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The role of dopamine (DA) as a reward prediction error (RPE) signal in reinforcement learning (RL) tasks
has been well-established over the past decades. Recent work has shown that the RPE interpretation can also
account for the effects of DA on interval timing by controlling the speed of subjective time. According to
this theory, the timing of the dopamine signal relative to reward delivery dictates whether subjective time
speeds up or slows down: Early DA signals speed up subjective time and late signals slow it down. To test
this bidirectional prediction, we reanalyzed measurements of dopaminergic neurons in the substantia nigra
pars compacta of mice performing a self-timed movement task. Using the slope of ramping dopamine
activity as a readout of subjective time speed, we found that trial-by-trial changes in the slope could be
predicted from the timing of dopamine activity on the previous trial. This result provides a key piece of
evidence supporting a unified computational theory of RL and interval timing.

Keywords: dopamine, interval timing, temporal difference learning, reward prediction error

How does dopamine (DA) influence time perception? This
question has been an active subject of debate. While some research-
ers have found that DA increases the rate at which subjective time
progresses (Lake &Meck, 2013; Maricq & Church, 1983; Maricq et
al., 1981), others have found the exact opposite effect (Soares et al.,
2016). Recent work has developed a coherent framework to explain
these phenomena (Mikhael & Gershman, 2019), which relates these
timing effects to the role of DA in signaling reward prediction error
(RPE; for reviews, see Gershman et al., 2014; Petter et al., 2018).
According to the RPE hypothesis, DA reports the difference

between received and expected reward. In a seminal experiment,
Schultz et al. (1997) presented monkeys with repeated rewards (after
a fixed delay from a cue) and simultaneously recorded from putative
DA neurons in the midbrain. The authors found that an unexpected

reward elicited a burst of DA neuron activity, but that, when the
reward was expected, it no longer elicited DA neuron activity.
Furthermore, a reward omission at the time of expected reward
elicited a dip in activity. These experimental observations are
consistent with the RPE hypothesis, and have been buttressed by
several decades of research (e.g., Bayer & Glimcher, 2005; Eshel et
al., 2015; Glimcher, 2011; Niv & Schoenbaum, 2008; Roesch et al.,
2007; Schultz et al., 1997; Steinberg et al., 2013). The computa-
tional importance of this hypothesis is due to the role of RPE in
reinforcement learning (RL) algorithms, specifically the temporal
difference learning algorithm (Sutton, 1988; Sutton & Barto, 2018).
An agent can use RPEs to learn long-term reward predictions:
Unexpected rewards indicate that the agent should increase its
future expectation of reward, while omissions of expected rewards
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indicate that the animal should decrease its future expectation of
reward.
The RPE hypothesis does not by itself explain the role of DA in

interval timing, since it is compatible with many different assump-
tions about the representation of time (Daw et al., 2006; Ludvig
et al., 2008; Starkweather et al., 2017). However, the choice of time
representation can have a dramatic influence on the effectiveness of
RL algorithms. If there is some limit on the precision with which
time can be represented, then the limited representational capacity
should be concentrated on time scales (or more generally time
intervals) that are important for reward prediction. Since animals
need to deal with multiple time scales for different tasks, this
representation should be rescalable. For example, if time is repre-
sented by the firing rate of “time cells” tuned to particular time
intervals (e.g., Bright et al., 2020; MacDonald et al., 2011; Salz
et al., 2016; Tiganj et al., 2017), then the tuning functions should
stretch or compress if the task-relevant interval is increased or
decreased, respectively. Evidence for task-dependent rescaling
has been reported in both striatum (Mello et al., 2015) and hippo-
campus (Shimbo et al., 2021).
Mikhael and Gershman (2019) formalized this rescaling idea in a

temporal difference learning model of DA. The key idea was to treat
the time scale of the temporal representation as a parameter that
could be adjusted by the RPE signal. In this way, DA could modify
the speed of subjective time in order to optimize reward prediction.
In particular, the model predicted a bidirectional plasticity rule for
the timing parameter: Positive RPEs that occur before expected
reward delivery should tend to increase the speed of subjective time,
while positive RPEs that occur after expected reward delivery
should decrease the speed of subjective time (see a derivation of
this result in the next section). Mikhael and Gershman (2019)
showed that this model could account for a number of dopaminergic
effects on interval timing behavior.
In this article, we undertake a more direct test of the bidirectional

plasticity hypothesis, using DA measurements collected from mice
performing a self-timed movement task (Hamilos et al., 2021). In this
task, mice received a reward for licks performed after a fixed interval.
Even after extensive training, the authors observed ramping DA
signals and variable trial-to-trial lick times. Furthermore, the authors
found that steeply rising DA ramps preceded early lick times and
slowly rising DA ramps preceded late lick times. Based on our earlier
theoretical work (Gershman, 2014; Kim et al., 2020; Mikhael et al.,
2022), we argue that the slope of DA ramps is a proxy for the speed of
subjective time. We then ask whether the timing of DA activity
relative to the time of reward delivery predicts the ramp slope on the
subsequent trial in accordance with the bidirectional plasticity rule.
In contrast to other deterministic RL paradigms in which RPEs

eventually flatten out to zero because the task is perfectly learned
(the rewards are not surprising anymore), in the present setup the
RPE will remain nonzero even after the task is well-learned. Indeed,
previous studies have shown that dopamine signals are sensitive to
the predicted timing of reward delivery (Fiorillo et al., 2008;
Hollerman & Schultz, 1998; Starkweather et al., 2017). Thus,
even after having learned to expect a reward at time T, the mice
have to rely on their noisy estimate of the current time to determine
whether they truly are at T, and a reward received at that moment
will elicit some positive RPE. In other words, despite having learned
the reward’s magnitude, the animals cannot make a perfect predic-
tion about the reward’s timing.

Method

The Computational Problem

We construe animals as facing the problem of learning to predict
long-term reward, or value, defined as the expected discounted
future return (cumulative reward):

Vt = E

�XT
k=0

γkrt+k
�
, (1)

where t indexes intra-trial time (t = 0 corresponds to trial onset), rt is
the reward received at time t, T is the trial duration, and γ ∈ (0, 1) is a
discount factor. In Hamilos et al. (2021), the animal receives a single
reward r at timeT in each trial, so Equation 1 can be simplywritten as:

Vt = γT−tr: (2)

The value function and RPE are illustrated in Figure 1A. If, as
commonly assumed, the rewards follow a Markov process, then
Equation 1 can be written recursively:

Vt = rt + γVt+1: (3)

This recursive expression is known as the Bellman equation
(Bellman, 1957), and is the basis for efficient RL algorithms
such as temporal difference learning (Sutton, 1988).

Note that, for simplicity, we do not directly model action selection
in this article. Of course, action selection is a critical aspect of the
tasks facing animals in the experiment that we model. However, for
the purposes of predicting dopamine responses, we will show that
we do not need to invoke the additional complexity entailed by a
model of action. We leave this more complete model as a task for
future work.

Temporal Difference Learning Model

To learn the value function Vt, we first define a parametric
function class and then present a learning algorithm that adjusts
the parameters to minimize the discrepancy between the estimator
and the true value function. A standard parametrization is the linear
function approximator, which approximates the value function as a
linear projection of time-varying features (Ludvig et al., 2008, 2012;
Schultz et al., 1997):

V̂ t =
X
d

wdxd,t , (4)

where xd,t is the dth feature at time t, andwd is the feature weight. For
example, a feature may represent the presence (xd,t = 1) or absence
(xd,t = 0) of a stimulus at time t. Alternatively, it may represent the
physical proximity to a reward location.

The weights wd are updated by gradient descent to reduce the
mismatch between Vt and V̂ t:

Δwd = αδt∇wd
V̂ t , (5)

where α ∈ (0, 1) is the learning rate, ∇wd
V̂ t = xd,t is the gradient of

V̂ t with respect to the weight wd, and δt is the RPE:

δt = rt + γV̂ t+1 − V̂ t : (6)
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Notice that δt equals the mismatch between the agent’s estimates
of the right-hand side and left-hand side of Equation 3. When δt = 0
on average, V̂ t = Vt, and hence the value is well-learned. Otherwise,
the agent continues to update V̂ t to minimize δt.
The shape of δt after a task is well-learned will depend on the

choice of features. For instance, Gershman (2014) showed that, for
a single feature taking sufficiently convex shape across states, δt
will exhibit the shape of a ramp (see also Lloyd & Dayan, 2015;
Mikhael et al., 2022; Morita & Kato, 2014, for alternative approx-
imation architectures that result in ramps, such as time cells). For
simplicity, we will assume in what follows a single feature x taking
sufficiently convex shape across subjective time (the animal’s
estimate of elapsed time since the beginning of the trial). This will
produce ramping (Figure 1A); a mathematical analysis of this
point appears below. Convexity can arise in a variety of ways, but
is broadly consistent with the idea that temporal sensitivity is
higher around temporal landmarks such as motor responses and
reward delivery. A more biologically realistic model could gener-
ate this differential sensitivity by narrowing tuning curves of time-
encoding neurons selective for short-time intervals relative to
these temporal landmarks (see Ludvig et al., 2008; Mikhael &
Gershman, 2019).
It is important to note that perfectly learning a value function

depends on having a perfect internal clock (i.e., subjective and
objective time coincide). Instead, animals are noisy timers, and are
furthermore subject to Weber’s law, which asserts that the standard
deviation of an animal’s temporal estimate increases linearly with
the elapsed time (Church & Meck, 2003; Gibbon, 1977; Staddon,
1965). This has the effect of “blurring” the value function in
proportion to the animal’s temporal uncertainty. Because the
RPE is a function of value, it too gets blurred, and this blurring
determines the shape of the ramp (Figure 1B). Specifically, the
predicted DA response is computed as the convolution of the RPE
with a Gaussian temporal uncertainty kernel determined byWeber’s
law:

DAt =
X
τ
δτN ðτ; t,ðβηtÞ2Þ, (7)

where β is the Weber fraction.1 In our previous work (Mikhael et al.,
2022), we showed that temporal uncertainty can explain diverse DA

dynamics across different tasks, including positive ramps, negative
ramps, flat functions, and even nonmonotonic functions.

The key addition of the model presented in Mikhael and
Gershman (2019) is to account for the role of DA in modulating
the speed of subjective time. We formalize this speed variable as a
parameter η that rescales the relationship between objective and
subjective time: τ = ηt. Thus, when η increases, subjective time (τ)
runs faster. Importantly, we can view η as another parameter in the
function approximation architecture, and optimize it via gradient
descent just as we did for the weights:

Δη = αηδt t
∂ V̂ t

∂ τ
, (8)

where αη is the learning rate. Note here that the derivative of V̂ t is
greater than zero roughly before reward delivery but less than zero
afterward. It follows that the contribution of the RPE is bidirec-
tional: DA signals occurring before reward time should increase η,
and DA signals occurring after reward time should decrease it
(Figure 1C).

Choice of Feature Shape

Our choice of feature x results in a ramping RPE. To see this, note
that an RPE ramps if and only if x

::
+ ẋ ln γ > 0 (Mikhael et al.,

2022). Intuitively, by Equation 6, rt = 0 during the trial but prior to
receiving reward. With a single feature, it follows that δt =
γV̂ t+1 − V̂ t = wðγxt+1 − xtÞ . Because γ is close to 1, the term in
the parentheses is approximately the derivative of x. This term, and
hence the RPE, ramps when its own derivative is positive, that is,
when the second derivative of x is positive ðx:: > 0Þ. The second term
in our exact requirement accounts for the more general case when γ
is not equal to 1 (see Mikhael et al., 2022, for a full derivation of this
result). Using our choices of x and γ (specified below), the require-
ment is satisfied for t < 58, which is a superset of the temporal
domain chosen for our simulations.
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Figure 1
Simulations of Ramping RPEs With a Temporal Difference Learning Model

(A) (B) (C)

Note. (A) Convex value function (black) and ramping RPE (gray). (B) Simulated DA signal (black) and estimated DA ramp (linear regression between trial
start and reward delivery, gray). The DA signal corresponds to the RPE under temporal uncertainty (Method section). (C) Partial derivative of the estimated
value function with respect to time, which gives the bidirectional update rule of the pacemaker rate η its qualitative shape. DA = dopamine; RPE = reward
prediction error.

1 The assumption of Weber noise is not necessary for the results we
present in this article, but we include it here for consistency with past work.
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Simulation Parameters

We have chosen γ= 0.95, T= 40, β = 0.2, rT = 1 at time t= T and
rt= 0 otherwise, τ= t, αη= 0.01, and a single feature xt= kt4 if t≤ T,
and 0 otherwise, with k = rTT

−4.

Data Analysis

We obtained F(t) by removing outliers (>15 standard deviations
from the mean) from the raw GCaMP6f measurements by interpo-
lation, as done in Hamilos et al. (2021). To correct for bleaching, we

then computed the DA dF/F signal as dF
F ðtÞ = FðtÞ−F0ðtÞ

F0ðtÞ , where F0(t)

is a 200 s moving average of F(t), as reported in the original study.
Subsequently, we divided each trial into n time bins. We choseM =
20 time bins of length 0.85 s each to account for the trial length of 17 s.
We aligned the time bins around the first-lick time in each trial n and
computed the average DA level Dn,m within each time-bin m. We
computed the baseline DA level for each trial, defined as the average
DA level between lamp-off (a signal indicating the imminence of the
cue, see Hamilos et al., 2021) and cue, and subtracted it from each
corresponding time bin.
Then, we computed the DA ramp slope sn during the trial by

fitting a straight line to the DA signal from 0.7 s postcue to 0.6 s
prelick. These buffer lengths were taken from Hamilos et al. (2021)
to eliminate the effect of perception- and motion-induced transients
in the signal. Hence, in order to guarantee the presence of a start and
end point for the computation of the ramp slope, we restricted our
analysis to trials containing a lick.
We then defined an = sn+1 − sn, the difference in DA slope

between the current trial n and the next trial n + 1, which is a neural
proxy for the change in η from the current trial to the next. We then
solved the linear system Db = a, where b is the contribution of each
bin to the change in DA ramp slope. The solution to this optimiza-
tion problem (equivalent to maximum likelihood estimation of a
linear regression model) is b̂ = ðD⊤DÞ−1D⊤a . This analysis was
done for each mouse individually as well as on pooled data.
Furthermore, for each rewarded trial, we averaged DA levels in a

window 500ms around the cue, 500 ms around the lick, and over the
whole trial from cue to lick. We classified the trials as high-DA-
around-cue or high-DA-around-lick if the average DA level in the
corresponding time window was larger than the mean trial DA. We
then plotted DA ramps of trials following immediately after high-
DA-around-cue and high-DA-around-lick conditions.

Source Code

All simulations and analyses were performed using Julia, Version
1.6.2. Source code can be found at https://github.com/amvjakob/
dopa-rpe-interval-timing.

Results

Hamilos et al. (2021) trained mice to perform an interval timing
task by initiating a self-timed lick at least 3.3 s after a start-timing
cue. First licks occurring during the reward window (3.3–7 s after
the cue) were rewarded with juice, while no reward was delivered on
early lick (<3.3 s) and nolick (>7 s) trials. The total duration for one
run of the task was set to 17 s. Despite highly variable first lick times
from trial to trial, the authors found that DA signals ramped up

during the self-timed interval following the start-timing cue. Cru-
cially, they found that the DA ramp slope was highly predictive of
lick time, with larger slopes being associated with earlier lick times.
They also found that higher baseline DA levels correlated with
greater ramp slopes and earlier lick times, consistent with the view
that higher DA levels lead to faster clocks.

To examine our prediction of a bidirectional effect of DA on the
speed of subjective time, we reanalyzed the data from Hamilos et al.
(2021). Using the linear regression model detailed in the Method
section, we studied the association between DA levels at particular
points in time during a trial and the ramp slope (a measurable proxy
for the speed of subjective time) on the subsequent trial. In this way,
we could extract a detailed temporal plasticity function and compare
it to the theoretical plasticity function (Figure 1C).

Figure 2A shows the estimated regression coefficients for each
time bin. Consistent with our model predictions, the estimated
coefficients revealed that early DA signals in a trial had a positive
effect on the change in ramp slope, and late signals had a negative
effect. In other words, an increase in DA activity shortly after cue
presentation resulted in an increase in ramp slope on the next trial,
whereas an increase in DA activity shortly after licking resulted in a
decrease in ramp slope on the next trial. Note that in comparison to
Figure 1C, the bidirectional plasticity function appears shifted
relative to lick time, which may stem from greater temporal
uncertainty—leading to more value function blurring—or from
measurement delays. Since the shape of the bidirectional plasticity
function horizontally scales with trial duration, we also report the
estimated regression coefficients for trials pooled by lick time
(Figure 3). The function’s qualitative shape remained the same
regardless of trial duration or reward delivery.

Due to the slow drift in the behavioral timing distribution occur-
ring between the beginning and end of sessions, higher baseline
amplitude at the beginning of the session may lead to steeper slopes
on nearby trials generally, without any causal effect. Although
baseline normalization of activity on each trial should diminish
the effect of slow drift, it is possible that residual drift is driving our
results.We reasoned that if the slow drift hypothesis is correct, then it
should also produce the same results when run on trials in the reverse
order. We therefore reran the regression analysis on the reversed
sequence of trials, which eliminated the relationship between within-
trial DA signaling and ramp slope change (Figure 2B). This analysis,
coupled with baseline normalization, rules out the slow temporal
confound.

Figure 2C illustrates how ramp slope changes as a function of DA
activity at different points during the previous trial. When DA
activity is high following cue presentation, the ramp on the next
trial tends to be steeper compared to when DA activity is high
immediately before licking. Our model asserts that this difference
arises from the proposed bidirectional plasticity rule.

Discussion

By reanalyzing recordings of dopaminergic neurons in mice
performing a self-timed movement task (Hamilos et al., 2021),
we have shown that DA has a bidirectional effect on the speed
of subjective time. We showed that the contribution of DA on the
current trial to the change in DA ramp slope (a proxy for the speed of
subjective time) on the next trial exhibits the predicted bidirectional
shape: DA signals occurring before reward time tend to increase the
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DA ramp slope on the next trial, and those occurring after reward
time tend to decrease it, consistent with our RL theory of temporal
optimization (Mikhael & Gershman, 2019). This theory was previ-
ously invoked by Hamilos and Assad (2020) to suggest that the
observed DA ramps may qualitatively correspond to an RPE
(derivative-like) computation, but that study left open the question
of why time rescaling itself should vary across trials and how
previous DA signals affect the current clock speed. Here, we address
this question by showing how time rescaling can be endogenized by
a model that optimizes the rescaling parameter using temporal
difference learning.

For simplicity, we have chosen a feature in our temporal differ-
ence model that produces ramps. However, the cause of ramps—and
how they relate mechanistically to the flow of time—remains an
open question. Indeed, DA ramps have been observed in various
operant conditioning tasks, both during the preaction period (Totah
et al., 2013) as well as during action execution (Howe et al., 2013).
Ramps have furthermore been observed in classical conditioning
tasks that provided cues indicating proximity to reward (Kim et al.,
2020). Recent work has suggested that these ramps occur as a
consequence of sensory feedback (Mikhael et al., 2022), although
they may also be captured by a “forgetting” mechanism within an
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Figure 2
Bidirectional Update Rule

(A) (B)

(C)

Note. (A) Empirical bidirectional plasticity function for rewarded trials with a lick 3.3–7 s postcue, for each mouse (colors) and for pooled data (black),
smoothed with a 1.7 s moving average filter. The function’s qualitative shape is not sensitive to the precise choice of lick interval (see Figure 3). Early
(late) DA signals correspond to an increase (decrease) in DA ramp slope on the next trial. Shaded area represents standard error of the mean. Regression
coefficient of bin after cue and bin immediately before lick are statistically different, t(11)= 8.7, p < 10−5. (B) Empirical plasticity function for reversed
trial order to rule out a possible slow temporal confound, smoothed with a 1.7 s moving average filter. Regression coefficient of bin after cue and bin
immediately before lick are not statistically different, t(11)=−0.4, p= .68. (C) Average DA signal for trials with a lick 3.5–4 s postcue, smoothed with a
1 s moving average kernel and classified by DA level on the previous trial—high DA around the cue (average DA in 500 ms-window around the cue is
larger than average trial DA, black) and high DA around licking (average DA in 500 ms-window around the lick is larger than average trial DA, gray).
The dashed lines correspond to the average DA signal, while the thick lines are fitted to the signal between the gray rectangles, which represent buffers
after the cue and before the lick, as given in Hamilos et al. (2021) to eliminate perception- and motion-related transients. A high-DA-around-cue
condition (n= 573) corresponds to a steeper DA ramp slope on the next trial, as compared to a high-DA-around-lick condition, n= 4,805; t(5376)= 6.3,
p < 10−9. DA = dopamine. See the online article for the color version of this figure.
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RL framework (i.e., a decay term in the value update; Morita &
Kato, 2014), or by state-dependent biases such as an overestimation
of time or distance to reward, if the biases decrease with proximity to
the reward (Mikhael et al., 2022).
Our interpretation of the data fromHamilos et al. (2021) rests on a

reverse inference about ramp slope: Steeper ramps indicate faster

subjective time. Is this reverse inference valid? One cause for doubt
is that some past work on ramping suggests that it occurs in the
absence of any obvious demand on time-keeping. For example,
Howe et al. (2013) found ramping in a T-maze task, where it was
unnecessary for the animal to keep track of elapsed time. Moreover,
ramp slope is modulated by other factors, such as learning stage and
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Figure 3
Bidirectional Update Rule for Different Lick Times

Note. Empirical bidirectional plasticity function for all trials containing a lick, pooled by lick time and smoothed with a 1.7 s moving average filter. Vertical
dashed lines are plotted at mean cue time (left) and lick time (right). The plasticity function’s qualitative shape is the same irrespective of the trial duration or
outcome (early lick or rewarded). Shaded area represents standard error of the mean. See the online article for the color version of this figure.
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task engagement (Farrell et al., 2021; Guru et al., 2020). Our goal in
this article is not to provide a comprehensive theory of ramping (see
Mikhael et al., 2022), but rather to leverage one factor determining
ramp slope. Even if it is true that ramp slope is also determined by
other factors, this does not logically invalidate the reverse inference
as long as these other factors are not highly correlated with the
timing factor. The fact that we are able to predict trial-by-trial
variations in ramp slope based on a timing model suggests that this
assumption is plausible.
While the model we put forward provides a joint explanation for

the role of DA in time perception and reward prediction, the precise
mechanisms through which DA signals are translated into move-
ments remain unclear. Recent work has investigated the effect of DA
activity on action initiation thresholding (Coddington & Dudman,
2018, 2019), thus providing another dimension to the role of DA in
driving motor behavior.
Our model of timing optimization by RL can potentially be related

to several existing models of interval timing. In the striatal beat
frequency model, cortical neurons are assumed to fire in an oscillat-
ing pattern with different phases (Matell & Meck, 2004). It follows
that the neurons active during both the reward-predicting cue and the
reward represent a neural code for the interval to be timed. Assuming
that DA affects the firing frequency of the cortical oscillators, our
bidirectional update rule provides a compatible extension to this
model to account for interval timing modulation effects.
Alternatively, in pacemaker-accumulator models, time is repre-

sented by counting the number of ticks emitted by a noisy clock
(Gibbon et al., 1997; Zakay & Block, 1997). Given the similarity
between the ticking of the clock and the successive transition from
state to state—typical for an RL model—as a representation of the
passing of time, our model provides a natural extension to the PA
framework: By letting the rescaling parameter η influence the speed
of the clock or the tick number threshold, DA-mediated interval
timing modulation can be accounted for. Despite the differences
between both classes of models of timing presented here, it is
interesting to note that the parametrized rescaling of a quantity
through a bidirectional plasticity rule will endow the model with the
ability to accurately account for interval timing modulation effects.
In conclusion, we have shown here that RL and interval timing are

critically linked by a common dopaminergic mechanism. To our
knowledge, this is the first theory that captures the bidirectional
effect of DA on interval timing. More broadly, the idea that predic-
tion errors can drive representation learning may extend beyond
interval timing to other domains (Alexander &Gershman, 2021). An
important project for future work will be to examine empirically
whether the same dopaminergic signal serves this function across
domains.
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