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Abstract
Human beliefs have remarkable robustness in the face of disconfirmation. This robustness is often explained as the product
of heuristics or motivated reasoning. However, robustness can also arise from purely rational principles when the reasoner
has recourse to ad hoc auxiliary hypotheses. Auxiliary hypotheses primarily function as the linking assumptions connecting
different beliefs to one another and to observational data, but they can also function as a “protective belt” that explains away
disconfirmation by absorbing some of the blame. The present article traces the role of auxiliary hypotheses from philosophy
of science to Bayesian models of cognition and a host of behavioral phenomena, demonstrating their wide-ranging
implications.
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“No theory ever agrees with all the facts in its domain,
yet it is not always the theory that is to blame.
Facts are constituted by older ideologies, and a clash
between facts and theories may be proof of progress.”
Feyerabend (1975)

Introduction

Since the discovery of Uranus in 1781, astronomers were
troubled by certain irregularities in its orbit, which appeared
to contradict the prevailing Newtonian theory of gravitation.
Then, in 1845, Le Verrier and Adams independently
completed calculations showing that these irregularities
could be entirely explained by the gravity of a previously
unobserved planetary body. This hypothesis was confirmed
a year later through telescopic observation, and thus an 8th
planet (Neptune) was added to the solar system. Le Verrier
and Adams succeeded on two fronts: they discovered a
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new planet, and they rescued the Newtonian theory from
disconfirmation.

Neptune is a classic example of what philosophers of
science call an ad hoc auxiliary hypothesis (Popper, 1959;
Hempel, 1966). All scientific theories make use of auxiliary
assumptions that allow them to interpret experimental
data. For example, an astronomer makes use of optical
assumptions to interpret telescope data, but one would not
say that these assumptions are a core part of an astronomical
theory; they can be replaced by other assumptions as the
need arises (e.g., when using a different measurement
device), without threatening the integrity of the theory. An
auxiliary assumption becomes an ad hoc hypothesis when it
entails unconfirmed claims that are specifically designed to
accommodate disconfirmatory evidence.

Ad hoc auxiliary hypotheses have long worried philoso-
phers of science, because they suggest a slippery slope
toward unfalsifiability (Harding, 1976). If any theory can
be rescued in the face of disconfirmation by changing aux-
iliary assumptions, how can we tell good theories from
bad theories? While Le Verrier and Adams were celebrated
for their discovery, many other scientists were less for-
tunate. For example, in the late 19th century, Michelson
and Morley reported experiments apparently contradict-
ing the prevailing theory that electromagnetic radiation
is propagated through a space-pervading medium (ether).
FitzGerald and Lorentz attempted to rescue this theory by
hypothesizing electrical effects of ether that were of exactly
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the right magnitude to produce the Michelson and Mor-
ley results. Ultimately, the ether theory was abandoned,
and Popper (1959) derided the FitzGerald–Lorentz explana-
tion as “unsatisfactory” because it “merely served to restore
agreement between theory and experiment.”

Ironically, Le Verrier himself was misled by an ad
hoc auxiliary hypothesis. The same methodology that had
served him so well in the discovery of Neptune failed
catastrophically in his “discovery” of Vulcan, a hypothetical
planet postulated to explain excess precession in Mercury’s
orbit. Le Verrier died convinced that Vulcan existed, and
many astronomers subsequently reported sightings of the
planet, but the hypothesis was eventually discredited by
Einstein’s theory of general relativity, which accounted
precisely for the excess precession without recourse to an
additional planet.

The basic problem posed by these examples is how to
assign credit or blame to central hypotheses vs. auxiliary
hypotheses. An influential view, known as the Duhem–
Quine thesis (reviewed in the next section), asserts that
this credit assignment problem is insoluble—central and
auxiliary hypotheses must face observational data “as a
corporate body” (Quine, 1951). This thesis implies that
theories will be resistant to disconfirmation as long as they
have recourse to ad hoc auxiliary hypotheses.

Psychologists recognize such resistance as a ubiquitous
cognitive phenomenon, commonly viewed as one among
many flaws in human reasoning (Gilovich, 1991). However,
as the Neptune example attests, such hypotheses can also
be instruments for discovery. The purpose of this paper
is to discuss how a Bayesian framework for induction
deals with ad hoc auxiliary hypotheses (Dorling, 1979;
Earman, 1992; Howson & Urbach, 2006; Strevens, 2001),
and then to leverage this framework to understand a
range of phenomena in human cognition. According to the
Bayesian framework, resistance to disconfirmation can arise
from rational belief-updating mechanisms, provided that an
individual’s “intuitive theory” satisfies certain properties:
a strong prior belief in the central hypothesis, coupled
with an inductive bias to posit auxiliary hypotheses that
place high probability on observed anomalies. The question
then becomes whether human intuitive theories satisfy these
properties, and several lines of evidence suggest the answer
is yes.1 In this light, humans are surprisingly rational.
Human beliefs are guided by strong inductive biases about
the world. These biases enable the development of robust
intuitive theories, but can sometimes lead to preposterous
beliefs.

1As a caveat, we should keep in mind that whether a particular intuitive
theory satisfies these properties will naturally vary across domains and
an individual’s experience.

Underdetermination of theories:
the Duhem–Quine thesis

Theories (both scientific and intuitive) are webs of
interconnected hypotheses about the world. Thus, one
often cannot confirm or disconfirm one hypothesis without
affecting the validity of the other hypotheses. How, then,
can we establish the validity of an individual hypothesis?
(Duhem, 1954) brought this issue to the foreground in his
famous treatment of theoretical physics:

The physicist can never subject an isolated hypothesis
to experimental test, but only a whole group of
hypotheses; when the experiment is in disagreement
with his predictions, what he learns is that at least
one of the hypotheses constituting this group is
unacceptable and ought to be modified; but the
experiment does not designate which one should be
changed. (p. 187)

While Duhem restricted his attention to theoretical physics,
Quine (1951) took the same point to its logical extreme,
asserting that all beliefs about the world are underdeter-
mined by observational data:

The totality of our so-called knowledge or beliefs,
from the most casual matters of geography and history
to the profoundest laws of atomic physics or even of
pure mathematics and logic, is a man-made fabric,
which impinges on experience only along the edges.
Or, to change the figure, total science is like a field
of force whose boundary conditions are experience.
A conflict with experience at the periphery occasions
readjustments in the interior of the field. But the
total field is so underdetermined by its boundary
conditions, experience, that there is much latitude
of choice as to what statements to reevaluate in the
light of any single contrary experience. No particular
experiences are linked with any particular statements
in the interior of the field, except indirectly through
considerations of equilibrium affecting the field as a
whole. (p. 42-43)

In other words, one cannot unequivocally identify particular
beliefs to revise in light of surprising observations. Quine’s
conclusion was stark: “The unit of empirical significance is
the whole of science” (p. 42).

Some philosophers have taken undetermination to invite
a radical critique of theory-testing. If evidence cannot
adjudicate between theories, then non-empirical forces,
emanating from the social and cultural environment of
scientists, must drive theory change. For example, the
“research programs” of Lakatos (1976) and the “paradigms”
of Kuhn (1962) were conceived as explanations of why
scientists often stick to a theory despite disconfirming
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evidence, sometimes for centuries. Lakatos posited that
scientific theories contain a hard core of central theses
that are immunized from refutation by a “protective belt”
of auxiliary hypotheses. On this view, science does not
progress by falsification of individual theories, but rather
by developing a sequence of theories that progressively
add novel predictions, some of which are corroborated by
empirical data.

While the radical consequences of underdetermination
have been disputed (e.g., Grünbaum, 1962; Laudan, 1990),
the problem of credit assignment remains a fundamental chal-
lenge for the scientific enterprise. I now turn to a Bayesian
approach to induction that attempts to answer this challenge.

The Bayesian answer to underdetermination

Probability theory offers a coherent approach to credit
assignment (Howson & Urbach, 2006). Instead of assigning
all credit to either central or auxiliary hypotheses, prob-
ability theory dictates that credit should be apportioned
in a graded manner according to the “responsibility” each
hypothesis takes for the data. More formally, let h denote
the central hypothesis, a denote the auxiliary hypothesis,
and d denote the data. After observing d, the prior proba-
bility of the conjunct ha, P(ha), is updated to the posterior
distribution P(ha|d) according to Bayes’ rule:

P(ha|d) = P(d|ha)P (ha)

P (d|ha)P (ha) + P(d|¬(ha))P (¬(ha))
, (1)

where P(d|ha) is the likelihood of the data under ha, and
¬(ha) denotes the negation of ha.

The sum rule of probability allows us to ascertain the
updated belief about the central hypothesis, marginalizing
over all possible auxiliaries:

P(h|d) = P(ha|d) + P(h¬a|d). (2)

Likewise, the marginal posterior over the auxiliary is given by:

P(a|d) = P(ha|d) + P(¬ha|d). (3)

This formulation is the crux of the Bayesian answer to
underdetermination (Dorling, 1979; Earman, 1992; Howson
& Urbach, 2006; Strevens, 2001). A Bayesian scientist does
not wholly credit either the central or auxiliary hypotheses,
but rather distributes the credit according to the marginal
posterior probabilities.

This analysis does not make a principled distinction
between central and auxiliary hypotheses: they act conjunc-
tively, and are acted upon in the same way by the probability
calculus. What ultimately matters for distinguishing them,
as illustrated below, is the relative balance of evidence for
the different hypotheses. Central hypotheses will typically
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Fig. 1 Simulations. Ratio of posterior to prior probability of the
central hypothesis h as a function of the probability of the auxiliary
hypothesis a given h, plotted for three different priors for the central
hypothesis. Adapted from Strevens (2001)

be more entrenched due to a stronger evidential founda-
tion, and thus auxiliary hypotheses will tend to be the
element’s of Quine’s “total field” that readjust in the face of
disconfirmation.

I will not address here the philosophical controversies that
have surrounded the Bayesian analysis of auxiliary hypotheses
(Fitelson &Waterman, 2005; Mayo, 1997). My goal is not to
establish the normative adequacy of the Bayesian analysis, but
rather to explore its implications for cognition—in particular,
how it helps us understand resistance to belief updating.

Following Strevens (2001), I illustrate the dynamics of
belief by assuming that the data d has its impact on the
posterior probability of the central hypothesis h solely
through its falsification of the conjunct ha2:

P(h|d) = P(h|¬(ha)). (4)

In other words, the likelihood is 0 for ha and 1 for all
other conjuncts. Under this assumption, Strevens obtains the
following expression:

P(h|d) = 1 − P(a|h)

1 − P(a|h)P (h)
P (h). (5)

This expression has several intuitive properties, illustrated
in Fig. 1. As one would expect, the posterior probability
of h always decreases following disconfirmatory data
d. The decrease in the posterior probability is inversely
proportional to P(h) and directly proportional to P(a|h).3

2Strevens (2001) notes that this expression does not hold if the data
affect the posterior in ways other than falsifying the conjunct ha,
although such scenarios are probably rare.
3We can think of this conditional prior as specifying strength of
belief in an auxiliary given that one already believes a particular
central hypothesis. In other words, it assumes that different central
hypotheses invoke different distributions over auxiliaries. This seems
intuitive insofar as auxiliaries will tend to be highly theory-specific
(you don’t hypothesize auxiliaries about baseball when contemplating
cosmology).
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Thus, a central hypothesis with high prior probability
relative to the auxiliary hypothesis [i.e., high P(h)/P (a|h)]
will be relatively robust to disconfirmation, pushing blame
onto the auxiliary. But if the auxiliary has sufficiently high
prior probability, the central hypothesis will be forced to
absorb the blame. It is important to see that the robustness
to disconfirmation conferred by a strong prior is not a bias
due to motivated reasoning (Kunda, 1990)—it is a direct
consequence of rational inference. This will be a key point
reiterated throughout the paper.4

One might wonder how this analysis determines whether
an auxiliary hypothesis is ad hoc or not. The answer is that
it doesn’t: the only distinguishing features of hypotheses are
their prior probabilities and their likelihoods. Thus, on this
account “ad hoc” is simply a descriptive label that we use to
individuate hypotheses that have low prior probability and
high likelihoods. By the same token, a “good” versus “bad”
ad hoc auxiliary hypothesis is determined entirely by the
prior and likelihood.

Robustness of intuitive theories

One strong assumption underlying this analysis is worth
highlighting, namely that the likelihood of h¬a, marginal-
izing over all alternative auxiliaries (ak), is equal to 1:

P(d|h¬a) =
∑

ak �=a

P (d|hak)P (ak) = 1. (6)

I will refer to this as the consistency assumption, because
it states that only auxiliary hypotheses that are highly
consistent with the data will have non-zero probability.
Mathematically, this means that P(ak) > 0 if and only if
P(d|hak) = 1. Ad hoc auxiliary hypotheses, by design,
have the property that P(d|hak) ≈ 1. But why should these
hypotheses be preferred over others? One way to justify
this assumption is to stipulate that there is uncertainty about
the parameters of the distribution over auxiliary hypotheses.
The prior over these parameters can express a preference
for redistributing probability mass (i.e., assigning credit) in
particular ways once data are observed.

Concretely, let θ denote the parameter vector of the
multinomial distribution over auxiliaries. Because we have
uncertainty about θ in addition to h and a, we need to
marginalize over θ to obtain the posterior P(h|d):

P(h|d) =
∫

θ

P (h|d, θ)P (θ |d)dθ . (7)

As detailed in the Appendix, choosing P(θ) to be a sparse
Dirichlet distribution has the effect that P(d|h¬a) ≈ 1. A

4This is not to deny that some forms of motivated reasoning exist, but
only to assert particular ways in which robustness to disconfirmation
arises from rational inference.

sparse Dirichlet distribution places most of its probability
mass on multinomial distributions with low entropy (i.e.,
those that favor a small set of auxiliary hypotheses). After
observing d, the marginal distribution P(ak|d) will place
most of its probability mass on auxiliary hypotheses that are
consistent with the data. In other words, the assumption of
sparsity licenses us to discount all the auxiliary hypotheses
that are inconsistent with the data. The remaining auxiliaries
may appear as though they are ad hoc, but in fact they are
the only ones that survive the cull of rational inference.

In addition to sparsity, the consistency assumption
requires deterministic hypotheses: P(d|hak) must be close
to 1 if ak is to be considered plausible (see Appendix). If
hypotheses are allowed to probabilistically predict the data,
then P(d|h¬a) < 1. In summary, sparsity and determinism
jointly facilitate the robustness of theories. In this section, I
will argue that these properties characterize human intuitive
theories.

Sparsity

The sparsity assumption—that only a few auxiliary
hypotheses have high probability—has appeared throughout
cognitive science in various guises. Klayman and Ha (1987)
posited a minority phenomenon assumption, according to
which the properties that are characteristic of a hypothesis
tend to be rare. For example, AIDS is rare in the popula-
tion but highly correlated with HIV; hence observing that
someone has AIDS is highly informative about whether they
have HIV. Klayman and Ha (1987) invoked this assump-
tion to justify the “positive test strategy” prevalent in human
hypothesis testing. If people seek confirmation for their
hypotheses, then failure to observe the confirmatory evi-
dence will provide strong evidence against the hypothesis
under the minority phenomenon assumption. Oaksford and
Chater (1994) used the same idea (what they called the rar-
ity assumption) to explain the use of the positive test strategy
in the Wason card selection task. Violations of the sparsity
assumption, or contextual information that changes per-
ceived sparsity, causes people to shift away from the positive
test strategy Hendrickson, Navarro, and Perfors (2016) and
McKenzie, Ferreira, Mikkelsen, McDermott, and Skrable
(2001). Experiments on hypothesis evaluation tell a simi-
lar story: the evidential impact of observations is greater
when they are rare (Mckenzie & Mikkelsen, 2000; McKen-
zie &Mikkelsen, 2007), consistent with the assumption that
hypotheses are sparse.

Beyond hypothesis testing and evaluation, evidence
suggests that people tend to generate sparse hypotheses
when presented with data. For example, Perfors and Navarro
(2009) asked participants to generate hypothetical number
concepts applicable to the range [1, 1000], and found that
most of these hypotheses were sparse. For example, a
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common hypothesis was prime numbers, with a sparsity
of 0.168 (i.e., 16.8% of numbers in [0, 1000] are primes).
Overall, 83% of the generated hypotheses had a sparsity
level of 0.2 or less.5

Sparsity has also figured prominently in theories of
perception. Olshausen and Field (1996) accounted for the
tuning properties of receptive fields in primary visual cortex
by assuming that they represent a sparse set of image
components. Similar sparse coding ideas have been applied
to auditory (Hromádka, DeWeese, & Zador, 2008) and
olfactory (Poo & Isaacson, 2009) cortical representations.
Psychologists have likewise posited that humans parse
complex objects into a small set of latent components with
distinctive visual features (Austerweil & Griffiths, 2013;
Biederman, 1987).

Is sparsity a reasonable assumption? (Navarro & Perfors,
2011) attempted to answer this question by demonstrating
that (under some fairly generic assumptions) sparsity is
a consequence of family resemblance: hypotheses tend
to generate data that are more similar to one another
than to data generated by other hypotheses. For example,
members of the same natural category tend to have more
overlapping features relative to members of other natural
categories (Rosch, 1978). Navarro and Perfors (2011)
further showed that natural categories are empirically
sparse. Thus, the sparsity assumption may be inevitable if
hypotheses describe natural categories.

Determinism

The determinism assumption—that hypotheses tend to
generate data near-deterministically—is well supported as a
property of intuitive theories. Some of the most compelling
evidence comes from studies of children showing that
children will posit a latent cause to explain surprising
events, rather than attribute the surprising event to inherent
stochasticity (Schulz & Sommerville, 2006; Muentener &
Schulz, 2014; Wu et al., 2015; Saxe et al., 2005; Buchanan
& Sobel, 2011). For example, Schulz and Sommerville
(2006) presented 4-year-olds with a stochastic generative
cause and found that the children inferred an inhibitory
cause to “explain away” the stochasticity. Children also
expect latent agents to be the cause of surprising motion
events, even in the absence of direct evidence for an agent
(Saxe et al., 2005). Like children, adults also appear to
prefer deterministic hypotheses (Mayrhofer & Waldmann,
2015; Frosch & Johnson-Laird, 2011).6 The prevalent

5Note that there are a number of reasons why people might generate
sparse hypotheses besides having a sparse prior, such as computational
limits (cf. Dasgupta et al., 2017).
6Some evidence suggests that people can adaptively determine which
causal theory (deterministic or probabilistic) is most suitable for a
given domain (Griffiths & Tenenbaum, 2009).

use of the positive test strategy in information selection
has also been justified using the determinism assumption
(Austerweil & Griffiths, 2011).

Lu, Yuille, Liljeholm, Cheng, and Holyoak (2008) have
proposed a “generic prior” for causal strength that combines
the sparsity and determinism principles. A priori, causes
are expected to be few in number and potent in their
generative or preventative effects. Lu et al. (2008) showed
quantitatively that this prior, when employed in a Bayesian
framework for causal induction, provides a good description
of human causal inferences.7 Buchanan, Tenenbaum, and
Sobel (2010) developed an alternative deterministic causal
model based on an edge replacement process, which creates
a branching structure of stochastic latent variables. This
model can explain violations of conditional independence
in human judgments in terms of the correlations induced by
the latent variables.

In summary, sparsity and determinism appear to be cen-
tral properties of intuitive theories. These properties offer
support for the particular Bayesian analysis of auxiliary
hypotheses elaborated above, according to which robust-
ness of theories derives from the ability to explain away
disconfirmatory data by invoking auxiliary hypotheses.

Implications

Having established the plausibility of the Bayesian analysis,
we now explore some of its implications for human
cognition. The central theme running through all of these
examples is that the evidential impact of observations is
contingent on the auxiliary hypotheses one holds; changing
one’s beliefs about auxiliary hypotheses will change the
interpretation of observations. Thus, observations that
appear to contradict a central hypothesis can be “explained
away” by changing auxiliary hypotheses, and this change
is licensed by the Bayesian analysis under the specific
circumstances detailed above. If, as I have argued, intuitive
theories have the right sort of properties to support this
“protective belt” of auxiliary hypotheses (cf. Lakatos,
1976), then we should expect robustness to disconfirmation
across many domains.

Before proceeding, it is important to note that many of
the phenomenon surveyed below can also be explained by
other theoretical frameworks, such as motivated cognition
(Kunda, 1990). The purpose of this section is not to
develop a watertight case for the Bayesian framework—
which would require more specific model specifications

7Yeung and Griffiths (2015) presented empirical evidence favoring
a preference for (near) determinism but not sparsity, though other
experiments have suggested that both sparsity and determinism are
required to explain human causal inferences (Powell, Merrick, Lu, &
Holyoak, 2016).

Psychon Bull Rev (2019) 26:13–28 17



for different domains and new experiments to test rival
predictions—but rather to show that evidence for robustness
to disconfirmation does not by itself indicate irrationality;
it is possible to conceive of a perfectly rational agent who
exhibits such behavior. Whether humans really are rational
in this way is an unresolved empirical question.8

The theory-ladenness of observation

“It is quite wrong to try founding a theory on
observable magnitudes alone. In reality the very
opposite happens. It is the theory which decides what
we can observe.” (Albert Einstein)

Drawing a comparison between the history of science
and perceptual psychology, Kuhn (1962) argued that
observation reports are not theory-neutral: “What a man
sees depends both upon what he looks at and also upon
what his previous visual-conceptual experience has taught
him to see” (p 113). For example, subjects who put
on goggles with inverting lenses see the world upside-
down, but after a period of profound disorientation lasting
several days, their perception adapts and they see the world
right-side-up (Stratton, 1897). Thus, the very same retinal
image produces starkly different percepts depending on the
preceding perceptual history.

More important for Kuhn’s argument are examples where
percepts, or at least their semantic interpretations, are
influenced by the observer’s conceptual framework:

Looking at a contour map, the student sees lines on
paper, the cartographer a picture of a terrain. Looking
at a bubble-chamber photograph, the student sees
confused and broken lines, the physicist a record
of familiar subnuclear events. Only after a number
of such transformations of vision does the student
become an inhabitant of the scientist’s world, seeing
what the scientist sees and responding as the scientist
does. The world that the student then enters is not,
however, fixed once and for all by the nature of
the environment, on the one hand, and of science,
on the other. Rather, it is determined jointly by
the environment and the particular normal-scientific
tradition that the student has been trained to pursue.
(Kuhn, 1962, pp. 111–112)

This is essentially a restatement of the view, going back to
Helmholtz (1867), that perception is a form of “unconscious

8Indeed, there has been a vigorous debate in psychology about the
validity of Bayesian rationality as a model of human cognition (e.g.,
Jones and Love, 2011). Here I am merely asking the reader to consider
the conditional claim that if people are Bayesian with sparse and
deterministic intuitive theories, then they would exhibit robustness to
disconfirmation.

inference” or “problem-solving” (Gregory, 1970; Rock,
1983) and formalized by modern Bayesian theories of
perception (Knill & Richards, 1996).9

There is one particular form of theory-ladenness that will
concern us here, where changes in auxiliary hypotheses
alter the interpretation of observations. Disconfirmation
can be transformed into confirmation (e.g., the example of
Neptune), or vice versa. When Galileo first reported his
observations of mountains on the moon, the critical response
focused not on the observations per se but on the auxiliary
assumptions mediating their validity. Since the telescope
was an unfamiliar measurement device, the optical theory
underlying its operation was not taken for granted. In fact,
it was non-trivial even to verify Galileo’s observations,
because many of the other telescopes available in 1610
were of insufficient quality to resolve the same lunar details
observed by Galileo. Thus, it was possible at that time to
dispute the evidential impact of Galileo’s observations for
astronomical theories (see Bovens and Hartmann (2002) for
a detailed analysis of how beliefs about the unreliability of
measurement instruments affects reasoning about auxiliary
hypotheses).

Although Galileo’s observations were ultimately vindi-
cated, there are other historical examples in which obser-
vations were ultimately discredited. For example, Ruther-
ford and Pettersson conducted similar experiments in the
1920s on the emission of charged particles under radioactive
bombardment. Pettersson’s assistants observed flashes on a
scintillation screen (evidence for emission) whereas Ruther-
ford’s assistants did not. The controversy was subsequently
resolved when Rutherford’s colleague, James Chadwick,
demonstrated that Pettersson’s assistants were unreliable:
they reported indistinguishable rates of flashes even under
experimental conditions where no particles could have been
emitted. The strategy of debunking claims by undermining
auxiliary hypotheses has been used effectively throughout
scientific history, from Benjamin Franklin’s challenge of
Mesmer’s “animal magnetism” to the revelation that obser-
vations of neutrinos exceeding the speed of light were due
to faulty detectors.10

It is tempting to see a similar strategy at work in contempo-
rary political and scientific debate. In response to negative
news coverage, the Trump administration promulgated the

9It is important to distinguish this view from the stronger thesis that
no theory-neutral stage of perceptual analysis exists (e.g., Churchland,
1979). As pointed out by Fodor (1984), we can accept that the semantic
interpretation of percepts is theory-dependent without abandoning the
possibility that there are some cognitively impenetrable aspects of
perception.
10How can this debunking strategy succeed when theorists can produce
new auxiliary hypotheses ad infinitum? The Bayesian analysis makes
provision for this: new auxiliaries will only be considered if they have
appreciable probability, P(a|h), relative to the prior, P(h).
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idea that the mainstream media is publishing “fake news”—
i.e., reports that are inaccurate, unreliable, or biased. This
strategy is powerful because it does not focus on the verac-
ity of any one report, but instead attempts to undermine
faith in the entire “measurement device.” A similar strategy
was used for many years by creationists to undermine faith
in evolutionary biology, by the tobacco industry to under-
mine faith in scientific studies of smoking’s health effects,
and by the fossil fuel industry to undermine faith in cli-
mate science. By “teaching the controversy,” these groups
attempt to dismantle the auxiliary hypotheses on which the
validity of science relies. For example, the release of stolen
e-mails from the Climatic Research Unit at the University
of East Anglia suggested an alternative auxiliary—selective
reporting or manipulation of data—that could explain away
evidence for human-induced climate change. Indeed, a sub-
sequent survey of Americans showed that over half agreed
with the statements “Scientists changed their results to make
global warming appear worse than it is” and “Scientists
conspired to suppress global warming research they dis-
agreed with” (Leiserowitz, Maibach, Roser-Renouf, Smith,
& Dawson, 2013).

A well-studied form of theory-ladenness is the phe-
nomenon of belief polarization: individuals presented with
the same data will sometimes update their beliefs in oppo-
site directions. In a classic experiment, Lord, Ross, and
Lepper (1979) asked supporters and opponents of the death
penalty to read about two fictional studies—one supporting
the effectiveness of the death penalty as a crime deterrent,
and one supporting its ineffectiveness. Subjects who sup-
ported the death penalty subsequently strengthened their
belief in the effectiveness of the death penalty after read-
ing the two studies, whereas subjects who opposed the
death penalty subsequently strengthened their belief in its
ineffectiveness. A large body of empirical work on belief
polarization was interpreted by many social psychologists
as evidence of irrational belief updating (e.g., Nisbett and
Ross, 1980; Kunda, 1990). However, another possibility
is that belief polarization might arise from different aux-
iliary hypotheses about the data-generating process (Jern
et al., 2014; Cook & Lewandowsky, 2016; Koehler, 1993;
Jaynes, 2003) For example, Jern et al. (2014) showed how
the findings of Lord et al. (1979) could be accounted
for within a rational Bayesian framework. If participants
assume the existence of research bias (distortion or selective
reporting of findings to support a preconceived conclusion),
then reading a study about the ineffectiveness of the death
penalty may strengthen their belief in research bias, corre-
spondingly increasing their belief in the effectiveness of the
death penalty. Similarly, Cook and Lewandowsky (2016)
demonstrated that beliefs in bias of scientific reporting can
lead to discounting of climate change evidence. One les-
son to draw from these examples is that effective persuasion

requires more than simply conveying information confirm-
ing or disconfirming central hypotheses; it requires alter-
ation of the auxiliary hypotheses that refract information,
rendering perception theory-laden.

Optimism

Many individuals exhibit a systematic “optimism bias”
(Sharot, 2011a), overestimating the likelihood of positive
events in the future.11 This bias affects beliefs about many
real-world domains, such as the probability of getting
divorced or being in a car accident. One of the puzzles of
optimism is how it can be maintained; even if we start with
initial optimism (cf. Stankevicius et al., 2014), why doesn’t
reality force our beliefs to eventually calibrate themselves?

A clue to this puzzle comes from evidence that people
tend to update their beliefs more in response to positive
feedback compared to negative feedback (Eil & Rao, 2011;
Sharot & Garrett, 2016). Eil and Rao (2011) dubbed
this the “good news-bad news effect.” For example, Eil
and Rao asked subjects to judge the rank of their IQ
and physical attractiveness and then received feedback
(a pairwise comparison with a randomly selected subject
in the same experiment). While subjects conformed to
Bayesian updating when they received positive feedback
(i.e., when their rank was better than the comparand), they
systematically discounted the negative feedback. Similar
results have been found using a variety of feedback types
(Sharot et al., 2011b; Korn et al., 2012; Lefebvre et al.,
2017).

One reason people may discount negative feedback is that
they wish to blunt its “sting” (Eil & Rao, 2011; Köszegi,
2006). Consistent with this account, Eil and Rao found that
subjects who believed that their ranks were near the bottom
of the distribution were willing to pay to avoid learning
their true rank. An alternative account, drawing from our
Bayesian analysis of auxiliary hypotheses, is that people are
being fully Bayesian, but their internal model is different
from the one presupposed by Eil and Rao. Specifically,
let h denote the hypothesis that a person is “high rank,”
and let a denote the auxiliary hypothesis that the feedback
is “valid” (i.e., from an unbiased source). It is intuitive
that subjects might discount negative feedback by positing
invalid evidence sources; for example, if a person judges
you to be unattractive, you could discount this feedback

11The generality of this effect has been the subject of controversy,
with some authors (Shah, Harris, Bird, Catmur, and Hahn (2016))
finding no evidence for an optimism bias. However, these null
results have themselves been controversial: correcting confounds in
the methodology (Garrett & Sharot, 2017), and using model-based
estimation techniques (Kuzmanovic & Rigoux, 2017), have indicated
a robust optimism bias.
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by positing that this person is exceptionally harsh (judges
everyone to be unattractive) or is having a bad day.

Suppose we have two people who have the same prior
on validity, P(a|h), but different priors on their rank, P(h).
The Bayesian analysis developed above (see Fig. 1) predicts
that the person who assigns higher prior probability to
being high rank will update less in response to negative
feedback. Consistent with this prediction, individuals with
higher dispositional optimism were more likely to maintain
positive expectations after experiencing losses in a gambling
task (Gibson & Sanbonmatsu, 2004). The Bayesian analysis
also predicts that two people with different priors on
validity but the same priors on rank will exhibit different
patterns of asymmetric updating, with the weaker prior on
validity leading to greater discounting of negative feedback.
In support of this prediction, Gilovich and colleagues
(Gilovich, 1983; Gilovich & Douglas, 1986) found that
people who observed an outcome that appeared to have
arisen from a statistical “fluke” were more likely to discount
this outcome when it was negative, presumably since the
feedback was perceived to be invalid. The same kind
of discounting can lead to overconfidence in financial
markets, where investors are learning about their abilities;
by taking too much credit for their gains and not enough for
their losses, they become overconfident (Gervais & Odean,
2001).

A related phenomenon arises in studies of cheating
and lying (see Gino, Norton, and Weber (2016) for a
review). When people obtain a favorable outcome through
unscrupulous means, they tend to attribute this success to
their personal ability. For example, Chance, Norton, Gino,
and Ariely (2011) administered an IQ test to participants
that included an answer key at the bottom so that they could
optionally “check their work.” Compared to participants
who did not have the answer key, those with the answer key
not only scored more highly, but also predicted (incorrectly)
that they would score more highly on a subsequent test. One
way to interpret this result is that participants had a strong
prior belief in their ability, which led them to discard the
auxiliary hypothesis that cheating aided their score, thereby
inflating estimates of their own ability.

The Bayesian analysis predicts that changing auxiliary
assumptions will systematically alter updating asymmetries
in response to good and bad news. This prediction was
recently tested using a two-armed bandit paradigm in
which subjects played the role of prospectors choosing
between two mines in search of gold (Dorfman, Bhui,
Hughes, & Gershman, 2018). Each mine was associated
with a fixed probability of yielding gold or rocks. In
the “benevolent” condition, the subjects were told that a
tycoon would intervene on a proportion of trials, replacing
the contents of the mine with gold. Importantly, subjects
were not told when the tycoon was intervening; they

therefore had to infer whether a reward was the result of
the intervention or reflected the true underlying reward
probability. Because the tycoon would never replace the
gold with rocks (the negative outcome), observing rocks
was strictly more informative about the underlying reward
probability. Subjects in this case were expected to show a
pessimism bias, learning more from negative outcomes than
from positive outcomes. In contrast, they were expected
to show an optimism bias (learning more from positive
outcomes than from negative outcomes) in an “adversarial”
condition, where a “bandit” replaced the contents of the
mine with rocks on a proportion of trials. Computational
modeling of the choice data revealed an overall optimism
bias, perhaps reflecting the dispositional factors discussed
above, but also showed that subjects altered their bias
across conditions in accordance with the Bayesian analysis,
learning more from negative outcomes in the benevolent
condition compared to the adversarial condition.

Controllability

In settings where people might have some control over
their observations, beliefs about rank or personal ability
are closely connected to beliefs about controllability (Huys
& Dayan, 2009). If a utility-maximizing agent believes
that the world is controllable, then it is reasonable to
assume that positive outcomes are more likely than negative
outcomes, and hence negative outcomes are more likely
to be explained away by alternative auxiliary hypotheses.
For example, if you believe that you are a good test-
taker (i.e., you have some control over test outcomes),
then you may attribute poor test performance to the test
difficulty rather than revising your beliefs about your own
proficiency; this attribution is less plausible if you believe
that you are a bad test-taker (i.e., you lack control over test
outcomes). Thus, controllability is an important auxiliary
hypothesis for interpreting feedback, with high perceived
controllability leading to optimistic beliefs (Harris, 1996;
Weinstein, 1980). The link between controllability and rank
can be accommodated within the Bayesian framework,
since we model the conditional distribution of the auxiliary
hypothesis (controllability) given the central hypothesis
(rank). This link is supported by studies showing that
mood induction can bring about changes in beliefs about
controllability Alloy, Abramson, and Viscusi (1981).

This analysis of controllability might provide insight
into the psychopathology of asymmetric updating in
response to positive and negative feedback. Individuals
with depression do not show an optimism bias (so-called
“depressive realism” Moore and Fresco, 2012), and Korn,
Sharot, Walter, Heekeren, and Dolan (2014) demonstrated
that this may arise from symmetric (unbiased) updating.
One possibility is that this occurs because individuals
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with depression believe that the world is relatively
uncontrollable—the key idea in the “learned helplessness”
theory of depression (Seligman, 1975; Huys & Dayan,
2009; Abramson et al., 1978), which implies that they
cannot take credit for positive outcomes any more than
they can discount negative outcomes. Another possibility
is that individuals with depression have a lower prior on
rank, which would also lead to more symmetric updating
compared to non-depressed individuals.

When placed in objectively uncontrollable situations,
people will nonetheless perceive that they have control
(Langer, 1975). According to the Bayesian analysis, this can
arise when it is possible to discount unexpected outcomes
in terms of an auxiliary hypothesis (e.g., fluke events,
intrinsic variability, interventions by alternative causes)
instead of reducing belief in control. As pointed out by
Harris and Osman (2012), illusions of control typically
arise in situations where cues indicate that controllability
is plausible. For example, Langer (1975) showed that cues
suggesting that one’s opponent is incompetent inflate the
illusion of control in a competitive setting, possibly by
increasing the probability that the poor performance of the
opponent is due to incompetence rather than the random
nature of the outcomes. Another study showed that giving
subjects an action that was in fact disconnected from the
sequence of outcomes nonetheless inflated their perception
that the sequence was controllable Ladouceur and Sévigny
(2005). More generally, active involvement increases the
illusion of control, as measured by the propensity for
risk-taking: Davis, Sundahl, and Lesbo (2000) found that
gamblers in real-world casinos placed higher bets on their
own dice rolls than on others’ dice rolls (see also Gilovich
and Douglas, 1986; Fernandez-Duque and Wifall, 2007).

The basic lesson from all of these studies is that
beliefs about controllability and rank can insulate an
individual from the disconfirming effects of negative
feedback. This response to negative feedback is rational
under the assumption that alternative auxiliary hypotheses
(e.g., statistical flukes) can absorb the blame.

The true self

Beliefs about the self provide a particularly powerful
example of resistance to disconfirmation. People make
a distinction between a “superficial” self and a “true”
self, and these selves are associated with distinct patterns
of behavior (Strohminger, Knobe, & Newman, 2017). In
particular, people hold a strong prior belief that the true
self is good (the central hypothesis h in our terminology).
This proposition is supported by several lines of evidence.
First, positive, desirable personality traits are viewed as
more essential to the true self than negative, undesirable
traits (Haslam, Bastian, & Bissett, 2004). Second, people

feel that they know someone most deeply when given
positive information about them Christy et al. (2017). Third,
negative changes in traits are perceived as more disruptive
to the true self than positive changes (Molouki & Bartels,
2017; De Freitas et al., 2017).

The key question for our purposes is what happens when
one observes bad behavior: do people revise their belief in
the goodness of the actor’s true self? The answer is largely
no. Bad behavior is attributed to the superficial self, whereas
good behavior is attributed to the true self (Newman, Bloom,
& Knobe, 2014). This tendency is true even of individuals
who generally have a negative attitude toward others, such
as misanthropes and pessimists (De Freitas et al., 2016).
And even if people are told explicitly that an actor’s true
self is bad, they are still reluctant to see the actor as truly
bad (Newman, De Freitas, & Knobe, 2015). Conversely,
observing positive changes in behavior (e.g., becoming an
involved father after being a deadbeat) are perceived as
indicating “self-discovery” (Bench et al., 2015; De Freitas
et al., 2017).

These findings support the view that belief in the true
good self shapes the perception of evidence about other
individuals: evidence that disconfirms this belief tends to be
discounted. The Bayesian framework suggests that this may
occur because people infer alternative auxiliary hypotheses,
such as situational factors that sever the link between the
true self and observed behavior (e.g., he behaved badly
because is mother just died). However, this possibility
remains to be studied directly.

Stereotype updating

Stereotypes exert a powerful influence on our thinking
about other people, but where do they come from? We are
not born with strong beliefs about race, ethnicity, gender,
religion, or sexual orientation; these beliefs must be learned
from experience. What is remarkable is the degree to
which stereotypes, once formed, are stubbornly resistant to
updating (see Hewstone (1994) for a review). As Lippmann
(1922) remarked, “There is nothing so obdurate to education
or criticism as the stereotype.”

One possible explanation is that stereotypes are immu-
nized from disconfirmation by flexible auxiliary hypothe-
ses. This explanation fits well with the observation that
individuals whose traits are inconsistent with a stereotype
are segregated into “subtypes” without diluting the stereo-
type (Weber & Crocker, 1983; Hewstone, 1994; Johnston &
Hewstone, 1992). For example, Weber and Crocker (1983)
found that stereotypes were updated more when inconsistent
traits were dispersed across multiple individuals rather than
concentrated in a few individuals, consistent with the idea
that concentration of inconsistencies licenses the auxiliary
hypothesis that the individuals are outliers, and therefore
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do not reflect upon the group as a whole. An explicit sort-
ing task supported this conclusion: inconsistent individuals
tended to be sorted into separate groups (see also Johnston
and Hewstone, 1992).

These findings have been simulated by a recurrent con-
nectionist model of stereotype judgment (Van Rooy, Van
Overwalle, Vanhoomissen, Labiouse, & French, 2003).
The key mechanism underlying subtyping is the compe-
tition between “group” units and “individual” units, such
that stereotype-inconsistent information will be captured
by individual units, provided the inconsistencies are con-
centrated in specific individuals. When the inconsistencies
are dispersed, the group units take responsibility for them,
updating the group stereotype accordingly. Another find-
ing, also supported by connectionist modeling (Queller &
Smith, 2002), is that individuals with moderate inconsis-
tencies cause more updating than individuals with extreme
inconsistencies. The logic is once again that extreme incon-
sistencies cause the individual to be segregated from the
group stereotype.

Extinction learning

Like stereotypes, associative memories—in particular fear
memories—are difficult to extinguish once formed. For
example, in a typical fear conditioning paradigm, a rat is
exposed to repeated tone-shock pairings; after only a few
pairings, the rat will reliably freeze in response to the tone,
indicating its anticipation of an upcoming shock. It may
take dozens of tone-alone pairings to return the animal to
its pre-conditioning response to the tone, indicating that
extinction is much slower than acquisition. Importantly,
the fact that the rat has returned to baseline does not mean that it
has unlearned the fear memory. Under appropriate conditions,
the rat’s fear memorywill return (Bouton, 2004). For example,
simply waiting a month before testing the rat’s response to
the tone is sufficient to reveal the dormant fear, a phenomenon
known as spontaneous recovery (Rescorla, 2004).

As with stereotype updating, one possibility is that condi-
tioned fear is resistant to inconsistent information presented
during extinction because the extinction trials are regarded
as outliers or possibly subtypes. Thus, although fear can
be temporarily reduced during extinction, it is not erased
because the subtyping process effectively immunizes the
fear memory from disconfirmation. In support of this view,
there are suggestive parallels with stereotype updating.
Analogous to the dispersed inconsistency conditions studied
by Weber and Crocker (1983) and Johnston and Hewstone
(1992), performing extinction in multiple contexts reduces the
return of fear (Chelonis et al., 1999; Gunther et al., 1998).
Analogous to the moderate versus extreme inconsistency
manipulation (Queller & Smith, 2002), gradually reducing
the frequency of tone-shock pairs during extinction prevents

the return of fear (Gershman, Jones, Norman, Monfils, &
Niv, 2013), possibly by titrating the size of the error sig-
nal driving memory updating (see also Gershman et al.,
2014). More generally, it has been argued that effective
memory updating procedures must control the magnitude
of inconsistency between observations and the memory-
based expectation, in order to prevent new memories from
being formed to accommodate the inconsistent information
(Gershman, Monfils, Norman, & Niv, 2017).

Conspiracy theories

As defined by Sunstein and Vermeule (2009), a conspiracy
theory is “an effort to explain some event or practice by
reference to the machinations of powerful people, who
attempt to conceal their role (at least until their aims are
accomplished)” (p. 205). Conspiracy theories are interesting
from the perspective of auxiliary hypotheses because they
often require a spiraling proliferation of auxiliaries to stay
afloat. Each tenuous hypothesis needs an additional tenuous
hypothesis to lend it plausibility, which in turn needs more
tenuous hypotheses, until the theory embraces an enormous
explanatory scope. For example, people who believe that the
Holocaust was a hoax need to explain why the population
of European Jews declined by 6 million during World War
II; if they claim that the Jews immigrated to Israel and other
countries, then they need to explain the discrepancy with
immigration statistics, and if they claim that these statistics
are false, then they need to explain why they were falsified,
and so on.

Because conspiracy theories tend to have an elaborate
support structure of auxiliary hypotheses, disconfirming
evidence can be effectively explained away, commonly
by undermining the validity of the evidence source. As
Sunstein and Vermeule (2009) put it:

Conspiracy theories often attribute extraordinary
powers to certain agents—to plan, to control others,
to maintain secrets, and so forth. Those who believe
that those agents have such powers are especially
unlikely to give respectful attention to debunkers,
who may, after all, be agents or dupes of those
who are responsible for the conspiracy in the first
instance. . . The most direct governmental technique
for dispelling false (and also harmful) beliefs—
providing credible public information—does not
work, in any straightforward way, for conspiracy
theories. This extra resistance to correction through
simple techniques is what makes conspiracy theories
distinctively worrisome. (p. 207)

This description conforms to the Bayesian theory’s pre-
diction that a sparse, deterministic set of ad hoc auxiliary
hypotheses can serve to explain away disconfirming data. In
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particular, conspiracy theorists use a large set of auxiliary
hypotheses that perfectly (i.e., deterministically) predict the
observed data and only the observed data (sparsity). This
“drive for sense-making” (Chater & Loewenstein, 2016) is
rational if the predictive power of a conspiracy theory out-
weighs the penalty for theory complexity—the Bayesian
“Occam’s razor” (MacKay, 2003).

Some evidence suggests that the tendency to endorse
conspiracy theories is a personality trait or cognitive style:
people who endorse one conspiracy theory tend to also
endorse other conspiracy theories Lewandowsky, Oberauer,
and Gignac (2013)and Goertzel (1994) . One possibility
is that this reflects parametric differences in probabilistic
assumptions across individuals, such that people with very
sparse and deterministic priors will be more likely to find
conspiracy theories plausible.

Religious belief

While conspiracy theories are promulgated by relatively
small groups of people, religious beliefs are shared by
massive groups of people. Yet most of these people have
little or no direct evidence for God: few have witnessed
a miracle, spoken to God, or wrestled with an angel in
their dreams. In fact, considerable evidence, at least on the
surface, argues against belief in God, such as the existence
of evil and the historical inaccuracy of the Bible.

One of the fundamental problems in the philosophy of
religion is to understand the epistemological basis for reli-
gious beliefs—are they justified (Swinburne, 2004), or are
they fictions created by psychological biases and cultural
practices (Boyer, 2003)? Central to this debate is the status
of evidence for the existence of God, such as reports of mir-
acles. Following Hume (1748), a miracle is conventionally
defined as “a transgression of a law of nature by a partic-
ular volition of the Deity”(p. 173). Hume famously argued
that the evidence for miracles will always be outweighed
by the evidence against them, since miracles are one-time
transgressions of “natural” laws that have been established
on the basis of countless observations. It would require
unshakeable faith in the testimony of witnesses to believe in
miracles, whereas in fact (Hume argues) testimony typically
originates among uneducated, ignorant people.

As a number of philosophers (e.g., Earman, 2000;
Swinburne, 1970) have pointed out, Hume’s argument is
weakened when one considers miracles through the lens of
probability. Even if the reliability of individual witnesses
was low, a sufficiently large number of such witnesses
should be providing strong evidence for a miracle. Likewise,
our beliefs about natural laws are based on a finite amount
of evidence, possibly from sources of varying reliability, and
hence are subject to the same probabilistic considerations.
Whether or not the probabilistic analysis supports the

existence of God depends on the amount and quality of
evidence (both from experiment and hearsay) relative to the
prior. Indeed, the same analysis has been used to deny the
existence of God Howson (2011).

The probabilistic analysis of miracles provides another
example of auxiliary hypotheses in action. The evidential
impact of alleged miracles depends on auxiliary hypotheses
about the reliability of testimony. If one is a religious
believer, one can discount the debunking of miracles by
questioning the evidence for natural laws. For example,
some creationists argue that the fossil record is fake.
Conversely, a non-believer can discount the evidence
for miracles by questioning the eyewitness testimony, as
Hume did. One retort to this view is that symmetry
is misleading: the reliability of scientific evidence is
much stronger than the historical testimony (e.g., Biblical
sources). However, if one has a strong a priori belief in
an omnipotent and frequently inscrutable God, then it may
appear more plausible that apparent disconfirmations are
simply examples of this inscrutability. In other words, if one
believes in intelligent design, then scientific evidence that
contradicts religious sources may be interpreted as evidence
for our ignorance of the true design.12

Conceptual change in childhood

Children undergo dramatic restructuring of their knowledge
during development, inspiring analogies with conceptual
change in science (Carey, 2009; Gopnik, 2012). According
to this “child-as-scientist” analogy, children engage in
many of the same epistemic practices as scientists:
probabilistically weighing evidence for different theories,
balancing simplicity and fit, inferring causal relationships,
carrying out experiments. If this analogy holds, then we
should expect to see signs of resistance to disconfirmation
early in development. In particular, Gopnik and Wellman
(1992) have argued that children form ad hoc auxiliary
hypotheses to reason about anomalous data until they can
discover more coherent alternative theories.

For example, upon being told that the earth is round,
some children preserve their preinstructional belief that
the earth is flat by inferring that the earth is disk-shaped
(Vosniadou & Brewer, 1992). After being shown two blocks
of different weights hitting the ground at the same time
when dropped from the same height, some middle-school
students inferred that they hit the ground at different times
but the difference was too small to observe, or that the

12This point is closely related to the position known as skeptical theism
(McBrayer, 2010), which argues that our inability to apprehend God’s
reasons for certain events (e.g., evil) does not justify the claim that
no such reasons exist. This position undercuts inductive arguments
against the existence of God that rely on the premise that no reasons
exist for certain events.
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blocks were in fact (contrary to the teacher’s claims) the
same weight (Champagne et al., 1985). Children who hold
a geometric-center theory of balancing believe that blocks
must be balanced in the middle; when faced with the
failure of this theory applied to uneven blocks, children
declare that the uneven blocks are impossible to balance
(Karmiloff-Smith & Inhelder, 1975).

Experimental work by Schulz, Goodman, Tenenbaum,
and Jenkins (2008) has illuminated the role played by
auxiliary hypotheses in children’s causal learning. In these
experiments, children viewed contact interactions between
various blocks, resulting in particular outcomes (e.g., a
train noise or a siren noise). Children then made inferences
about novel blocks based on ambiguous evidence. The
data suggest that children infer abstract laws that describe
causal relations between classes of blocks (see also Schulz
and Sommerville, 2006; Saxe et al., 2005). Schulz and
colleagues argue for a connection between the rapid
learning abilities of children (supported by abstract causal
theories) and resistance to disconfirmation: the explanatory
scope of abstract causal laws confer a strong inductive
bias that enables learning from small amounts of data,
and this same inductive bias confers robustness in the face
of anomalous data by assigning responsibility to auxiliary
hypotheses (e.g., hidden causes). A single anomaly will
typically be insufficient to disconfirm an abstract causal
theory that explains a wide range of data.

The use of auxiliary hypotheses has important implica-
tions for education. In their discussion of the educational
literature, Chinn and Brewer (1993) point out that anoma-
lous data are often used in the classroom to spur conceptual
change, yet “the use of anomalous data is no panacea.
Science students frequently react to anomalous data by
discounting the data in some way, thus preserving their
preinstructional theories” (p. 2). They provide examples of
children employing a variety of discounting strategies, such
as ignoring anomalous data, excluding it from the domain of
the theory, holding it in abeyance (promising to deal with it
later), and reinterpreting it. Careful attention to these strate-
gies leads to pedagogical approaches that more effectively
produce theory change. For example, Chinn and Brewer rec-
ommend helping children construct necessary background
knowledge before introduction of the anomalous data, com-
bined with the presentation of an intelligible and plausible
alternative theory. In addition, bolstering the credibility of the
anomalous data, avoiding ambiguities, and using multiple
lines of evidence can be effective at producing theory change.

Is the Bayesian analysis falsifiable?

The previous sections have illustrated the impressive scope
of the Bayesian analysis, but is it too impressive? Could it

explain anything if we’re creative enough at devising priors
and auxiliaries that conform to the model’s predictions?
In other words, are Bayesians falling victim to their own
Duhem–Quine thesis? Some psychologists say yes—that
the success or failure of Bayesian models of cognition
hinges on ad hoc choices of priors and likelihoods that
conveniently fit the data (Marcus & Davis, 2013; Bowers &
Davis, 2012).

It is true that Bayesian models can be abused in this
way, and perhaps sometimes are. Nonetheless, Bayesian
models are falsifiable, because their key predictions are
not particular beliefs but particular regularities in belief
updating. If I can independently measure (or experimentally
impose) your prior and likelihood, then Bayes’ rule dictates
one and only one posterior. If this posterior does not
conform to Bayes’ rule, then the model has been falsified.
Many tests of this sort of have been carried out, with the
typical result (e.g., Evans et al., 2002) being that posterior
judgments utilize both the prior and the likelihood, but do
not precisely follow Bayes’ rule (in some cases relying too
much on the prior, and in other cases relying too much on
the likelihood). The point here is not to establish whether
people carry out exact Bayesian inference (they almost
surely do not; see Dasgupta et al., 2017), but rather to show
that they are not completely arbitrary.

As this article has emphasized, theories consist of
multiple hypotheses (some central, some auxiliary) that
work in concert to produce observations. Falsification
of theories rests upon isolation and evaluation of these
individual components; the theory as a whole cannot be
directly falsified (Quine, 1951). The same is true for the
Bayesian analysis of auxiliary hypotheses. In order to test
this account, we would first need to independently establish
the hypothesis space, the likelihood, and the prior. A
systematic study of this sort has yet to be undertaken.

Conclusions

No one likes being wrong, but most of us believe that we can
be wrong—that we would revise our beliefs when con-
fronted with compelling disconfirmatory evidence. We con-
ventionally think of our priors as inductive biases that may
eventually be relinquished as we observe more data. How-
ever, priors also color our interpretation of data, determining
how their evidential impact should be distributed across the
web of beliefs. Certain kinds of probabilistic assumptions
about the world lead one’s beliefs (under perfect rational-
ity) to be remarkably resistant to disconfirmation, in some
cases even transmuting disconfirmation into confirmation.
This should not be interpreted as an argument that peo-
ple are perfectly rational, only that many aspects of their
behavior that seem irrational on the surface may in fact be
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compatible with rationality when understood in terms of
reasoning about auxiliary hypotheses.

An important implication is that if we want to change
the beliefs of others, we need to attend to the structure
of their belief systems rather than (or in addition to)
the errors in their belief updating mechanisms. Rhetorical
tactics such as exposing hypocrisies, staging interventions,
declaiming righteous truths, and launching informational
assaults against another person’s central hypotheses are
all doomed to be relatively ineffective from the point of
view articulated here. To effectively persuade, one must
incrementally chip away at the “protective belt” of auxiliary
hypotheses until the central hypothesis can be wrested
loose. The inherent laboriousness of this tactic may be why
social and scientific progress is so slow, even with the most
expert of persuasion artists.

Acknowledgments I am grateful to Michael Strevens, Josh Tenenbaum,
Tomer Ullman, Alex Holcombe, and Nick Chater for helpful
discussions. This work was supported by the Center for Brains, Minds
& Machines (CBMM), funded by NSF STC award CCF-1231216.

Appendix: A sparse prior over auxiliary
hypotheses

In this section, we define a sparse prior over auxiliary
hypotheses using the Dirichlet distribution, which is the
conjugate prior for the multinomial distribution. We focus
on the case where the number of possible auxiliary
hypotheses has a finite value (denoted by K), though
extensions to infinite spaces are possible Gershman and
Blei (2012). The symmetric Dirichlet probability density
function over the K-simplex is given by:

P(θ) = �(αK)

�(α)K

K∏

k=1

θα−1
k , (8)

where �(·) is the Gamma function, and α > 0 is a
concentration parameter that controls the sparsity of the
distribution. As α approaches 0, the resulting distribution
over auxiliary hypotheses, P(a|θ), places most of its
probability mass on a small number of auxiliary hypotheses,
whereas larger values of α induce distributions that evenly
distribute their mass.

What are the consequences for the posterior over
auxiliaries under the sparsity assumption (α close to 0)?
Let us consider the case where auxiliary ak predicts the
observed data d with probability πk (marginalizing over h).
The posterior distribution is given by:

P(ak|d) =
∑

i

α + I[i = k]
Kα + 1

πi∑
j πj

, (9)

where I[·] = 1 if its argument is true, 0 otherwise. In
the sparse limit (α → 0), the posterior probability of an
auxiliary is proportional to its agreement with the data:
P(ak|d) ∝ πk . If we restrict ourselves to auxiliaries that
predict the data perfectly (πk = 1) or not at all (πk = 0),
then the resulting posterior will be uniform over auxiliaries
consistent with the data. It follows that P(d|h¬a) = 1 in
the sparse limit. Thus, sparsity favors auxiliaries that place
high probability on the data, consistent with the assumptions
underlying the analysis of Strevens (2001).
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Köszegi, B. (2006). Ego utility, overconfidence, and task choice.
Journal of the European Economic Association, 4, 673–707.

Kuhn, T. S. (1962). The Structure of Scientific Revolutions. Chicago:
University of Chicago Press.

Kunda, Z. (1990). The case for motivated reasoning. Psychological
Bulletin, 108, 480–498.

Kuzmanovic, B., & Rigoux, L. (2017). Valence-dependent belief
updating: Computational validation. Frontiers in Psychology, 8,
1087.

Ladouceur, R., & Sévigny, S. (2005). Structural characteristics of
video lotteries: Effects of a stopping device on illusion of control
and gambling persistence. Journal of Gambling Studies, 21, 117–
131.

Lakatos, I. (1976). Falsification and the methodology of scientific
research programmes. In Can Theories be Refuted?, (pp. 205–
259): Springer.

Langer, E. J. (1975). The illusion of control. Journal of Personality
and Social Psychology, 32, 311–328.

Laudan, L. (1990). Demystifying underdetermination. Minnesota
studies in the philosophy of science, 14(1990), 267–297.

Lefebvre, G., Lebreton, M., Meyniel, F., Bourgeois-Gironde, S., &
Palminteri, S. (2017). Behavioural and neural characterization of
optimistic reinforcement learning. Nature Human Behaviour, 1,
0067.

Leiserowitz, A. A., Maibach, E. W., Roser-Renouf, C., Smith, N., &
Dawson, E. (2013). Climategate, public opinion, and the loss of
trust. American Behavioral Scientist, 57, 818–837.

Lewandowsky, S., Oberauer, K., & Gignac, G. E. (2013). NASA
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