05, group permutation 
test).

Systematic biases
Working memory exhibits systematic biases toward stimuli that are shown more frequently than others 
(Panichello et al., 2019). Moreover, these biases increase with the RI, and build up over the course 
of an experimental session. Our interpretation of serial dependence, which also builds up over the 
course of a session, suggests that these two phenomena may be linked (see also Tong and Dubé, 
2022).

Our theory posits that, over the course of the experiment, the marginal firing rate asymptotically 
approaches the distribution of presented stimuli (assuming there are no inhomogeneities in the distor-
tion function). Thus, the neurons corresponding to high- frequency stimuli become more excitable 
than others and bias recall toward their preferred stimuli. This bias is amplified by lower effective 
capacities brought about by longer RIs. Figure 7 shows simulation results replicating these effects.

Quantitative model comparison
To systematically compare the performance of the different models, we carried out random- effects 
Bayesian model comparison (Rigoux et  al., 2014) for each dataset (see Methods). This method 
estimates a population distribution over models from which each subject’s data are assumed to be 
sampled. The protected exceedance probabilities, shown in Table 1, quantify the posterior probability 
that each model is the most frequent in the population, taking into account the possibility of the null 
hypothesis where model probabilities are uniform.

Experiment 1 from Bays, 2014 did not discriminate strongly between models. All the other data-
sets provided moderate to strong evidence in favor of the full rate- distortion model, with an average 
protected exceedance probability of 0.76.

Variations in gain
Equation 14 predicts that operating below the channel capacity will lead to an increase in the gain 
term  β , which, in turn, leads to a higher information rate and better memory performance. Therefore, 
our model predicts that recall accuracy should improve after a period of poor memory performance, 
and degrade after a period of good memory performance. At the neural level, the model predicts that 
error will tend to be lower when gain ( β ) is higher.

We tested these predictions by reanalyzing the monkey neural and behavioral data reported in 
Barbosa et al., 2020 ( N = 2 ). The neural data were collected from the dorsolateral prefrontal cortex, a 
region classically associated with maintenance of information in working memory (Levy and Goldman- 
Rakic, 2000; Funahashi, 2006; Wimmer et al., 2014).

Behavioraly, squared error was significantly lower following higher- than- average error than 
following lower- than- average error (linear mixed model, p < 0.001; Figure 8A), consistent with the 
hypothesis that gain tends to increase after poor performance and decrease after good performance.

In order to estimate the neural gain, we first inferred the preferred stimulus of each neuron by 
fitting a bell- shaped tuning function to its spiking behavior (Equation 23, Figure  8B). We then 
performed Poisson regression to fit a  β  for each neuron (Equation 24). Model comparison using 
the Bayesian information criterion (BIC) established that both the distortion function (which captures 

results for the full model (C, D), model with fixed gain parameter  β  (E, F), and model without plasticity term  w  (G, 
H). Shaded area corresponds to standard error of the mean.

Figure 4 continued
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Figure 5. Serial dependence builds up during an experiment. (A) Serial dependence computed using first third (blue) and last third (orange) of the trials 
within a session, as reported in Barbosa and Compte, 2020. Data shown here were originally reported in Foster et al., 2017. To obtain a trial- by- trial 
measure of serial dependence, we calculated the folded error as described in Barbosa and Compte, 2020 (see Methods). Positive values indicate 
attraction to the last stimulus, while negative values indicate repulsion. Serial dependence is stronger in the last third of the trials in the experiment 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.79450
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driving input) and spiking history were significant predictors of spiking behavior (full model: 54,545; 
no history: 59,163; neither distortion nor history: 67,903). We then examined the relationship between 
neural gain and memory precision across sessions, finding that session- specific mean squared error 

compared to the first third. (B) Serial dependence increases over the course of the experimental session, computed here with a sliding window of 200 
trials. Simulation results for the full model (C, D), model with fixed gain parameter  β  (E, F), and model without plasticity term  w  (G, H). Shaded area 
corresponds to standard error of the mean.

Figure 5 continued

Figure 6. Serial dependence increases with set size. (A) Serial dependence (quantified using folded error) for set sizes  M = 1  (blue) and  M = 3  (orange), 
using data originally reported in Panichello et al., 2019. Serial dependence computed as the peak amplitude of a derivative of Gaussian (DoG) tuning 
function fitted to the data using least squares is stronger for larger set sizes (see Methods). On the x- axis, ‘color of previous trial’ refers to the color of 
the single stimulus probed on the previous trial. (B–D) Simulation results for the full model, model with fixed gain parameter  β , and model without 
plasticity term  w . Shaded area corresponds to standard error of the mean.

https://doi.org/10.7554/eLife.79450
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Figure 7. Continuous reports are biased toward high- frequency colors. (A, B) Bias for targets around common 
colors during the first (Panel A) and last (Panel B) third of the session, as reported in Panichello et al., 2019. 
Bias refers to the difference between the stimulus and the mean reported color. x- Axis is centered around high- 
frequency colors. Bias increases with RI length (blue = short RI, orange = long RI). Bias also increases as the 

Figure 7 continued on next page
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was negatively correlated with the average  β  estimate ( r  = –0.32, p < 0.02; Figure 8C). This result 
is consistent with the hypothesis that dynamic changes in memory performance are associated with 
changes in neural gain.

Discussion
We have shown that a simple population coding model with spiking neurons can solve the channel 
design problem: signals passed through the spiking network are transmitted with close to the minimum 
achievable distortion under the network’s capacity limit. We focused on applying this general model 
to the domain of working memory, unifying several seemingly disparate aspects of working memory 
performance: set size effects, stimulus prioritization, serial dependence, approximate timescale invari-
ance, and systematic bias. Our approach builds a bridge between biologically plausible population 
coding and prior applications of rate- distortion theory to human memory (Sims et al., 2012; Sims, 
2015; Sims, 2016; Bates et al., 2019; Bates and Jacobs, 2020; Nagy et al., 2020).

Relationship to other models
The hypothesis that neural systems are designed to optimize a rate- distortion trade- off has been previ-
ously studied through the lens of the information bottleneck method (Bialek et al., 2006; Klampfl 
et al., 2009; Buesing and Maass, 2010; Palmer et al., 2015), a special case of rate- distortion theory 
in which the distortion function is derived from a compression principle. Specifically, the distortion 
function is defined as the Kullback–Leibler divergence between  P(θ′|θ)  and  P(θ′|θ̂) , where  θ′  denotes 
the probed stimulus. This distortion function applies a ‘soft’ penalty to errors based on how much 
probability mass the channel places on each stimulus. The expected distortion is equal to the mutual 
information between  θ′  and  ̂θ . Thus, the information bottleneck method seeks a channel that maps 
the input  θ  into a compressed representation  ̂θ  satisfying the capacity limit, while preserving informa-
tion necessary to predict the probe  θ′ .

As pointed out by Leibfried and Braun, 2015, using the Kullback–Leibler divergence as the distor-
tion function leads to a harder optimization compared to classical rate- distortion theory because 

 P(θ′|θ̂)  depends on the channel distribution, which is the thing being optimized. One consequence 
of this dependency is that minimizing the rate- distortion objective using alternating optimization (in 
the style of the Blahut–Arimoto algorithm) is not guaranteed to find the globally optimal channel. It 
is possible to break the dependency by replacing  P(θ′|θ̂)  with a reference distribution that does not 
depend on the channel. This turns out to strictly generalize rate- distortion theory, because an arbitrary 

experiment progresses. Simulation results for the full model (C, D), model with fixed gain parameter  β  (E, F), and 
model without plasticity term  w  (G, H). Shaded area corresponds to standard error of the mean.

Figure 7 continued

Table 1. Bayesian model comparison between the population coding (PC) model (Bays, 2014), the 
full rate- distortion (RD), and two variants of the RD model (fixed gain and no plasticity).
Each model is assigned a protected exceedance probability.

Experiment Figure PC model
RD model
(full)

RD model
(fixed gain)

RD model
(no plasticity)

Bays, 2014, Experiment 1 2 0.2141 0.2286 0.4128 0.1445

Bays, 2014, Experiment 2 2 0.1853 0.7175 0.0487 0.0485

Souza and Oberauer, 2015 3 0.0115 0.9785 0.0093 0.0007

Bliss and D’Esposito, 2017, Experiment 1 4 0.0000 1.0000 0.0000 0.0000

Bliss et al., 2017, Experiment 2 4 0.0029 0.7689 0.2264 0.0018

Foster et al., 2017 5 0.3185 0.6638 0.0089 0.0088

Panichello et al., 2019, Experiment 1a 6 0.2613 0.7387 0.0000 0.0000

Panichello et al., 2019, Experiment 2 7 0.0544 0.9456 0.0000 0.0000

https://doi.org/10.7554/eLife.79450
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choice of the reference distribution allows one to recover any lower- bounded distortion function up 
to a constant offset (Leibfried and Braun, 2015). However, existing spiking neuron implementations 
of the information bottleneck method (Klampfl et al., 2009; Buesing and Maass, 2010) do not make 
use of such a reference distribution, and hence do not attain the same level of generality.

Leibfried and Braun, 2015 propose a spiking neuron model that explicitly optimizes the rate- 
distortion objective function for arbitrary distortion functions. Their approach differs from ours in 
several ways. First, they model a single neuron, rather than a population. Second, they posit that the 
channel optimization is realized through synaptic plasticity, in contrast to the intrinsic plasticity rule 
that we study here. Third, they treat the gain parameter  β  as fixed, whereas we propose an algorithm 
for optimizing  β .

Open questions
A cornerstone of our approach is the assumption that the neural circuit responsible for working 
memory dynamically modifies its output to stay within a capacity limit. What, at a biological level, 
is the nature of this capacity limit? Spiking activity accounts for a large fraction of cortical energy 
expenditure (Attwell and Laughlin, 2001; Lennie, 2003). Thus, a limit on the overall firing rate of a 
neural population is a natural transmission bottleneck. Previous work on energy- efficient coding has 
similarly used the cost of spiking as a constraint (Levy and Baxter, 1996; Stemmler and Koch, 1999; 
Balasubramanian et al., 2001). One subtlety is that the capacity limit in our framework is an upper 
bound on the stimulus- driven firing rate relative to the average firing rate (on a log scale). This means 
that the average firing rate can be high provided the stimulus- evoked transients are small, consistent 
with the observation that firing rate tends to be maintained around a set point rather than minimized 
(Desai et al., 1999; Hengen et al., 2013; Hengen et al., 2016). The set point should correspond to 
the capacity limit.

The next question is how a neural circuit can control its sensitivity to inputs in such a way that the 
information rate is maintained around the capacity limit. At the single neuron level, this might be 
realized by adaptation of voltage conductances (Stemmler and Koch, 1999). At the population level, 
neuromodulators could act as a global gain control. Catecholamines (e.g., dopamine and norepineph-
rine), in particular, have been thought to play this role (Servan- Schreiber et al., 1990; Durstewitz 
et  al., 1999). Directly relevant to this hypothesis are experiments showing that local injection of 
dopamine D1 receptor antagonists into the prefrontal cortex impaired performance in an oculomotor 

Figure 8. Dynamic variation in memory precision and neural gain. (A) Mean squared error on current trial, classified by quantiles of squared error on 
previous trial. Squared error tends to be above average (dashed black line) following low squared error on the previous trial, and tends to be below 
average following large squared error on the previous trial. (B) Angular location tuning curve (orange) fitted to mean spike count (blue) during the 
retention interval, shown for one example neuron. The neuron’s preferred stimulus (dashed black line) corresponds to the peak of the tuning curve. 
Shaded region corresponds to standard error of the mean. (C) Mean squared error for different sessions plotted against mean fitted  β . According to our 
theory,  β  plays the role of a gain control on the stimulus. Consistent with this hypothesis, memory error decreases with  β .

https://doi.org/10.7554/eLife.79450
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delayed response task (Sawaguchi and Goldman- Rakic, 1991), whereas D1 agonists can improve 
performance (Castner et al., 2000).

In experiments with humans, it has been reported that pharmacological manipulations of dopa-
mine can have non- monotonic effects on cognitive performance, with the direction of the effect 
depending on baseline dopamine levels (see Cools and D’Esposito, 2011 for a review). The baseline 
level (particularly in the striatum) correlates with working memory performance (Cools et al., 2008; 
Landau et  al., 2009). Taken together, these findings suggest that dopaminergic neuromodulation 
controls the capacity limit (possibly through a gain control mechanism), and that pushing dopamine 
levels beyond the system’s capacity provokes a compensatory decrease in gain, as predicted by our 
homeostatic model of gain adaptation. A more direct test of our model would use continuous report 
tasks to quantify memory precision, bias, and serial dependence under different levels of dopamine.

We have considered a relatively restricted range of visual working memory tasks for which exten-
sive data are available. An important open question concerns the generality of our model beyond 
these tasks. For example, serial order, AX- CPT, and N- back tasks are widely used but outside the 
scope of our model. With appropriate modification, the rate- distortion framework can be applied 
more broadly. For example, one could construct channels for sequences rather than individual items, 
analogous to how we have handled multiple simultaneously presented stimuli. One could also incor-
porate a capacity- limited attention mechanism for selecting previously presented information for high 
fidelity representation, rather than storing everything from a fixed temporal window with relatively low 
fidelity. This could lead to a new information- theoretic perspective on attentional gating in working 
memory.

Our model can be extended in several other ways. One, as already mentioned, is to develop a 
biologically plausible implementation of gain adaptation, either through intrinsic or neuromodulatory 
mechanisms. A second direction is to consider channels that transmit a compressed representation 
of the input. Previous work has suggested that working memory representations are efficient codes 
that encode some stimuli with higher precision than others (Koyluoglu et al., 2017; Taylor and Bays, 
2018). Finally, an important direction is to enable the model to handle more complex memoranda, 
such as natural images. Recent applications of large- scale neural networks, such as the variational 
autoencoder, to modeling human memory hold promise (Nagy et al., 2020; Bates and Jacobs, 2020; 
Franklin et al., 2020; Bates et al., 2023; Xie et al., 2023), though linking these to more realistic 
neural circuits remains a challenge.

Methods
We reanalyzed five datasets with human subjects and one dataset with monkey subjects performing 
delayed response tasks. The detailed experimental procedures can be found in the original reports 
(Bays, 2014; Souza and Oberauer, 2015; Barbosa et  al., 2020; Barbosa and Compte, 2020; 
Panichello et al., 2019; Bliss and D’Esposito, 2017). In three of the six datasets, one or multiple 
colors were presented on a screen at equally spaced locations. After an RI, during which the cues 
were no longer visible, subjects had to report the color at a particular cued location, measured as 
angles on a color wheel. In one dataset, angled color bars were presented, and the angle of the bar 
associated with a cued color had to be reported (Bays, 2014). In the two last datasets, only the loca-
tion of a black cue on a circle had to be remembered and reported (Barbosa et al., 2020; Bliss and 
D’Esposito, 2017).

Set size and stimulus prioritization
Human subjects ( N = 7 ) were presented with 2, 4, or 8 color stimuli at the same time. On each trial, 
one of the locations was cued before the appearance of the stimuli. Cued locations were 3 times as 
likely to be probed (Bays, 2014).

We computed trial- wise error as the circular distance between the reported angle and the target 
angle, separately for each set size and cuing condition. We then calculated circular variance ( σ2 ) and 
kurtosis ( k ) as presented in the original paper, using the following equations:

 σ2 = −2 log |m̄1|,   (18)

and
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 k = (|m̄2| cos(Arg(m̄2) − 2Arg(m̄1)) − |m̄1|4)/(1 − |m̄1|)2,  (19)

where  ̄mn  is the  n  th uncentered trigonometric moment. A histogram with  n = 31  bins was used to 
visualize the error distribution in Figure 2.

Timing effects
Human subjects ( N = 36 ) were presented with 6 simultaneous color stimuli and had to report the color 
at a probed location as an angle on a color wheel. The RI and ITI lengths varied across sessions (RI: 1 
or 3 s, ITI: 1 or 7.5 s) (Souza and Oberauer, 2015). A histogram with  n = 31  bins was used to visualize 
the error distribution in Figure 3.

Serial dependence increases with RI and decreases with ITI
Human subjects ( N = 55 ) were presented with a black square at a random position on a circle and 
had to report the location of the cue (Bliss and D’Esposito, 2017). The RI and ITI were varied across 
blocks of trials (RI: 0, 1, 3, 6, or 10 s, ITI: 1, 3, 6, or 10 s). For each block and subject, we computed 
serial dependence as the peak- to- peak amplitude of a derivative of Gaussian (DoG) function fit to the 
data. The DoG function is defined as follows:

 y = xawc exp(−(wx)2),  (20)

where  y  is the trial- wise error,  x  is the relative circular distance to the target angle of the previous trial, 
 a  is the amplitude of the DoG peak,  w  is the width of the curve, and  c  is the constant  

√
2e , chosen 

such that the peak- to- peak amplitude of the DoG fit—the measure of serial dependence in Bliss and 
D’Esposito, 2017—is exactly  2a .

Build-up of serial dependence
Human subjects ( N = 12 ) performed a delayed continuous report task with one item (Foster et al., 
2017). Following Barbosa and Compte, 2020, we obtained a trial- by- trial measure of serial depen-
dence using their definition of folded error.

Let  θd  denotes the circular distance between the angle reported on the previous trial and the target 
angle on the current trial. In order to aggregate trials with negative  θd  (preceding target is located 
clockwise to current target) and trials with positive  θd  (preceding target is located counter- clockwise 
to current target), we computed the folded error as  θ

′
e = θe × sign(θd) , where  θe  is the circular distance 

between the reported angle and the target angle. Positive  θ
′
e  corresponds to attraction to the previous 

stimulus, whereas negative  θ
′
e  corresponds to repulsion.

We excluded trials with absolute errors larger than  π/4 . We then computed serial bias as the average 
folded error in sliding windows of width  π/2  rad and steps of  π/30  rad. We repeated this procedure 
separately for the trials contained in the first and last third of all sessions. Finally, we computed the 
increase in serial dependence over the course of a session using a sliding window of 200 trials on the 
folded error.

Serial dependence increases with set size
We reanalyzed the dataset collected by Panichello et  al., 2019, experiment 1a, in which human 
subjects ( N = 90 ) performed a delayed response task with one or three items.

We calculated folded error using the procedure mentioned above. We excluded trials with absolute 
errors larger than  π/4 . We then computed serial bias as the average folded error in sliding windows of 
width  π/4  rad and steps of  π/30  rad. We repeated this procedure separately for the trials with  M = 1  
or  M = 3  items. In order to test whether serial dependence was stronger for one of the set size condi-
tions, we performed a permutation test: We shuffled the entire dataset and partitioned it into two 
groups of size  SM=1  and  SM=3 , where  SM=m  denotes the number of trials recorded for the set size condi-
tion  M = m . We fitted a DoG curve (Equation 20) to each partition using least squares and computed 
the difference between the peak amplitude of the two fits. We repeated this process 20,000 times. We 
then calculated the p- value as the proportion of shuffles for which the difference between the peak 
amplitudes was equal to or larger than the one computed using the unshuffled dataset.

https://doi.org/10.7554/eLife.79450
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Continuous reports are biased toward high-frequency colors
Human subjects ( N = 120 ) performed a delayed continuous report task with a set size of 2 (Panichello 
et al., 2019). On each trial, the RI was either 0.5 or 4 s. The stimuli were either drawn from a uniform 
distribution or from a set of four equally spaced bumps of width  π/9  rad with equal probability. The 
centers of each bump were held constant for each subject.

We defined systematic bias as mean error versus distance to the closest bump center and computed 
it in sliding windows of width  π/45  rad and steps of  π/90  rad, as done in the original study. We repeated 
this procedure separately for the trials with  RI = 0.5s  or  RI = 4s , and for the first and last third of trials 
within a session.

Simulations and model fitting
For each dataset described above, we performed simulations with three different models: the full 
model, a model with fixed β ( α = 0 ), and a model with no plasticity ( η = 0 ). The following parameters 
were held fixed for all simulations, unless stated otherwise:  N = 100 ,  M = 1 ,  ω = 1 ,  η = 10−3

 ,  α = 10−1 , 
 ∆t = 5 × 10−2  s. Weights  w  were clipped to be in the range  [−12, 0] . β was initialized at  β0 = 15  and 
clipped to be in the range  [0, 1000] .

In order to account for the higher probing probability of the cued stimulus in Bays, 2014, we used

 
πm = αm∑

m′ αm′
,
 
 
 

(21)

with  αpriority = 3  and  αm = 1  otherwise, as given by the base rates.
Simulations were run on the same trials as given in the dataset. When multiple stimuli were presented 

simultaneously ( M > 1 ) and the values of non- probed stimuli were not included in the dataset, we used 
stimuli sampled at random in the range  [−π,π]  to replace the missing values.

When running a simulation, time was discretized into steps of length  ∆t . The simulation time step 
 ∆t  was manually set to provide a good trade- off between simulation resolution and run time. The 
learning rates  η  and  α  were scaled by  ∆t  to make the simulation results largely independent of the 
precise choice of  ∆t . At each step, spikes zi were generated by sampling from a Poisson distribution 
with parameter  λi = r̄ ri ∆t . Subsequently, wi, ui, ri,  R , and  β  were computed using the equations 
given in the main text. At the end of the RI, model predictions were performed by decoding samples 
generated during a window of  Td = 0.1  s using maximum likelihood estimation.

The capacity  C , the population gain  ̄r , and the plasticity gain parameter  c  were independently 
fitted for each subject to maximize the likelihood of the observed errors. To demonstrate the gener-
alizability of these parameter estimates, the parameters were fitted for the dataset from Bays, 2014 
only, and then applied without modification to the other datasets. We used the subject- averaged  C ,  ̄r , 
and  c  to run simulations on the remaining datasets. The one exception was for Souza and Oberauer, 
2015, where responses appeared to be unusually noisy responses; for this dataset, we fixed  C = 0.1 .

In order to compare model performance quantitatively, we fitted the model presented in Bays, 
2014 on the dataset presented in the same paper. This model depends on two free parameters:  ω , 
which controls the tuning width of the neurons, and  γ , which controls the population gain and corre-
sponds to  ̄r  in our text. These parameters were fit to maximize the likelihood of the observed errors; 
the detailed model fitting procedure can be found in the original report. As outlined above, averaged 
parameter estimates were used to run simulations on the remaining datasets. Models were subse-
quently compared by computing the BIC, defined as:

 BIC = k log(n) − 2 log(L∗),  (22)

where  k  is the number of parameters estimated by the model,  n  is the number of data points, and 
 L∗  is the likelihood of the model. For the fitted data, the BIC was used to approximate the marginal 
likelihood,  P(data) ≈ − 1

2 BIC , which was then submitted to the Bayesian model selection algorithm 
described in Rigoux et al., 2014. Since the same parameters were applied to all the other datasets 
(i.e., these were generalization tests of the model fit), we instead submitted the log- likelihood directly 
to Bayesian model selection.

Dynamics of memory precision and neural gain
We reanalyzed the behavioral and neural dataset collected in Barbosa et al., 2020. In this dataset, 
four adult male rhesus monkeys (Macaca mulatta) were trained in an oculomotor delayed response 
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task that involved fixing their gaze on a central point and subsequently making a saccadic eye move-
ment to the stimulus location after a delay period. While performing the task, firing of neurons in the 
dorsolateral prefrontal cortex was recorded. Since recordings were not available for all trials within a 
session, we ignored sessions in which only a subset of the eight potential cues were displayed.

We sorted the squared error on trial  t  (denoted by  e2
t  ) based on six quantiles of the squared error 

on the previous trial. We then defined the indicator variable  it = I(e2
t−1 > ē2) , taking the value +1 if 

the squared error on the previous trial was larger than the mean squared error, and −1 otherwise. We 
then fit the linear mixed model  e2

t ∼ 1 + it + (1|session) .
In order to infer the preferred stimulus of each recorded neuron, we used a least squares approach 

to fit the mean spike count for each presented stimulus and neuron to a bell- shaped tuning function:

 fi(θ) = Ai exp(w−1
i (cos(θ − ϕi) − 1)),   (23)

where  θ  is the presented stimulus,  Ai  and wi control the amplitude and width of the tuning function, 
respectively, and  ϕi  is the preferred stimulus of neuron  i  (Bays, 2014).

We then fitted the neural data by performing Poisson regression for each neuron using the following 
model:

 log(sj) ∼ 1 + Dj + s̄j,   (24)

where sj is the number of spikes emitted by the neuron on trial  j ,  Dj  is the expected distortion 
between the stimulus  θj  and the neuron’s preferred stimulus, and  ̄sj  is an exponential moving average 
of the neuron’s spike history with decay rate 0.8. We discarded three neurons for which the fitted  β  
was negative and one neuron for which the fitted  β  was larger than 5 standard deviations above the 
mean of the fitted values.

In order to ascertain the utility of the different regressors, we fitted another model without the 
history term, and another without both the distortion and history terms, and compared them based 
on their BIC values.

Source code
All simulations and analyses were performed using Julia, version 1.6.2. Source code can be found at 
https://github.com/amvjakob/wm-rate-distortion, (copy archived at Jakob, 2023).

Acknowledgements
Johannes Bill, Wulfram Gerstner, and Chris Bates generously provided constructive feedback and 
discussion. This research was supported by a Bertarelli Fellowship and by the Center for Brains, Minds, 
and Machines (funded by NSF STC award CCF- 1231216).

Additional information

Funding

Funder Grant reference number Author

Fondation Bertarelli Bertarelli Fellowship Anthony MV Jakob

National Science 
Foundation

NSF STC award CCF-
1231216

Samuel J Gershman

The funders had no role in study design, data collection, and interpretation, or the 
decision to submit the work for publication.

Author contributions
Anthony MV Jakob, Conceptualization, Resources, Data curation, Software, Formal analysis, Funding 
acquisition, Investigation, Visualization, Methodology, Writing – original draft, Writing – review and 
editing; Samuel J Gershman, Conceptualization, Resources, Supervision, Funding acquisition, Valida-
tion, Methodology, Writing – original draft, Project administration, Writing – review and editing

https://doi.org/10.7554/eLife.79450
https://github.com/amvjakob/wm-rate-distortion


 Research article      Neuroscience

Jakob and Gershman. eLife 2023;12:e79450. DOI: https://doi.org/10.7554/eLife.79450  21 of 25

Author ORCIDs
Anthony MV Jakob    http://orcid.org/0000-0002-0996-1356
Samuel J Gershman    http://orcid.org/0000-0002-6546-3298

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.79450.sa1
Author response https://doi.org/10.7554/eLife.79450.sa2

Additional files
Supplementary files
•  MDAR checklist 

Data availability
The current manuscript is a computational study, so no data have been generated for this manuscript. 
Source code can be found at https://github.com/amvjakob/wm-rate-distortion (copy archived at 
Jakob, 2023). The previously published datasets are available upon request from the corresponding 
authors of the published papers, Souza and Oberauer, 2015, Bliss et al., 2017, and Panichello et al., 
2019. A minimally processed dataset from Barbosa et al., 2020 is available online (https://github.com/ 
comptelab/interplayPFC), with the raw data available upon request from the corresponding author of 
the published paper (raw monkey data available upon request to Christos Constantinidis  cconstan@ 
wakehealth. edu, and raw EEG data available upon request to Heike Stein,  heike. c. stein@ gmail. com). 
There are no specific application or approval processes involved in requesting these datasets.

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Bays P 2014 Noise in Neural 
Populations Accounts for 
Errors in Working Memory

https:// osf. io/ s7dhn/ Open Science Framework, 
s7dhn

Foster J 2017 Alpha- band activity 
reveals spontaneous 
representations of spatial 
position in visual working 
memory

https:// osf. io/ vw4uc/ Open Science Framework, 
vw4uc

Barbosa J 2020 Interplay between 
persistent activity and 
activity- silent dynamics 
in the prefrontal cortex 
underlies serial biases in 
working memory

https:// github. 
com/ comptelab/ 
interplayPFC

GitHub, comptelab/
interplayPFC

References
Abbott LF, LeMasson G. 1993. Analysis of neuron models with dynamically regulated conductances. Neural 

Computation 5:823–842. DOI: https://doi.org/10.1162/neco.1993.5.6.823
Amit DJ, Brunel N. 1997. Model of global spontaneous activity and local structured activity during delay periods 

in the cerebral cortex. Cerebral Cortex 7:237–252. DOI: https://doi.org/10.1093/cercor/7.3.237, PMID: 
9143444

Arimoto S. 1972. An algorithm for computing the capacity of arbitrary discrete memoryless channels. IEEE 
Transactions on Information Theory 18:14–20. DOI: https://doi.org/10.1109/TIT.1972.1054753

Attwell D, Laughlin SB. 2001. An energy budget for signaling in the grey matter of the brain. Journal of Cerebral 
Blood Flow and Metabolism 21:1133–1145. DOI: https://doi.org/10.1097/00004647-200110000-00001, PMID: 
11598490

Balasubramanian V, Kimber D, Berry MJ. 2001. Metabolically efficient information processing. Neural 
Computation 13:799–815. DOI: https://doi.org/10.1162/089976601300014358, PMID: 11255570

Balsam PD, Gallistel CR. 2009. Temporal maps and informativeness in associative learning. Trends in 
Neurosciences 32:73–78. DOI: https://doi.org/10.1016/j.tins.2008.10.004, PMID: 19136158

Barbosa J, Compte A. 2020. Build- up of serial dependence in color working memory. Scientific Reports 
10:10959. DOI: https://doi.org/10.1038/s41598-020-67861-2, PMID: 32616792

https://doi.org/10.7554/eLife.79450
http://orcid.org/0000-0002-0996-1356
http://orcid.org/0000-0002-6546-3298
https://doi.org/10.7554/eLife.79450.sa1
https://doi.org/10.7554/eLife.79450.sa2
https://github.com/amvjakob/wm-rate-distortion
https://github.com/comptelab/interplayPFC
https://github.com/comptelab/interplayPFC
https://osf.io/s7dhn/
https://osf.io/vw4uc/
https://github.com/comptelab/interplayPFC
https://github.com/comptelab/interplayPFC
https://github.com/comptelab/interplayPFC
https://doi.org/10.1162/neco.1993.5.6.823
https://doi.org/10.1093/cercor/7.3.237
http://www.ncbi.nlm.nih.gov/pubmed/9143444
https://doi.org/10.1109/TIT.1972.1054753
https://doi.org/10.1097/00004647-200110000-00001
http://www.ncbi.nlm.nih.gov/pubmed/11598490
https://doi.org/10.1162/089976601300014358
http://www.ncbi.nlm.nih.gov/pubmed/11255570
https://doi.org/10.1016/j.tins.2008.10.004
http://www.ncbi.nlm.nih.gov/pubmed/19136158
https://doi.org/10.1038/s41598-020-67861-2
http://www.ncbi.nlm.nih.gov/pubmed/32616792


 Research article      Neuroscience

Jakob and Gershman. eLife 2023;12:e79450. DOI: https://doi.org/10.7554/eLife.79450  22 of 25

Barbosa J, Stein H, Martinez RL, Galan- Gadea A, Li S, Dalmau J, Adam KCS, Valls- Solé J, Constantinidis C, 
Compte A. 2020. Interplay between persistent activity and activity- silent dynamics in the prefrontal cortex 
underlies serial biases in working memory. Nature Neuroscience 23:1016–1024. DOI: https://doi.org/10.1038/ 
s41593-020-0644-4, PMID: 32572236

Bates CJ, Lerch RA, Sims CR, Jacobs RA. 2019. Adaptive allocation of human visual working memory capacity 
during statistical and categorical learning. Journal of Vision 19:11. DOI: https://doi.org/10.1167/19.2.11, PMID: 
30802280

Bates CJ, Jacobs RA. 2020. Efficient data compression in perception and perceptual memory. Psychological 
Review 127:891–917. DOI: https://doi.org/10.1037/rev0000197, PMID: 32324016

Bates CJ, Alvarez G, Gershman SJ. 2023. Scaling models of visual working memory to natural images. bioRxiv. 
DOI: https://doi.org/10.1101/2023.03.17.533050

Bays PM, Catalao RFG, Husain M. 2009. The precision of visual working memory is set by allocation of a shared 
resource. Journal of Vision 9:7. DOI: https://doi.org/10.1167/9.10.7, PMID: 19810788

Bays PM. 2014. Noise in neural populations accounts for errors in working memory. The Journal of Neuroscience 
34:3632–3645. DOI: https://doi.org/10.1523/JNEUROSCI.3204-13.2014, PMID: 24599462

Bays PM. 2015. Spikes not slots: noise in neural populations limits working memory. Trends in Cognitive Sciences 
19:431–438. DOI: https://doi.org/10.1016/j.tics.2015.06.004, PMID: 26160026

Bays PM. 2016. A signature of neural coding at human perceptual limits. Journal of Vision 16:4. DOI: https://doi. 
org/10.1167/16.11.4, PMID: 27604067

Bialek W, De Ruyter Van Steveninck RR, Tishby N. 2006. Efficient representation as a design principle for neural 
coding and computation. 2006 IEEE International Symposium on Information Theory. . DOI: https://doi.org/10. 
1109/ISIT.2006.261867

Blahut R. 1972. Computation of channel capacity and rate- distortion functions. IEEE Transactions on Information 
Theory 18:460–473. DOI: https://doi.org/10.1109/TIT.1972.1054855

Bliss DP, D’Esposito M. 2017. Synaptic augmentation in a cortical circuit model reproduces serial dependence in 
visual working memory. PLOS ONE 12:e0188927. DOI: https://doi.org/10.1371/journal.pone.0188927, PMID: 
29244810

Bliss DP, Sun JJ, D’Esposito M. 2017. Serial dependence is absent at the time of perception but increases in 
visual working memory. Scientific Reports 7:14739. DOI: https://doi.org/10.1038/s41598-017-15199-7, PMID: 
29116132

Brady TF, Konkle T, Alvarez GA. 2009. Compression in visual working memory: using statistical regularities to 
form more efficient memory representations. Journal of Experimental Psychology. General 138:487–502. DOI: 
https://doi.org/10.1037/a0016797, PMID: 19883132

Buesing L, Maass W. 2010. A spiking neuron as information bottleneck. Neural Computation 22:1961–1992. 
DOI: https://doi.org/10.1162/neco.2010.08-09-1084, PMID: 20337537

Carandini M, Heeger DJ. 2011. Normalization as a canonical neural computation. Nature Reviews. Neuroscience 
13:51–62. DOI: https://doi.org/10.1038/nrn3136, PMID: 22108672

Castner SA, Williams GV, Goldman- Rakic PS. 2000. Reversal of antipsychotic- induced working memory deficits 
by short- term dopamine D1 receptor stimulation. Science 287:2020–2022. DOI: https://doi.org/10.1126/ 
science.287.5460.2020, PMID: 10720329

Chance FS, Abbott LF, Reyes AD. 2002. Gain modulation from background synaptic input. Neuron 35:773–782. 
DOI: https://doi.org/10.1016/s0896-6273(02)00820-6, PMID: 12194875

Cools R, Gibbs SE, Miyakawa A, Jagust W, D’Esposito M. 2008. Working memory capacity predicts dopamine 
synthesis capacity in the human striatum. The Journal of Neuroscience 28:1208–1212. DOI: https://doi.org/10. 
1523/JNEUROSCI.4475-07.2008, PMID: 18234898

Cools R, D’Esposito M. 2011. Inverted- U- shaped dopamine actions on human working memory and cognitive 
control. Biological Psychiatry 69:e113–e125. DOI: https://doi.org/10.1016/j.biopsych.2011.03.028, PMID: 
21531388

Cudmore RH, Turrigiano GG. 2004. Long- term potentiation of intrinsic excitability in LV visual cortical neurons. 
Journal of Neurophysiology 92:341–348. DOI: https://doi.org/10.1152/jn.01059.2003, PMID: 14973317

Daoudal G, Debanne D. 2003. Long- term plasticity of intrinsic excitability: learning rules and mechanisms. 
Learning & Memory 10:456–465. DOI: https://doi.org/10.1101/lm.64103, PMID: 14657257

Desai NS, Rutherford LC, Turrigiano GG. 1999. Plasticity in the intrinsic excitability of cortical pyramidal neurons. 
Nature Neuroscience 2:515–520. DOI: https://doi.org/10.1038/9165, PMID: 10448215

Durstewitz D, Kelc M, Güntürkün O. 1999. A neurocomputational theory of the dopaminergic modulation of 
working memory functions. The Journal of Neuroscience 19:2807–2822. DOI: https://doi.org/10.1523/ 
JNEUROSCI.19-07-02807.1999, PMID: 10087092

Durstewitz D, Seamans JK. 2006. Beyond bistability: biophysics and temporal dynamics of working memory. 
Neuroscience 139:119–133. DOI: https://doi.org/10.1016/j.neuroscience.2005.06.094, PMID: 16326020

Egorov AV, Hamam BN, Fransén E, Hasselmo ME, Alonso AA. 2002. Graded persistent activity in entorhinal 
cortex neurons. Nature 420:173–178. DOI: https://doi.org/10.1038/nature01171, PMID: 12432392

Fischer J, Whitney D. 2014. Serial dependence in visual perception. Nature Neuroscience 17:738–743. DOI: 
https://doi.org/10.1038/nn.3689, PMID: 24686785

Foster JJ, Bsales EM, Jaffe RJ, Awh E. 2017. Alpha- band activity reveals spontaneous representations of spatial 
position in visual working memory. Current Biology 27:3216–3223. DOI: https://doi.org/10.1016/j.cub.2017.09. 
031, PMID: 29033335

https://doi.org/10.7554/eLife.79450
https://doi.org/10.1038/s41593-020-0644-4
https://doi.org/10.1038/s41593-020-0644-4
http://www.ncbi.nlm.nih.gov/pubmed/32572236
https://doi.org/10.1167/19.2.11
http://www.ncbi.nlm.nih.gov/pubmed/30802280
https://doi.org/10.1037/rev0000197
http://www.ncbi.nlm.nih.gov/pubmed/32324016
https://doi.org/10.1101/2023.03.17.533050
https://doi.org/10.1167/9.10.7
http://www.ncbi.nlm.nih.gov/pubmed/19810788
https://doi.org/10.1523/JNEUROSCI.3204-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24599462
https://doi.org/10.1016/j.tics.2015.06.004
http://www.ncbi.nlm.nih.gov/pubmed/26160026
https://doi.org/10.1167/16.11.4
https://doi.org/10.1167/16.11.4
http://www.ncbi.nlm.nih.gov/pubmed/27604067
https://doi.org/10.1109/ISIT.2006.261867
https://doi.org/10.1109/ISIT.2006.261867
https://doi.org/10.1109/TIT.1972.1054855
https://doi.org/10.1371/journal.pone.0188927
http://www.ncbi.nlm.nih.gov/pubmed/29244810
https://doi.org/10.1038/s41598-017-15199-7
http://www.ncbi.nlm.nih.gov/pubmed/29116132
https://doi.org/10.1037/a0016797
http://www.ncbi.nlm.nih.gov/pubmed/19883132
https://doi.org/10.1162/neco.2010.08-09-1084
http://www.ncbi.nlm.nih.gov/pubmed/20337537
https://doi.org/10.1038/nrn3136
http://www.ncbi.nlm.nih.gov/pubmed/22108672
https://doi.org/10.1126/science.287.5460.2020
https://doi.org/10.1126/science.287.5460.2020
http://www.ncbi.nlm.nih.gov/pubmed/10720329
https://doi.org/10.1016/s0896-6273(02)00820-6
http://www.ncbi.nlm.nih.gov/pubmed/12194875
https://doi.org/10.1523/JNEUROSCI.4475-07.2008
https://doi.org/10.1523/JNEUROSCI.4475-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18234898
https://doi.org/10.1016/j.biopsych.2011.03.028
http://www.ncbi.nlm.nih.gov/pubmed/21531388
https://doi.org/10.1152/jn.01059.2003
http://www.ncbi.nlm.nih.gov/pubmed/14973317
https://doi.org/10.1101/lm.64103
http://www.ncbi.nlm.nih.gov/pubmed/14657257
https://doi.org/10.1038/9165
http://www.ncbi.nlm.nih.gov/pubmed/10448215
https://doi.org/10.1523/JNEUROSCI.19-07-02807.1999
https://doi.org/10.1523/JNEUROSCI.19-07-02807.1999
http://www.ncbi.nlm.nih.gov/pubmed/10087092
https://doi.org/10.1016/j.neuroscience.2005.06.094
http://www.ncbi.nlm.nih.gov/pubmed/16326020
https://doi.org/10.1038/nature01171
http://www.ncbi.nlm.nih.gov/pubmed/12432392
https://doi.org/10.1038/nn.3689
http://www.ncbi.nlm.nih.gov/pubmed/24686785
https://doi.org/10.1016/j.cub.2017.09.031
https://doi.org/10.1016/j.cub.2017.09.031
http://www.ncbi.nlm.nih.gov/pubmed/29033335


 Research article      Neuroscience

Jakob and Gershman. eLife 2023;12:e79450. DOI: https://doi.org/10.7554/eLife.79450  23 of 25

Franklin NT, Norman KA, Ranganath C, Zacks JM, Gershman SJ. 2020. Structured Event Memory: A neuro- 
symbolic model of event cognition. Psychological Review 127:327–361. DOI: https://doi.org/10.1037/ 
rev0000177, PMID: 32223284

Fritsche M, Mostert P, de Lange FP. 2017. Opposite effects of recent history on perception and decision. Current 
Biology 27:590–595. DOI: https://doi.org/10.1016/j.cub.2017.01.006, PMID: 28162897

Funahashi S. 2006. Prefrontal cortex and working memory processes. Neuroscience 139:251–261. DOI: https:// 
doi.org/10.1016/j.neuroscience.2005.07.003, PMID: 16325345

Gershman SJ. 2020. Origin of perseveration in the trade- off between reward and complexity. Cognition 
204:104394. DOI: https://doi.org/10.1016/j.cognition.2020.104394, PMID: 32679270

Gerstner W, Kistler WM. 2002. Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge 
University Press. DOI: https://doi.org/10.1017/CBO9780511815706

Hengen KB, Lambo ME, Van Hooser SD, Katz DB, Turrigiano GG. 2013. Firing rate homeostasis in visual cortex 
of freely behaving rodents. Neuron 80:335–342. DOI: https://doi.org/10.1016/j.neuron.2013.08.038, PMID: 
24139038

Hengen KB, Torrado Pacheco A, McGregor JN, Van Hooser SD, Turrigiano GG. 2016. Neuronal firing rate 
homeostasis is inhibited by sleep and promoted by wake. Cell 165:180–191. DOI: https://doi.org/10.1016/j. 
cell.2016.01.046, PMID: 26997481

Jakob A. 2023. Wm- rate- distortion. swh:1:rev:ac3210ae90fb28ef9edc97f0651b3ff3b136eef2. Software Heritage. 
https://archive.softwareheritage.org/swh:1:dir:ebc2af8218f6599acf30732c7ad515f5f80d1395;origin=https:// 
github.com/amvjakob/wm-rate-distortion;visit=swh:1:snp:bdcf5343b5f4bf0a42ecd8a701b343673797ff9a; 
anchor=swh:1:rev:ac3210ae90fb28ef9edc97f0651b3ff3b136eef2

Jolivet R, Rauch A, Lüscher HR, Gerstner W. 2006. Predicting spike timing of neocortical pyramidal neurons by 
simple threshold models. Journal of Computational Neuroscience 21:35–49. DOI: https://doi.org/10.1007/ 
s10827-006-7074-5, PMID: 16633938

King RD, Wiest MC, Montague PR. 2001. Extracellular calcium depletion as a mechanism of short- term synaptic 
depression. Journal of Neurophysiology 85:1952–1959. DOI: https://doi.org/10.1152/jn.2001.85.5.1952, PMID: 
11353012

Kiyonaga A, Scimeca JM, Bliss DP, Whitney D. 2017. Serial dependence across perception, attention, and 
memory. Trends in Cognitive Sciences 21:493–497. DOI: https://doi.org/10.1016/j.tics.2017.04.011, PMID: 
28549826

Klampfl S, Legenstein R, Maass W. 2009. Spiking neurons can learn to solve information bottleneck problems 
and extract independent components. Neural Computation 21:911–959. DOI: https://doi.org/10.1162/neco. 
2008.01-07-432, PMID: 19018708

Koyluoglu OO, Pertzov Y, Manohar S, Husain M, Fiete IR. 2017. Fundamental bound on the persistence and 
capacity of short- term memory stored as graded persistent activity eLife 6:e22225. DOI: https://doi.org/10. 
7554/eLife.22225, PMID: 28879851

Lai L, Gershman SJ. 2021. Policy compression: An information bottleneck in action selection. Psychology of 
Learning and Motivation 74:195–232. DOI: https://doi.org/10.1016/bs.plm.2021.02.004

Landau SM, Lal R, O’Neil JP, Baker S, Jagust WJ. 2009. Striatal dopamine and working memory. Cerebral Cortex 
19:445–454. DOI: https://doi.org/10.1093/cercor/bhn095, PMID: 18550595

Laughlin SB, de Ruyter van Steveninck RR, Anderson JC. 1998. The metabolic cost of neural information. Nature 
Neuroscience 1:36–41. DOI: https://doi.org/10.1038/236, PMID: 10195106

Leibfried F, Braun DA. 2015. A reward- maximizing spiking neuron as a bounded rational decision maker. Neural 
Computation 27:1686–1720. DOI: https://doi.org/10.1162/NECO_a_00758, PMID: 26079747

LeMasson G, Marder E, Abbott LF. 1993. Activity- dependent regulation of conductances in model neurons. 
Science 259:1915–1917. DOI: https://doi.org/10.1126/science.8456317, PMID: 8456317

Lennie P. 2003. The cost of cortical computation. Current Biology 13:493–497. DOI: https://doi.org/10.1016/ 
s0960-9822(03)00135-0, PMID: 12646132

Levy WB, Baxter RA. 1996. Energy efficient neural codes. Neural Computation 8:531–543. DOI: https://doi.org/ 
10.1162/neco.1996.8.3.531, PMID: 8868566

Levy R, Goldman- Rakic PS. 2000. Segregation of working memory functions within the dorsolateral prefrontal 
cortex. Experimental Brain Research 133:23–32. DOI: https://doi.org/10.1007/s002210000397, PMID: 
10933207

Mongillo G, Barak O, Tsodyks M. 2008. Synaptic theory of working memory. Science 319:1543–1546. DOI: 
https://doi.org/10.1126/science.1150769, PMID: 18339943

Nagy DG, Török B, Orbán G. 2020. Optimal forgetting: Semantic compression of episodic memories. PLOS 
Computational Biology 16:e1008367. DOI: https://doi.org/10.1371/journal.pcbi.1008367, PMID: 33057380

Nassar MR, Helmers JC, Frank MJ. 2018. Chunking as a rational strategy for lossy data compression in visual 
working memory. Psychological Review 125:486–511. DOI: https://doi.org/10.1037/rev0000101, PMID: 
29952621

Nessler B, Pfeiffer M, Buesing L, Maass W. 2013. Bayesian computation emerges in generic cortical microcircuits 
through spike- timing- dependent plasticity. PLOS Computational Biology 9:e1003037. DOI: https://doi.org/10. 
1371/journal.pcbi.1003037, PMID: 23633941

Oberauer K, Farrell S, Jarrold C, Lewandowsky S. 2016. What limits working memory capacity? Psychological 
Bulletin 142:758–799. DOI: https://doi.org/10.1037/bul0000046, PMID: 26950009

Palmer SE, Marre O, Berry MJ, Bialek W. 2015. Predictive information in a sensory population. PNAS 112:6908–
6913. DOI: https://doi.org/10.1073/pnas.1506855112, PMID: 26038544

https://doi.org/10.7554/eLife.79450
https://doi.org/10.1037/rev0000177
https://doi.org/10.1037/rev0000177
http://www.ncbi.nlm.nih.gov/pubmed/32223284
https://doi.org/10.1016/j.cub.2017.01.006
http://www.ncbi.nlm.nih.gov/pubmed/28162897
https://doi.org/10.1016/j.neuroscience.2005.07.003
https://doi.org/10.1016/j.neuroscience.2005.07.003
http://www.ncbi.nlm.nih.gov/pubmed/16325345
https://doi.org/10.1016/j.cognition.2020.104394
http://www.ncbi.nlm.nih.gov/pubmed/32679270
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.1016/j.neuron.2013.08.038
http://www.ncbi.nlm.nih.gov/pubmed/24139038
https://doi.org/10.1016/j.cell.2016.01.046
https://doi.org/10.1016/j.cell.2016.01.046
http://www.ncbi.nlm.nih.gov/pubmed/26997481
https://archive.softwareheritage.org/swh:1:dir:ebc2af8218f6599acf30732c7ad515f5f80d1395;origin=https://github.com/amvjakob/wm-rate-distortion;visit=swh:1:snp:bdcf5343b5f4bf0a42ecd8a701b343673797ff9a;anchor=swh:1:rev:ac3210ae90fb28ef9edc97f0651b3ff3b136eef2
https://archive.softwareheritage.org/swh:1:dir:ebc2af8218f6599acf30732c7ad515f5f80d1395;origin=https://github.com/amvjakob/wm-rate-distortion;visit=swh:1:snp:bdcf5343b5f4bf0a42ecd8a701b343673797ff9a;anchor=swh:1:rev:ac3210ae90fb28ef9edc97f0651b3ff3b136eef2
https://archive.softwareheritage.org/swh:1:dir:ebc2af8218f6599acf30732c7ad515f5f80d1395;origin=https://github.com/amvjakob/wm-rate-distortion;visit=swh:1:snp:bdcf5343b5f4bf0a42ecd8a701b343673797ff9a;anchor=swh:1:rev:ac3210ae90fb28ef9edc97f0651b3ff3b136eef2
https://doi.org/10.1007/s10827-006-7074-5
https://doi.org/10.1007/s10827-006-7074-5
http://www.ncbi.nlm.nih.gov/pubmed/16633938
https://doi.org/10.1152/jn.2001.85.5.1952
http://www.ncbi.nlm.nih.gov/pubmed/11353012
https://doi.org/10.1016/j.tics.2017.04.011
http://www.ncbi.nlm.nih.gov/pubmed/28549826
https://doi.org/10.1162/neco.2008.01-07-432
https://doi.org/10.1162/neco.2008.01-07-432
http://www.ncbi.nlm.nih.gov/pubmed/19018708
https://doi.org/10.7554/eLife.22225
https://doi.org/10.7554/eLife.22225
http://www.ncbi.nlm.nih.gov/pubmed/28879851
https://doi.org/10.1016/bs.plm.2021.02.004
https://doi.org/10.1093/cercor/bhn095
http://www.ncbi.nlm.nih.gov/pubmed/18550595
https://doi.org/10.1038/236
http://www.ncbi.nlm.nih.gov/pubmed/10195106
https://doi.org/10.1162/NECO_a_00758
http://www.ncbi.nlm.nih.gov/pubmed/26079747
https://doi.org/10.1126/science.8456317
http://www.ncbi.nlm.nih.gov/pubmed/8456317
https://doi.org/10.1016/s0960-9822(03)00135-0
https://doi.org/10.1016/s0960-9822(03)00135-0
http://www.ncbi.nlm.nih.gov/pubmed/12646132
https://doi.org/10.1162/neco.1996.8.3.531
https://doi.org/10.1162/neco.1996.8.3.531
http://www.ncbi.nlm.nih.gov/pubmed/8868566
https://doi.org/10.1007/s002210000397
http://www.ncbi.nlm.nih.gov/pubmed/10933207
https://doi.org/10.1126/science.1150769
http://www.ncbi.nlm.nih.gov/pubmed/18339943
https://doi.org/10.1371/journal.pcbi.1008367
http://www.ncbi.nlm.nih.gov/pubmed/33057380
https://doi.org/10.1037/rev0000101
http://www.ncbi.nlm.nih.gov/pubmed/29952621
https://doi.org/10.1371/journal.pcbi.1003037
https://doi.org/10.1371/journal.pcbi.1003037
http://www.ncbi.nlm.nih.gov/pubmed/23633941
https://doi.org/10.1037/bul0000046
http://www.ncbi.nlm.nih.gov/pubmed/26950009
https://doi.org/10.1073/pnas.1506855112
http://www.ncbi.nlm.nih.gov/pubmed/26038544


 Research article      Neuroscience

Jakob and Gershman. eLife 2023;12:e79450. DOI: https://doi.org/10.7554/eLife.79450  24 of 25

Panichello MF, DePasquale B, Pillow JW, Buschman TJ. 2019. Error- correcting dynamics in visual working 
memory. Nature Communications 10:3366. DOI: https://doi.org/10.1038/s41467-019-11298-3, PMID: 
31358740

Papadimitriou C, Ferdoash A, Snyder LH. 2015. Ghosts in the machine: memory interference from the previous 
trial. Journal of Neurophysiology 113:567–577. DOI: https://doi.org/10.1152/jn.00402.2014, PMID: 25376781

Pertzov Y, Manohar S, Husain M. 2017. Rapid forgetting results from competition over time between items in 
visual working memory. Journal of Experimental Psychology. Learning, Memory, and Cognition 43:528–536. 
DOI: https://doi.org/10.1037/xlm0000328, PMID: 27668485

Rigoux L, Stephan KE, Friston KJ, Daunizeau J. 2014. Bayesian model selection for group studies - revisited. 
NeuroImage 84:971–985. DOI: https://doi.org/10.1016/j.neuroimage.2013.08.065, PMID: 24018303

Sawaguchi T, Goldman- Rakic PS. 1991. D1 dopamine receptors in prefrontal cortex: involvement in working 
memory. Science 251:947–950. DOI: https://doi.org/10.1126/science.1825731, PMID: 1825731

Schneegans S, Bays PM. 2018. Drift in neural population activity causes working memory to deteriorate over 
time. The Journal of Neuroscience 38:4859–4869. DOI: https://doi.org/10.1523/JNEUROSCI.3440-17.2018, 
PMID: 29703786

Schneegans S, Taylor R, Bays PM. 2020. Stochastic sampling provides a unifying account of visual working 
memory limits. PNAS 117:20959–20968. DOI: https://doi.org/10.1073/pnas.2004306117, PMID: 32788373

Servan- Schreiber D, Printz H, Cohen JD. 1990. A network model of catecholamine effects: gain, signal- to- 
noise ratio, and behavior. Science 249:892–895. DOI: https://doi.org/10.1126/science.2392679, PMID: 
2392679

Shannon CE. 1959. Coding theorems for a discrete source with a fidelity criterion. Institute of Radio Engineers, 
International Convention Record, vol. 7. 325–350. DOI: https://doi.org/10.1109/9780470544242.ch21

Shin H, Zou Q, Ma WJ. 2017. The effects of delay duration on visual working memory for orientation. Journal of 
Vision 17:10. DOI: https://doi.org/10.1167/17.14.10, PMID: 29234786

Shipstead Z, Engle RW. 2013. Interference within the focus of attention: working memory tasks reflect more than 
temporary maintenance. Journal of Experimental Psychology. Learning, Memory, and Cognition 39:277–289. 
DOI: https://doi.org/10.1037/a0028467, PMID: 22612165

Sims CR, Jacobs RA, Knill DC. 2012. An ideal observer analysis of visual working memory. Psychological Review 
119:807–830. DOI: https://doi.org/10.1037/a0029856, PMID: 22946744

Sims CR. 2015. The cost of misremembering: Inferring the loss function in visual working memory. Journal of 
Vision 15:2. DOI: https://doi.org/10.1167/15.3.2, PMID: 25740875

Sims CR. 2016. Rate- distortion theory and human perception. Cognition 152:181–198. DOI: https://doi.org/10. 
1016/j.cognition.2016.03.020, PMID: 27107330

Sims CR. 2018. Efficient coding explains the universal law of generalization in human perception. Science 
360:652–656. DOI: https://doi.org/10.1126/science.aaq1118, PMID: 29748284

Souza AS, Oberauer K. 2015. Time- based forgetting in visual working memory reflects temporal distinctiveness, 
not decay. Psychonomic Bulletin & Review 22:156–162. DOI: https://doi.org/10.3758/s13423-014-0652-z, 
PMID: 24825306

Stemmler M, Koch C. 1999. How voltage- dependent conductances can adapt to maximize the information 
encoded by neuronal firing rate. Nature Neuroscience 2:521–527. DOI: https://doi.org/10.1038/9173, PMID: 
10448216

Taylor R, Bays PM. 2018. Efficient coding in visual working memory accounts for stimulus- specific variations in 
recall. The Journal of Neuroscience 38:7132–7142. DOI: https://doi.org/10.1523/JNEUROSCI.1018-18.2018, 
PMID: 30006363

Tomić I, Bays PM. 2018. Internal but not external noise frees working memory resources. PLOS Computational 
Biology 14:e1006488. DOI: https://doi.org/10.1371/journal.pcbi.1006488, PMID: 30321172

Tong K, Dubé C. 2022. A tale of two literatures: A fidelity- based integration account of central tendency bias and 
serial dependency. Computational Brain & Behavior 5:103–123. DOI: https://doi.org/10.1007/s42113-021- 
00123-0

van den Berg R, Ma WJ. 2018. A resource- rational theory of set size effects in human visual working memory. 
eLife 7:e34963. DOI: https://doi.org/10.7554/eLife.34963, PMID: 30084356

Wang XJ. 2001. Synaptic reverberation underlying mnemonic persistent activity. Trends in Neurosciences 
24:455–463. DOI: https://doi.org/10.1016/s0166-2236(00)01868-3, PMID: 11476885

Wilken P, Ma WJ. 2004. A detection theory account of change detection. Journal of Vision 4:1120–1135. DOI: 
https://doi.org/10.1167/4.12.11, PMID: 15669916

Wimmer K, Nykamp DQ, Constantinidis C, Compte A. 2014. Bump attractor dynamics in prefrontal cortex 
explains behavioral precision in spatial working memory. Nature Neuroscience 17:431–439. DOI: https://doi. 
org/10.1038/nn.3645, PMID: 24487232

Xie Y, Duan Y, Cheng A, Jiang P, Cueva CJ, Yang GR. 2023. Natural constraints explain working memory capacity 
limitations in sensory- cognitive models. bioRxiv. DOI: https://doi.org/10.1101/2023.03.30.534982

Yoo AH, Klyszejko Z, Curtis CE, Ma WJ. 2018. Strategic allocation of working memory resource. Scientific 
Reports 8:16162. DOI: https://doi.org/10.1038/s41598-018-34282-1, PMID: 30385803

Zaslavsky N, Kemp C, Regier T, Tishby N. 2018. Efficient compression in color naming and its evolution. PNAS 
115:7937–7942. DOI: https://doi.org/10.1073/pnas.1800521115, PMID: 30021851

Zhang W, Luck SJ. 2009. Sudden death and gradual decay in visual working memory. Psychological Science 
20:423–428. DOI: https://doi.org/10.1111/j.1467-9280.2009.02322.x, PMID: 19320861

https://doi.org/10.7554/eLife.79450
https://doi.org/10.1038/s41467-019-11298-3
http://www.ncbi.nlm.nih.gov/pubmed/31358740
https://doi.org/10.1152/jn.00402.2014
http://www.ncbi.nlm.nih.gov/pubmed/25376781
https://doi.org/10.1037/xlm0000328
http://www.ncbi.nlm.nih.gov/pubmed/27668485
https://doi.org/10.1016/j.neuroimage.2013.08.065
http://www.ncbi.nlm.nih.gov/pubmed/24018303
https://doi.org/10.1126/science.1825731
http://www.ncbi.nlm.nih.gov/pubmed/1825731
https://doi.org/10.1523/JNEUROSCI.3440-17.2018
http://www.ncbi.nlm.nih.gov/pubmed/29703786
https://doi.org/10.1073/pnas.2004306117
http://www.ncbi.nlm.nih.gov/pubmed/32788373
https://doi.org/10.1126/science.2392679
http://www.ncbi.nlm.nih.gov/pubmed/2392679
https://doi.org/10.1109/9780470544242.ch21
https://doi.org/10.1167/17.14.10
http://www.ncbi.nlm.nih.gov/pubmed/29234786
https://doi.org/10.1037/a0028467
http://www.ncbi.nlm.nih.gov/pubmed/22612165
https://doi.org/10.1037/a0029856
http://www.ncbi.nlm.nih.gov/pubmed/22946744
https://doi.org/10.1167/15.3.2
http://www.ncbi.nlm.nih.gov/pubmed/25740875
https://doi.org/10.1016/j.cognition.2016.03.020
https://doi.org/10.1016/j.cognition.2016.03.020
http://www.ncbi.nlm.nih.gov/pubmed/27107330
https://doi.org/10.1126/science.aaq1118
http://www.ncbi.nlm.nih.gov/pubmed/29748284
https://doi.org/10.3758/s13423-014-0652-z
http://www.ncbi.nlm.nih.gov/pubmed/24825306
https://doi.org/10.1038/9173
http://www.ncbi.nlm.nih.gov/pubmed/10448216
https://doi.org/10.1523/JNEUROSCI.1018-18.2018
http://www.ncbi.nlm.nih.gov/pubmed/30006363
https://doi.org/10.1371/journal.pcbi.1006488
http://www.ncbi.nlm.nih.gov/pubmed/30321172
https://doi.org/10.1007/s42113-021-00123-0
https://doi.org/10.1007/s42113-021-00123-0
https://doi.org/10.7554/eLife.34963
http://www.ncbi.nlm.nih.gov/pubmed/30084356
https://doi.org/10.1016/s0166-2236(00)01868-3
http://www.ncbi.nlm.nih.gov/pubmed/11476885
https://doi.org/10.1167/4.12.11
http://www.ncbi.nlm.nih.gov/pubmed/15669916
https://doi.org/10.1038/nn.3645
https://doi.org/10.1038/nn.3645
http://www.ncbi.nlm.nih.gov/pubmed/24487232
https://doi.org/10.1101/2023.03.30.534982
https://doi.org/10.1038/s41598-018-34282-1
http://www.ncbi.nlm.nih.gov/pubmed/30385803
https://doi.org/10.1073/pnas.1800521115
http://www.ncbi.nlm.nih.gov/pubmed/30021851
https://doi.org/10.1111/j.1467-9280.2009.02322.x
http://www.ncbi.nlm.nih.gov/pubmed/19320861


 Research article      Neuroscience

Jakob and Gershman. eLife 2023;12:e79450. DOI: https://doi.org/10.7554/eLife.79450  25 of 25

Zylberberg J, Strowbridge BW. 2017. Mechanisms of persistent activity in cortical circuits: Possible neural 
substrates for working memory. Annual Review of Neuroscience 40:603–627. DOI: https://doi.org/10.1146/ 
annurev-neuro-070815-014006, PMID: 28772102

https://doi.org/10.7554/eLife.79450
https://doi.org/10.1146/annurev-neuro-070815-014006
https://doi.org/10.1146/annurev-neuro-070815-014006
http://www.ncbi.nlm.nih.gov/pubmed/28772102

	Rate-­distortion theory of neural coding and its implications for working memory
	Editor's evaluation
	Introduction
	Results
	The channel design problem
	Optimal population coding
	Gain adaptation
	Multiple stimuli
	Memory maintenance
	Implications for working memory
	Continuous report with circular stimuli
	Set size
	Prioritization
	Timing
	Serial dependence
	Systematic biases
	Quantitative model comparison
	Variations in gain


	Discussion
	Relationship to other models
	Open questions

	Methods
	Set size and stimulus prioritization
	Timing effects
	Serial dependence increases with RI and decreases with ITI
	Build-up of serial dependence
	Serial dependence increases with set size
	Continuous reports are biased toward high-frequency colors
	Simulations and model fitting
	Dynamics of memory precision and neural gain
	Source code

	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Decision letter and Author response

	Additional files
	Supplementary files

	References


