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Abstract

To behave adaptively, animals must learn to predict future reward, or value. To do this, ani-

mals are thought to learn reward predictions using reinforcement learning. However, in con-

trast to classical models, animals must learn to estimate value using only incomplete state

information. Previous work suggests that animals estimate value in partially observable

tasks by first forming “beliefs”—optimal Bayesian estimates of the hidden states in the task.

Although this is one way to solve the problem of partial observability, it is not the only way,

nor is it the most computationally scalable solution in complex, real-world environments.

Here we show that a recurrent neural network (RNN) can learn to estimate value directly

from observations, generating reward prediction errors that resemble those observed exper-

imentally, without any explicit objective of estimating beliefs. We integrate statistical, func-

tional, and dynamical systems perspectives on beliefs to show that the RNN’s learned

representation encodes belief information, but only when the RNN’s capacity is sufficiently

large. These results illustrate how animals can estimate value in tasks without explicitly esti-

mating beliefs, yielding a representation useful for systems with limited capacity.

Author summary

Natural environments are full of uncertainty. For example, just because my fridge had

food in it yesterday does not mean it will have food today. Despite such uncertainty, ani-

mals can estimate which states and actions are the most valuable. Previous work suggests

that animals estimate value using a brain area called the basal ganglia, using a process

resembling a reinforcement learning algorithm called TD learning. However, traditional

reinforcement learning algorithms cannot accurately estimate value in environments with

state uncertainty (e.g., when my fridge’s contents are unknown). One way around this

problem is if agents form “beliefs,” a probabilistic estimate of how likely each state is,
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given any observations so far. However, estimating beliefs is a demanding process that

may not be possible for animals in more complex environments. Here we show that an

artificial recurrent neural network (RNN) trained with TD learning can estimate value

from observations, without explicitly estimating beliefs. The trained RNN’s error signals

resembled the neural activity of dopamine neurons measured during the same tasks.

Importantly, the RNN’s activity resembled beliefs, but only when the RNN had enough

capacity. This work illustrates how animals could estimate value in uncertain environ-

ments without needing to first form beliefs, which may be useful in environments where

computing the true beliefs is too costly.

Introduction

One pervasive feature of animal behavior is the ability to predict future reward. For example, a

dog may learn that when her owner picks up the leash, she is likely to be rewarded with a walk

in the near future. In associative learning settings such as this one, animals learn to associate

certain stimuli (e.g., the owner grabbing the leash) with future reward (e.g., a walk). The neural

basis of associative learning has been interpreted through the lens of reinforcement learning

(RL). In particular, one successful theoretical model posits that associative learning is driven

by the activity of dopamine neurons in the midbrain, where spiking activity resembles the

reward prediction error (RPE) signal in an RL algorithm called temporal difference (TD)

learning [1–4]. We will describe this algorithm in more detail below.

In many real-world scenarios, effectively predicting reward may require a deeper under-

standing of the structure of the world that goes beyond associating observations and reward.

To continue the example above, suppose the dog’s owner keeps his car keys under the leash.

Now if he picks up the leash, this does not necessarily mean he is about to take his dog on a

walk. As a result, his intention to take his dog on a walk is now “partially observable.” Standard

RL approaches are insufficient for learning in partially observable environments, as these

methods assume that all relevant states of the environment are fully observable. One way to

solve this problem is by using observations to form a Bayesian posterior estimate of each hid-

den state, called a belief state [5]. Future reward can then be estimated by applying standard

RL methods like TD learning to belief states rather than the raw observations.

Do animals estimate future reward using belief states? Evidence for this idea is suggestive,

although indirect. Previous experimental work has shown that the phasic activity of midbrain

dopamine neurons resembles the RPEs of TD learning in partially observable environments,

where TD learning is performed on belief states rather than observations [6–11]. The brain

may have dedicated machinery, perhaps in prefrontal cortex [12, 13], for computing belief

states, which could then be provided to downstream areas, such as the basal ganglia, to per-

form standard RL algorithms such as TD learning [14]. This architectural division of labor res-

onates with the broader literature on probabilistic computation in cortex, which has identified

several different ways in which belief states could be encoded by neural activity [15].

There are a few difficulties in using a belief state to solve RL tasks. First, the belief state

assumes knowledge of the environment’s transition and observation dynamics—something

that may be challenging for animals to acquire via observations alone. Indeed, there are well-

documented examples of animals failing to learn or use the correct environment model [16].

Second, the belief representation does not scale well to more realistic tasks with higher-dimen-

sional state spaces, as beliefs live in a continuous space whose dimensionality grows with the

number of discrete states in the environment. Finally, the belief state includes knowledge
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about all states in the environment, regardless of whether or not those states are relevant to the

task at hand. Luckily, one can often use approximate representations of beliefs to find solutions

that work well in practice [17]. This suggests that there may be other representations that are

sufficient for the particular task of estimating future reward, but easier to compute than the

full belief state [18, 19].

To address these difficulties, here we take inspiration from deep reinforcement learning. In

deep RL, rather than explicitly learning beliefs, an agent uses nonlinear function approxima-

tion to learn a hidden representation that is sufficient for performing the task [20]. Compared

to the belief representation, this approach does not require explicit knowledge about the struc-

ture of the environment. It may also scale better to more complex tasks, by virtue of the agent

not needing to represent any features of the environment that do not directly pertain to the

task at hand. Because beliefs are a non-linear dynamical system, here we use recurrent neural

networks (RNNs) as our nonlinear function approximator. This choice was also motivated by

the observation from the machine learning literature that RNNs can perform well on complex

partially observable tasks [21]. Previous work in computational neuroscience has explored

whether RNNs can be used to directly compute beliefs [17]. Here, by contrast, we explore

whether training RNNs in partially observable environments leads to their representations

becoming implicitly more like beliefs.

We first show that RNNs can be trained to optimally estimate value in two previously stud-

ied associative learning tasks [7, 10], and that the RPEs of these models resemble experimen-

tally observed dopamine neuron activity. We then probe the representations learned by the

RNNs, and find that the learned representations resemble beliefs from statistical, functional,

and dynamical systems perspectives. Next, to explore how this approach performs when the

RNN’s capacity is limited, we characterize how the RNN’s representations vary as a function of

the RNN’s size (i.e., the number of hidden units). We show that the RNN’s capacity influences

the extent to which its learned representation resembles beliefs, without a concurrent impact

on its ability to estimate the value function. Finally, to investigate the importance of letting the

RNN’s representations be learned during training, we also analyze randomly initialized,

untrained RNNs. We find that some untrained RNNs can accurately estimate the value func-

tion, and even have representations that partially resemble beliefs. However, only the represen-

tations of trained RNNs have representations that resemble beliefs from a dynamical systems

perspective. Overall, our work illustrates how animals can estimate reward in partially observ-

able environments without requiring an explicit representation of beliefs, and also identifies

multiple signatures of belief-like representations.

Results

Reinforcement learning in partially observable environments using belief

states

One standard objective of RL is to learn the expected discounted future return, or value, of

each state:

VðstÞ ¼ E
X1

k¼0

gkrtþk

" #

ð1Þ

where st 2 S is the state of the environment at time t, 0� γ< 1 is a discount factor, and rt is

the reward. Rewards are random variables that depend on the environment state, and E
denotes an expectation over the potentially stochastic sequences of states and rewards. For

notational simplicity, we will use the shorthand Vt = V(st).
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Agents do not typically have access to the true value function. Instead, they have an esti-

mate, bVt, which they can update over time using sample paths of states and rewards. In TD

learning, agents estimate the discrepancy in their estimated value function using a so-called

temporal difference error, the precise definition of the RPE used in TD learning:

dt ¼ rt þ gbVtþ1 �
bVt: ð2Þ

whereE½dt� ¼ 0 when bVt ¼ Vt. In general, we will suppose bVt is determined by a set of adaptable

parameters θ. We can improve θ by following the stochastic gradient of the squared TD error:

Dθ ¼ Zdtrθ
bVt; ð3Þ

where 0< η< 1 is a learning rate, andrθ
bVt is the gradient of bVt with respect to θ.

As for how we construct bVt , note that in a partially observable Markov process, agents do

not observe the state st directly, but instead observe only observations ot 2 O. However, obser-

vations are not in general Markovian, which means that bVt cannot be naively written as a func-

tion of ot, but must instead be a function of the entire history of observations: (o1, . . ., ot). One

way of understanding this is to note that the value of an observation may depend on the long-

term past [22]. In the dog leash example from the Introduction, the value (to the dog) of her

owner picking up the leash depends on the history of events leading up to that moment—for

example, if her owner recently announced that his car keys were missing. To use methods such

as TD learning, which assume a Markovian state space, we require a compression of this his-

tory into a “sufficient statistic”—that is, a transformed state space over which the Markov

property holds. Here we will suppose that, given such a sufficient statistic, zt 2 R
D, we can

write bVt as a linear function:

bVt ¼
XD

d¼1

wðdÞztðdÞ ¼ w>zt; ð4Þ

where ztðdÞ 2 R is some feature (indexed by d) summarizing the history of observations, and

w ¼ θ 2 RD is a learned set of weights on those features. We can learn w using Eq (3) by not-

ing thatrθ
bVt ¼ zt , and thus Δw = ηδtzt.

The question is, what is an appropriate sufficient statistic? One standard answer is the pos-

terior probability distribution over hidden states given the history of observations and actions,

also known as the belief state [5]:

btðiÞ ¼ Pðst ¼ i j o1; . . . ; ot; a1; . . . ; at� 1Þ

/ Pðot j st ¼ iÞ
XK

j¼1

Pðst ¼ i j st� 1 ¼ j; at� 1Þ bt� 1ðjÞ
ð5Þ

which stipulates how to update the belief in state i given observation ot, and action at−1. Here

we suppose there are K discrete states, though the above equation can be extended naturally to

continuous state spaces.

In this study we will consider Pavlovian associative learning tasks, where the sequence of

observations and rewards is effectively independent of the agent’s actions. As a result, both the

beliefs and value function are independent of the agent’s actions, and the value function is sim-

ply a linear transformation of the beliefs (see Materials and methods). This motivates a

straightforward model for estimating value in such partially observable environments [6, 7]:

First compute beliefs, and then compute the value estimate as a linear transformation of those
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beliefs, with weights updated by TD learning. This model, which we will refer to as the “Belief

model”, can be written as:

bt ¼ P st j bt� 1; otð Þ from Eqn: 5ð Þð Þ

bVt ¼ w>bt substituting bt for zt into Eqn: 4ð Þð Þ

Dw ¼ Zdtbt from Eqn: 3ð Þð Þ

where bt 2 [0, 1]K is the model’s belief over the K discrete states, and only w is learned.

Learning state representations using recurrent neural networks

The Belief model presupposes that animals use a particular feature representation (i.e., beliefs)

for estimating value. However, as we described in the Introduction, there are difficulties with

assuming animals use a belief representation. Here we ask whether an alternative representa-

tion could be learned from the task of estimating value itself, rather than chosen a priori. Note

that beliefs can be written as follows:

bt ¼ Pðst j o1; . . . ; otÞ

¼ f�ðbt� 1; otÞ
ð6Þ

where f is a function parameterized by a specific choice of (fixed) parameters ϕ to ensure the

equality holds. This latter equation has the same form as a generic recurrent neural network

(RNN). This suggests a model could learn its own representation by treating ϕ as a learnable

parameter. We refer to this alternative model as a “Value RNN”:

zt ¼ f�ðzt� 1; otÞ ð7Þ

bVt ¼ w>zt ð8Þ

Dθ ¼ Zdtrθ
bVt ð9Þ

where zt 2 R
H is the activity of an RNN withH hidden units and parameters ϕ, θ = [ϕ, w] is

our vector of learned parameters, andrθ
bVt can be calculated using backpropagation through

time. The only difference from the Belief model is that the representation, zt, is learned (via ϕ).

This allows the network to discover a representation—potentially distinct from beliefs—that is

sufficient for estimating value.

Importantly, this RNN-based approach resolves all three challenges for learning a belief

representation that we raised in the Introduction: 1) The model can learn from observations

alone, as no information is provided about the statistics of the underlying environment; 2) the

model’s size (parameterized byH, the number of hidden units) can be controlled separately

from the number of states in the environment; and 3) the model’s only objective is to estimate

value. Though such a model has no explicit objective of learning beliefs (its only objective is to

estimate value), the network may discover a belief representation implicitly. We next asked

what signatures, if any, would indicate the existence of a belief representation. In the sections

that follow we develop an analytical approach for determining whether the Value RNN’s

learned representations resemble beliefs.

RNNs learn belief-like representations

As a working example, we will consider the probabilistic associative learning paradigm where

dopamine RPEs were shown to be consistent with a belief representation [7, 13]. This has the
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added benefit of ensuring that the RNN-based approach described above can recapitulate

these previous results.

This paradigm consisted of two tasks, which we will refer to as Task 1 and Task 2 (Fig 1). In

both tasks, mice were trained to associate an odor cue with probabilistic delivery of a liquid

reward 1.2–2.8s later. The tasks were each composed of two states: an intertrial interval (ITI),

during which animals waited for an odor; and an interstimulus interval (ISI), during which

animals waited for a reward. In Task 1, every trial contained both an odor and a reward. As a

result, the animal’s observations could fully disambiguate the underlying state: An odor sig-

naled a transition to the ISI state, while a reward signaled a transition to the ITI state. In Task

2, by contrast, reward on a given trial was omitted with 10% probability. This meant the under-

lying states were now only partially observable; for example, in Task 2 an odor signaled a tran-

sition to the ISI state with 90% probability.

To formalize these tasks, we largely followed previous work [7, 13]. Each task was modeled

as a discrete-time Markov process with states st 2 {1, . . ., K}, where each t denotes a 200ms

time bin (Fig 2A). These K “micro” states can be partitioned into those belonging to one of

two “macro” states (corresponding to the ITI and the ISI; see Materials and methods). At each

point in time, the agent’s observation is one of ot 2 {odor, reward, null} (Fig 2B). For each task,

we trained the Belief model, and multiple Value RNNs (N = 12, each initialized randomly), on

a series of observations from that task to estimate value using TD learning (see Materials and

methods). Each RNN was a gated-recurrent unit cell [23], or GRU, comprised of H = 50 hid-

den units. Before training, the Value RNN’s representation consisted of transient responses to

each observation (S1 Fig). After training, we evaluated each model on a sequence of new trials

from the same task (Fig 2C).

To confirm that this approach could recapitulate previous results, we measured the RPEs of

each trained model (Fig 2D), where the model RPEs are calculated using Eq (2). Previous work

showed that dopamine activity depended on the reward time differently in the two tasks, with

activity decreasing as a function of reward time in Task 1, but increasing as a function of

reward time in Task 2 [7] (Fig 3A). As in previous work, we found that this pattern was also

exhibited by the RPEs of the Belief model (Fig 3B). We found that the RPEs of the Value RNN

exhibited the same pattern (Fig 3C). In particular, the Value RNN’s RPEs became nearly iden-

tical to those of the Belief model after training (Fig 3D). We emphasize that the Value RNN

Fig 1. Associative learning tasks with probabilistic rewards and hidden states. A. Trial structure in Starkweather et al. (2017) [7].

Each trial consisted of a variable delay (the intertrial interval, or ITI), followed by an odor, a second delay (the interstimulus interval, or

ISI), and a potential subsequent reward. Reward times were sampled from a discretized Gaussian ranging from 1.2–2.8s (see Materials

and methods). B-C. In both versions of the task, there were two underlying states: the ITI and the ISI. In Task 1, every trial was

rewarded. As a result, an odor always indicated a transition from the ITI to the ISI, while a reward always indicated a transition from

the ISI to the ITI. In Task 2, rewards were omitted on 10% of trials; as a result, an odor did not reveal whether or not the state

transitioned to the ISI.

https://doi.org/10.1371/journal.pcbi.1011067.g001
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was not trained to match the value estimate from the Belief model; rather, it was trained via

TD learning using only observations. This result shows that, through training on observations

alone, Value RNNs discovered a representation that was sufficient for both learning the value

function as well as reproducing previously observed patterns in empirical dopamine activity.

We next asked whether the Value RNN learned to estimate value using representations that

resembled beliefs. We considered three approaches to answering this question. First, we asked

whether beliefs could be linearly decoded from the RNN’s activity. Next, because beliefs are

the optimal estimate of the true state in the task, we asked whether RNN activity could simi-

larly be used to decode the true state. Finally, we took a dynamical systems perspective, and

asked whether the RNN and beliefs had similar dynamical structure.

RNN activity readout was correlated with beliefs. We first asked whether there was a

readout of the Value RNN’s representation, zt, that correlated with beliefs. Because the belief

and RNN representations did not necessarily have the same dimensionality, we performed a

multivariate linear regression to find the linear transformation of each RNN’s activity that

came closest to matching the beliefs (see Materials and methods). In other words, we found

the linear transformation, cW 2 RK�H , that could map each RNN’s activity, zt 2 R
H , to best

Fig 2. Observations, model representations, value estimates, and reward prediction errors (RPEs) during Task 2. A. State transitions and

observation probabilities in Task 2. Each macro-state (ISI or ITI) is composed of micro-states denoting elapsed time; this allows for probabilistic

reward times and minimum dwell times in the ISI and ITI, respectively. B. Observations emitted by Task 2 during two example trials. Note that

omission trials are indicated only implicitly as the absence of a reward observation. C. Example representations (bt, zt) and value estimates (bVt) of

two models (Belief model, left; Value RNN, right) for estimating value in partially observable environments, after training. D. After training, both

models exhibit similar RPEs.

https://doi.org/10.1371/journal.pcbi.1011067.g002
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match the belief vector, bt 2 R
K

, across time:

cW ¼ argminW
XT

t¼1

kWzt � bt k
2

2

To quantify performance, we used held-out sessions to measure the total variance of the

beliefs that were explained by the linear readout of RNN activity (R2; see Materials and meth-

ods). We found that this readout of the Value RNN’s activity explained most of the variance of

beliefs (Fig 4B; Task 1 R2: 0.61 ± 0.01, mean ± SE, N = 12; Task 2 R2: 0.67 ± 0.02, mean ± SE,

N = 12), substantially above the variance explained when using an RNN’s activity before train-

ing (Task 1 R2: 0.38 ± 0.01, mean ± SE, N = 12; Task 2 R2: 0.41 ± 0.00, mean ± SE, N = 12).

This is not a trivial result of the network’s training objective, as the Value RNN’s target (i.e.,

value) is only a 1-dimensional signal, whereas beliefs are a K-dimensional signal (here,

K = 25). Nevertheless, we found that training a Value RNN to estimate value resulted in its

representation becoming more belief-like, in the sense of encoding more information about

beliefs.

RNN activity could be used to decode hidden states. The previous analysis assessed how

much information about beliefs was encoded by the RNN’s representation. Given that the

belief representation is a probability estimate over all hidden states, we next asked whether the

ground truth state could be decoded from the RNN’s representation. To do this, we performed

Fig 3. RPEs of the Value RNN resemble both mouse dopamine activity and the Belief model. A. Average phasic dopamine activity in the

ventral tegmental area (VTA) recorded from mice trained in each task separately. Black traces indicate trial-averaged RPEs relative to an odor

observated at time 0, prior to reward; colored traces indicate the RPEs following each of nine possible reward times. RPEs exhibit opposite

dependence on reward time across tasks. Reproduced from Starkweather et al. (2017) [7]. B-C. Average RPEs of the Belief model and an

example Value RNN, respectively. Same conventions as panel A. D. Mean squared error (MSE) between the RPEs of the Value RNN and

Belief model, before and after training each Value RNN. Small dots depict the MSE of each ofN = 12 Task 1 RNNs and N = 12 Task 2 RNNs,

and circles depict the median across RNNs.

https://doi.org/10.1371/journal.pcbi.1011067.g003

PLOS COMPUTATIONAL BIOLOGY Emergence of belief-like representations through reinforcement learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011067 September 11, 2023 8 / 27

https://doi.org/10.1371/journal.pcbi.1011067.g003
https://doi.org/10.1371/journal.pcbi.1011067


a multinomial logistic regression to find a linear transformation of each RNN’s activity that

maximized the log-likelihood of the true states (see Materials and methods). We quantified

performance on held-out sessions by evaluating the log-likelihood of the decoded estimates.

Because the beliefs capture the posterior distribution of the state given the observations under

the true generative model, the log-likelihood of the beliefs is a ceiling on performance. We

found that the log-likelihoods of the decoders trained on the RNNs’ activity approached those

Fig 4. Value RNN activity readout was correlated with beliefs and could be used to decode hidden states. A. Example

observations, states, beliefs, and Value RNN activity from the same Task 2 trials shown in Fig 2. States and beliefs are colored as in

Fig 2, with black indicating ITI microstates, and other colors indicating ISI microstates. Note that the states following the second

odor observation remain in the ITI (black) because the second trial is an omission trial. Bottom traces depict the linear

transformation of the RNN activity that comes closest to matching the beliefs. Total variance explained (R2) is calculated on held-out

trials. B. Total variance of beliefs explained (R2), on held-out trials, using different trained and untrained Value RNNs, in both tasks.

Same conventions as Fig 3D. C. In purple, the cross-validated log-likelihood of linear decoders trained to estimate true states using

RNN activity. Same conventions as Fig 3D. Black circle indicates the log-likelihood when using the beliefs as the decoded state

estimate (i.e., no decoder is “trained”).

https://doi.org/10.1371/journal.pcbi.1011067.g004
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of the beliefs, and easily outperformed the decoders that used the activity of the RNNs before

training (Fig 4C). Thus, training an RNN to estimate value resulted in a representation that

could be used to more accurately decode the true state.

RNN activity exhibited belief-like dynamics. One potential shortcoming of the above

analyses is that we have not yet accounted for the dynamical nature of the belief representation:

Belief updating can be thought of as a dynamical system describing how the posterior proba-

bility of each state evolves as a function of the observations. We therefore took a dynamical sys-

tems perspective [24–26] and asked whether the dynamics of the RNNs’ representations

resembled the dynamics of the beliefs in each task.

We first asked whether beliefs and RNNs had a similar fixed point structure, a standard

approach to characterizing the computations performed by dynamical systems [24–26]. Here,

by “fixed point” we mean a belief state that remains unchanged in the absence of observations

(Fig 5A). In both tasks, the duration of the ITI is sampled from a geometric distribution,

which has a constant hazard function. Thus, if the agent believes it is in the ITI (i.e., waiting

for an odor), it should maintain this belief for as long as it receives no new observations (⌀).

Thus, the ITI belief state is a fixed point of the belief updates in both tasks (Fig 5A). Now con-

sider when the agent is in the ISI (e.g., following an odor observation). In Task 2 (Fig 5A, bot-

tom panel), the agent should maintain a nonzero belief in the ISI only for as long as there are

possible reward times remaining—i.e., the first 2.8s, or 14 time steps—but after that point it

should return to the ITI state. Thus, the ITI state is the only fixed point of the Task 2 beliefs. In

Task 1, by contrast, there are no omission trials, and so the beliefs are simply undefined when

there are no observations for more than 14 time steps. Nevertheless, for the purposes of charac-

terizing the fixed points of beliefs, we can ask what an agent with Task 1 beliefs could do when

faced with an omission trial. In this sense, an agent could maintain a belief in the ISI for any

number of time steps X> 14, resulting in two fixed points when X!1, and one fixed point

otherwise (Fig 5A, top panel). Thus, Task 1 beliefs can decay to the ITI fixed point at any point

after 14 time steps, and may potentially have two fixed points.

We asked whether the Value RNNs in each task exhibited similar dynamics. To build intui-

tion, we visualized the activity of an example Value RNN from each task (Fig 5B). To visualize

the RNN’s activity over time, zt 2 R
50

, we used principal components analysis (PCA) to proj-

ect the RNN’s activity into the top two dimensions that captured the most variance of the activ-

ity across trials; the two dimensions shown in Fig 5B explained 83% and 79% of the total

variance in the Task 1 and Task 2 Value RNN, respectively. We observed that each RNN’s

activity was quite stable during the ITI (purple circle), suggestive of a fixed point. An odor

observation abruptly changed the RNN’s activity (black vector), after which point the activity

continued to move through state space during the ISI. On rewarded trials, in response to a

reward (red vector), the RNN’s activity gradually returned to the same ITI location it started

from (purple circle). We noted that the activity of both RNNs would also have converged to its

original ITI location had the reward been omitted (cyan traces). Interestingly, this was true

even for the Task 1 RNN, which did not experience omission trials during training. These visu-

alizations suggested that these two example Value RNNs had a single fixed point (correspond-

ing to the ITI), which we confirmed numerically (see Materials and methods). We then used

the same numerical approach to identify the fixed points across all trained Value RNNs, and

found similar results. In fact, only two Value RNNs had more than one fixed point; these were

both Task 1 RNNs, which had a fixed point for both the ITI and the ISI. Thus, the number of

fixed points in the Value RNNs was consistent with the belief dynamics (as in Fig 5A).

Despite the fact that most Value RNNs had a single fixed point regardless of which task

they were trained on, we noted that the temporal dynamics of RNN activity differed across the
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two tasks following odor observations. For example, in the Task 2 RNN, following an odor

observation, the activity moved gradually closer to the ITI state throughout the ISI (Fig 5B,

bottom subpanel). These dynamics allowed the Task 2 RNN’s activity to return to the ITI state

at the appropriate time on trials without reward (cyan trace). By contrast, in the Task 1 RNN,

which did not experience trials without rewards during training, activity took much longer to

Fig 5. Value RNN dynamics resembled belief dynamics in each task. A. Dynamics of beliefs in Task 1 (top) and Task 2 (bottom). Black arrows

indicate transitions between states in the absence of observations (⌀) as a function of elapsed time, t, following an odor observation. ‘X’ indicates an

unconstrained duration, and a dashed arrow indicates a transition that happens only when ‘X’ is finite. B. RNN activity at each time step (small black

dots with connected lines) during an example trial in a 2D subspace identified using PCA, for two example networks trained on Task 1 (top) and Task 2

(bottom). Putative ITI fixed point indicated as purple circle. Vectors indicate the response to odor (black) and reward (red). Activity during an

omission trial is shown in cyan, though note that omission trials were present in training data only for Task 2. C-D. Average normalized distance of

each model’s activity from its fixed point following an odor (panel C) or reward (panel D) observation, over time. To allow comparing distances across

models, each model’s distances were normalized by the maximum distance following each observation. E. Difference between each RNN’s odor

memory and reward memory, for Untrained RNNs and Value RNNs trained on each task. An RNN’s odor memory is defined as the number of time

steps after an odor that the RNN’s activity returns to its ITI (see panel C); reward memory is defined similarly (see panel D). Same conventions as Fig

3D.

https://doi.org/10.1371/journal.pcbi.1011067.g005
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return to the ITI. To quantify these differences, we initialized each RNN to its fixed point, pro-

vided an odor observation, and then measured the RNN’s activity over time in the absence of

any subsequent reward. We then measured the distance of each RNN’s activity over time from

its ITI fixed point (Fig 5C, colored traces). We repeated this same analysis for beliefs (Fig 5C,

black trace), allowing us to characterize the two models’ responses to an odor as a function of

the distance of their representations from their ITI fixed point. We reasoned that, if the RNNs

learned belief-like dynamics, the activity of Task 2 RNNs should return to the ITI as soon as

possible after time step 14 (i.e., the largest reward time), which we found was largely the case

(Fig 5C, bottom subpanel). By contrast, in Task 1, there were no omission trials, and so the

beliefs were undefined past time step 14. Thus, the activity of RNNs after time step 14 was not

constrained by the task. Perhaps as a result of this, the Task 1 RNNs exhibited more variable

decay rates (Fig 5C, top subpanel) relative to Task 2 RNNs. To quantify these differences across

tasks, we calculated the number of time steps it took for a given RNN’s activity to return to its

ITI fixed point following an odor; we refer to this quantity as the RNN’s odor memory (see

Materials and methods). In fact, we found that all Task 1 RNNs had longer odor memories

than every Task 2 RNN. Overall, these features were consistent with the beliefs in the two tasks

following an odor observation: beliefs in Task 2, but not Task 1, must quickly return to the ITI

after the maximum possible reward time. We also performed a similar analysis for reward

observations, and refer to the time step at which an RNN’s activity returned to the ITI fixed

point following a reward the network’s reward memory. Following a reward observation, the

belief representation in both tasks returns to the ITI fixed point just after the minimum ITI

duration (at time step 10), and we observed similar behavior in the trained RNNs (Fig 5D).

To summarize the presence of belief-like dynamics described above, we sought a single

summary statistic to parallel those used to summarize the regression and decoding analyses in

Fig 4. We noted that in both tasks, the belief representation’s odor memory should be longer

than its reward memory. This is because the odor memory is related to the maximum possible

reward time (14 time steps after an odor), whereas the reward memory is related to the mini-

mum ITI duration (10 time steps after a reward). To assess whether a given Value RNN exhib-

ited this property, we computed the difference between its odor memory and reward memory

as our summary statistic of that RNN’s dynamics (i.e., odor memory—reward memory). We

found that, in contrast to the untrained RNNs, every trained RNN in both tasks had an odor

memory that was longer than its reward memory (Fig 5E). Thus, training an RNN to estimate

value resulted in the RNN exhibiting belief-like dynamics, in terms of the network’s memory

for both odor and reward observations.

RNNs with larger capacity had more belief-like representations. Thus far, we have ana-

lyzed the representations of Value RNNs with the same number of hidden units (H = 50). To

understand whether the network’s size influences the types of representations learned, we next

analyzed Value RNNs and Untrained RNNs with different numbers of hidden units.

We will first consider the Value RNNs. We found that Value RNNs with as few as 2 hidden

units could learn the value function, as evidenced by their RPEs matching those of the Belief

model (Fig 6A). In other words, despite there being 25 discrete states in our implementation of

this task (and, as such, beliefs were 25-dimensional), an RNN with a 2-dimensional representa-

tion was sufficient to accurately estimate the value function. However, Value RNNs with fewer

units had representations that were notably less belief-like, in terms of how well they could line-

arly encode beliefs (Fig 6B) and decode the true state (Fig 6C). This illustrates that learning a

belief-like representation was not necessary for estimating the value function. Rather, the RNNs’

representations were fully belief-like only when they had a sufficient number of hidden units.

As expected, the Untrained RNNs performed less well across the board, in terms of both

their ability to match the Belief model’s RPEs (Fig 6A), as well as their resemblance to the belief
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representation (Fig 6B–6D). Nevertheless, we found that the Untrained RNNs’ performance

improved as a function of the number of units in many respects (Fig 6A–6C). While this is per-

haps unintuitive, this was possible for the following reason: In the Untrained RNN model,

though the RNN’s representation was not learned, the value readout (used in Fig 6A), belief

readout (Fig 6B), and state decoder (Fig 6C) were all fit to the training data (see Materials and

methods). As we will discuss later in more detail (see subsection titled “Untrained RNNs could

also be used to estimate value and encode beliefs”), this is an expected outcome from the per-

spective of “echo state networks” [27], where it is known that even randomly initialized RNNs

can be paired with a learned readout to match any target signal, provided the RNN has enough

units.

However, in contrast to the regression and decoding statistics, we observed that the dynam-

ics-inspired statistic—the difference between a network’s odor and reward memory—was

belief-like (i.e., positive) only for Value RNNs, and across the full range of different numbers

of hidden units (Fig 6D). This suggests that the dynamics perspective may be a more robust

indicator of a network having a task-specific representation, as it most reliably distinguished

between the trained and untrained RNNs.

Generalization to other tasks

We showed that RNNs could be trained to estimate value in the tasks from Starkweather et al.

(2017) [7], and that the representations of these RNNs became more belief-like as a result of

training. We next assessed whether the same basic insights generalized to a different task, that

of Babayan et al. (2018) [10]. In this task, similar to Task 1 of Starkweather et al. (2017) [7],

each trial consisted of an odor followed by a deterministic reward. Unlike in the Starkweather

task, in this task the reward quantity on each trial was varied in blocks. In Block 1, each trial

consisted of a small (1 μL) reward, while in Block 2 each trial consisted of a large (10 μL)

reward. As a result, we formalize the states in this task using pairs of ITI and ISI states, one for

each block (

Fig 7A). Importantly, the block identity was hidden to the animal, and was resampled uni-

formly every five trials. This meant that animals had to use the reward observations to infer

which block they were currently in.

Fig 6. Value RNNs with larger capacity had more belief-like representations. A. Error between the RPEs of the Value RNN and Untrained RNN

relative to the RPEs of the Belief model (“RPE MSE”; see Fig 3D) during Task 2, as a function of the number of units in the RNN. Each dot indicates the

error for a single Value RNN. Circles indicate the median across theN = 12 Value RNNs (dark purple) and N = 12 Untrained RNNs (light purple) with

the same number of units. Remaining panels use the same conventions. B. Total variance explained (R2) of beliefs on held-out trials (see Fig 4B). C.

Cross-validated log-likelihood of the state decoder using each RNN’s activity to estimate the true state (see Fig 4C). D. Difference between each RNN’s

odor memory and reward memory (see Fig 5E).

https://doi.org/10.1371/journal.pcbi.1011067.g006
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Previous work showed that the dopamine activity of animals trained on this task depended

on the number of trials in the current block (Fig 7C), similar to what you would expect if ani-

mals used a belief representation (Fig 7D, dashed lines) [10]. To see if the Value RNN could

reproduce these results, we trained N = 12 Value RNNs on this task. We found that Value

RNNs exhibited nearly identical RPEs as the Belief model (Fig 7D). This was even true on

probe sessions that included blocks with intermediate reward sizes, a setting in which both

dopamine activity and belief RPEs exhibited a characteristic nonlinear relationship with

reward size (S2 Fig). These results indicate that the Value RNNs found a representation suffi-

cient for estimating value despite the hidden states.

Fig 7. Value RNNs trained on Babayan et al. (2018) [10] reproduce Belief RPEs and learn belief-like representations. A. Task environment of

Babayan et al. (2018) [10]. Each trial consists of an odor and a subsequent reward. The reward amount depends on the block identity, which is

resampled uniformly every five trials. B. Average phasic dopamine activity in the VTA of mice trained on the task at the time of odor (left) and reward

(right) delivery. Activity is shown separately as a function of the trial index within the block (x-axis) and the current/previous block identity (colors).

Reproduced from Babayan et al. (2018) [10]. C. Average RPEs of the Belief model (dashed lines) and an example Value RNN (solid lines). Same

conventions as panel B. D. Total variance of beliefs explained (R2) using a linear transformation of model activity. Same conventions as Fig 4B. E.

Cross-validated log-likelihood of linear decoders trained to estimate true states using RNN activity. Same conventions as Fig 4C. F. Dynamics of beliefs

in the absence of observations. Same conventions as Fig 5A. G. Trajectories of an example Value RNN’s activity, in the 2D subspace identified using

PCA, during an example trial from Block 1 (left) and Block 2 (right). These two dimensions explained 68% of the total variance in the Value RNN’s

activity across trials. Putative ITI states indicated as purple circles. Same conventions as Fig 5B.

https://doi.org/10.1371/journal.pcbi.1011067.g007
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We next asked whether, as in the Starkweather task, the Value RNN’s representations

resembled beliefs. To do this, we repeated the analyses in Fig 4. We found that the Value

RNN’s activity could be linearly transformed to match the beliefs (Fig 7D), and that its activity

could also be used to decode the hidden states in the task (Fig 7E), as compared to RNNs not

trained on the task. We next took a dynamical systems approach, characterizing the fixed

points of beliefs in this task. Similar to Task 1 of Starkweather et al. (2017) [7] (Fig 5A), beliefs

in the present task should have a fixed point at the ITIs for Block 1 and Block 2 (Fig 7F). To

assess whether this was the case in the Value RNN, we visualized an example RNN’s activity on

the last few trials of each block, when the network should be confident as to the current block’s

identity (given the reward observations on previous trials). During these trials, we observed

two non-overlapping trajectories of activity for each block (Fig 7G). Following a reward obser-

vation, the RNN’s activity converged to a distinct location in state space corresponding to that

block’s ITI. This suggested the RNN had two fixed points, as in the belief representation. In

reality, these were not both truly fixed points, as the RNN’s activity did eventually return to a

single fixed point given enough time without an observation (S3 Fig). However, the RNN’s

two putative ITI states remained distinct across the range of ITI durations present in the train-

ing data (S3 Fig), allowing the network to keep these trajectories (and thus the states corre-

sponding to each block) separate. These analyses suggest that Value RNNs trained on this task

also exhibited belief-like representations.

Untrained RNNs could also be used to estimate value and encode beliefs. In the sec-

tions above we analyzed Value RNNs, whose representations were trained through TD learn-

ing. Here we take an alternative approach, inspired by reservoir computing, and consider in

more detail the representations of untrained RNNs. In reservoir computing, a static dynamical

system, or “reservoir,” is combined with a learned linear readout. Given an appropriately ini-

tialized reservoir (e.g., an RNN), this approach can be used to approximate any nonlinear

function [28]. Inspired by this approach, we explored whether we could choose a random ini-

tialization of our RNNs such that it was only necessary to learn a linear weighting of the RNN’s

representation to form its value estimate (i.e., ϕ in Eq (7) was fixed throughout training).

Because this model resembles an echo state network (“ESN”; a reservoir computer whose res-

ervoir is an RNN [27]), we will refer to this model as a Value ESN.

To see if the Value ESN model could be used to estimate value in partially observable environ-

ments, we trained Value ESNs to estimate value during Starkweather Task 2, while varying the

gain used to initialize each network. Each Value ESN’s RNN was initialized by sampling the

matrix of recurrent weights as a random orthogonal matrix scaled by a single gain parameter

[29], an approach commonly used to initialize RNNs (see Materials and methods). The gain

effectively modulated the duration of the network’s transient response to inputs (Fig 8A and 8B).

Importantly, during training with TD learning, only the model’s value weights were modified.

We found that for a range of different gains, the resulting Value ESN could estimate value

nearly as well as Value RNNs, and recapitulate the experimentally observed dopamine patterns

(Fig 8C). As expected from results in reservoir computing [28], the Value ESN’s representa-

tions could also be linearly transformed to match beliefs (Fig 8D) or to decode the true hidden

state (Fig 8E). We emphasize that the Value ESN’s representation was determined solely by its

initialization; given an appropriate initialization, the Value ESN’s representation could effec-

tively act as a set of temporal basis functions, allowing the network to match any downstream

target, including beliefs. This result, alongside what we observed previously for Untrained

RNNs with different numbers of hidden units (Fig 6B and 6C), underscores the fact that beliefs

can be read out even from systems whose representations are not specific to the task at hand.

On the other hand, the Value ESN’s representations differed substantially from those of the

beliefs in terms of its dynamics: Among the best performing Value ESNs (i.e., those with a gain
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of 1.9), following an odor observation, the Value ESN’s activity returned to its fixed point after

around 200 time steps (“odor memory”; Fig 8F), whereas Task 2 beliefs return to the ITI point

after 15 time steps. The Value ESN’s dynamics were nearly identical following a reward obser-

vation (“reward memory”; Fig 8G), such that, on average, the Value ESNs with a gain of 1.9

had no difference in their memory for odors versus rewards (Fig 8H). This is in striking con-

trast to the Value RNNs, each of which had an odor memory that was longer than its reward

memory, in agreement with the belief dynamics. This difference is consistent with what we

saw for Value RNNs versus Untrained RNNs with different numbers of hidden units (Fig 6D),

where only the dynamical systems perspective indicated whether or not a network’s represen-

tations had been trained on the task at hand. In sum, these results show that random RNNs

can estimate value in partially observable environments, and even be used to read out beliefs

and decode hidden states, provided they are carefully initialized. Nevertheless, only those net-

works whose representations were modified during training (i.e., the Value RNNs) exhibited

dynamical responses consistent with those of a belief representation.

Discussion

We have shown that training RNNs to estimate value in partially observable environments

yields representations that resemble beliefs. Specifically, we showed that, after training, an

Fig 8. Untrained RNNs can be used to estimate value, read out beliefs, or decode hidden states, but do not resemble belief dynamics. A. Time-

varying activations of 20 example units in response to an odor input, in an untrained RNN with 50 units, initialized with a gain of 0.9 (see Materials and

methods). B. Same as panel A, but for an initialization gain of 1.9. C. RPE MSE (see Fig 3D) as a function of initialization gain, after training each Value

ESN’s value weights to estimate value during Starkweather Task 2. Circles depict the median acrossN = 12 Value ESNs initialized with the same gain.

Dashed line indicates median across Task 2 Value RNNs with the same number of units. Same conventions for panels D-G. D. Belief R2 (see Fig 4B) as a

function of initialization gain. E. Cross-validated log-likelihood of state decoders (see Fig 4C) as a function of initialization gain. F-G. Number of time

steps it took each Value ESN’s activity to return to its fixed point following an odor (panel F) or reward (panel G) observation, as a function of the

initialization gain. H. Difference between each model’s odor memory and reward memory (see Fig 5E), for Value ESNs initialized with a gain of 1.9

(red) and Value RNNs (purple); same conventions as Fig 3D.

https://doi.org/10.1371/journal.pcbi.1011067.g008
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RNN’s activity i) could be linearly transformed to approximate beliefs, ii) could be used to

decode the true state in the environment, and iii) had a dynamical structure consistent with

beliefs. Importantly, we showed that the former two properties were also true of random, but

properly initialized, RNNs. This illustrates that RNNs can generically exhibit many signatures

of a belief representation, even if those representations are not specific to the task. On the

other hand, we found that only the RNNs whose representations were modified during train-

ing exhibited belief-like dynamical signatures. Finally, we found that the representations of

trained RNNs were most belief-like when they had a sufficient number of hidden units. These

results indicate the importance of a multi-pronged approach in characterizing a system’s

representations.

Previous work at the intersection of neuroscience and machine learning has shown how

agents performing reinforcement learning can use RNNs to solve a variety of tasks featuring

state and task uncertainty, including tasks involving motor control [30], navigation [31–33],

foraging [34], and decision-making [35, 36]. Our results, building on previous work [32, 34,

37], illustrate why RNNs offer an advantage in these settings: From a theoretical perspective,

using an RNN resolves the problem of how to compute belief states, by replacing the fine-

tuned Bayesian machinery needed for beliefs with a more general learned function approxima-

tor (e.g., a recurrent neural network) [32, 34, 37]. Our results illustrate that it is not necessary

for an agent or animal to explicitly estimate states in partially observable environments using a

belief representation; rather, agents can learn a sufficient representation for solving the task

from observations alone. This is promising from a normative perspective, as it shows how neu-

ral circuits might come to compute theoretical features such as beliefs without that objective

needing to be explicitly learned. Moreover, there is a growing toolkit for reverse engineering

RNN solutions [25, 26, 38], which can shed light on learned mechanisms of value

computation.

In this study, we considered classical conditioning tasks where previous studies had sug-

gested that dopamine activity reflected a belief representation [6–11]. These tasks were a con-

venient setting to study the emergence of belief representations in RNNs for two reasons. First,

these tasks had relatively simple state spaces and dynamics. This allowed us to calculate the

true beliefs in closed-form, and thereby directly compare the beliefs to the representations

learned by the RNNs. The simplified nature of the tasks also allowed us to consider RNNs with

a small number of units, simplifying both training and analysis. Second, in these tasks, the

agent’s actions do not impact the trial structure (i.e., the sequence of observations and

rewards), which means that both the value function and the beliefs are independent of the

agent’s actions. In this setting, the value function is a linear function of the beliefs, whereas in a

general partially observable environment, the value function also depends on the agent’s action

policy. This allowed us to compare how different models (e.g., the Belief model and the Value

RNN) solved the value estimation problem without having to also consider the action policy.

An important direction for future work is to extend our analyses to tasks with larger state

spaces, and to tasks where the agent’s policy influences the visited states. One possibility is

that, in these settings, an agent’s policy will influence the degree to which the learned represen-

tations resemble beliefs. For example, if the agent’s policy only explores a limited region of the

total state space, it may be difficult for the agent to acquire beliefs about the less explored

regions of state space.

One potential benefit of the Value RNN over the Belief model for estimating value is the

ability to separate the capacity of the model (i.e., the number of hidden units in the RNN)

from the size of the state space in the environment. As we showed in Fig 6, Value RNNs with

fewer units had representations that were not linearly transformable into beliefs (Fig 6B), but

these networks were nevertheless able to estimate the value function (Fig 6A). Value RNNs
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with more units had more belief-like representations. This suggests a potentially useful trade-

off, in which agents could choose to allocate more capacity to a task in exchange for more

belief-like representations. Such a trade-off may be a relevant feature for biological organisms,

who must be able to perform tasks such as value estimation in complex environments where it

may not always be feasible to learn the full belief representation.

From a methodological perspective, this work can serve as a blueprint for how to bridge

analyses of neural computation across levels of abstraction. In future work, we hope to apply

this framework to test neural models of how animals perform associative learning via rein-

forcement learning. For instance, previous work has suggested that prefrontal cortex may per-

form state estimation in tasks with hidden states [6, 7, 12, 13]. The same tools we apply here to

artificial neural networks can also be applied to neural activity recorded from animals per-

forming the same task. For instance, if cortex implements something like a Value RNN, corti-

cal activity may show a longer transient response to odors in Task 1 versus Task 2 (Fig 5C), or

a longer transient response to odors than to rewards (Fig 5E). On the other hand, if activity is

more like a Value ESN, cortical dynamics may be largely the same across different tasks, and

in response to different observations.

Previous work has shown that, in animals, prefrontal cortex activity is a necessary compo-

nent of animals’ state representations [13]. This work found that inactivating prefrontal cortex

in the Starkweather task led to animals’ RPEs in Task 2 resembling the RPEs of Task 1. This is

what one would expect if prefrontal cortex was involved in estimating a belief in omission tri-

als. In fact, both Tasks 1 and 2 include another form of uncertainty, which is the reward time

on each trial. The fact that prefrontal inactivation did not interact with animals’ estimates of

timing suggests that different neural circuits may form belief-like representations specific to

particular types of state uncertainty (e.g., temporal uncertainty versus reward uncertainty). In

the present work, our RNNs should be thought of as a generic computational model, and not a

model of individual brain regions. These networks had a generic architecture and only a single

layer; as a result, our model would be unable to distinguish between different sources of uncer-

tainty. Nevertheless, it is an interesting question how architectural considerations, such as

layer connectivity and the dominance of feedforward versus recurrent connectivity, might

contribute to where in the brain different belief-like representations are formed.

Traditional models of how animals perform trace conditioning tasks like the ones we con-

sider here make a variety of implicit assumptions about how animals represent the passage of

time [39, 40]. For example, the state space shown in Fig 2A, which forms the basis of the

belief representation, conceptualizes the passage of time in the form of microstates. Many

modeling efforts require even more assumptions to account for scalar variability in animals’

estimates of elapsed time, such as by incorporating a more complex set of temporal basis

functions. In our model, by contrast, the Value RNN’s time-varying representation of inputs

is learned through training. We observed that individual units in our RNNs were tuned to

elapsed time relative to observations, and that the temporal precision of tuning decreased

with elapsed time (S1 Fig), both of which are standard assumptions of microstate representa-

tions [41]. Similarly tuned “time cells” have been observed in the striatum [42], hippocampus

[43], and prefrontal cortex [44]. Our modeling suggests that at least some assumptions about

microstate representations may be redundant in the sense that they may emerge naturally in

recurrent networks that are trained to perform reinforcement learning. This viewpoint reso-

nates with the idea (reviewed in [45]) that delay encoding can arise as an emergent property

of neural network dynamics.

Our results show that computing beliefs explicitly is not a necessary precursor for optimally

performing a task in partially observable environments. Nor is it required to reproduce experi-

mentally observed patterns of dopamine neuron activity. Instead, our results show that
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training a nonlinear function approximator (such as an RNN) using TD learning results in a

representation sufficient for estimating value in partially observable environments. An inter-

esting question for future work is whether other training objectives, such as predicting the

next observation [46], might yield similar results. What advantage, if any, might an explicit

belief representation confer to an agent? Beliefs are an efficient representation in that they are

sufficient for solving any task in the same environment. Thus, beliefs may be a desirable repre-

sentation for animals, who may need to achieve a range of different goals in the same environ-

ment (e.g., finding water when thirsty, but finding food when hungry) without having to learn

a representation in each of these tasks separately. Future work should explore whether a dedi-

cated belief mechanism is necessary in these multi-task settings, or if the RNN framework we

present here can also yield representations that effectively generalize to new tasks in the same

environment.

Materials and methods

Task implementation

In each experiment, at each time step t, agents received two observations: an odor cue, ct 2 {0, 1};

and a reward, rt 2 {0, r}, where r> 0 depended on the task (see below). We will refer to the total

observation vector as ot = [ct, rt]. We treated each time step as equal to 200ms.

Each trial began with an intertrial interval (ITI), tITI 2 N, during which there were no

observations (ot = 0 for t< tITI). The ITI (offset by a minimum delay of 10 time steps) was

sampled as tITI � 10 � Geom pITI ¼ 1

8

� �
, where Geom(p) is a geometric distribution with

parameter p.

Following the ITI, a single odor cue was presented as ct = 1 for t = tITI. The cue was then fol-

lowed by another interval with no observations, called the interstimulus interval (ISI), tISI 2 N.

A reward was then presented as rt> 0 for t = tITI + tISI, after which point the trial terminated.

The details of the ISI and reward size depended on the specific task, as described below.

Starkweather tasks. There were two versions of this task. In both Tasks 1 and 2, every

non-zero reward size had rt = 1. In Task 2, with probability pomission = 0.1, the reward on a

given trial was omitted, such that rt = 0 for the duration of the trial. In both tasks, the ISIs on

each trial were sampled from a discretized Gaussian with mean μ = 10, standard deviation

σ = 2.5, and range 6� tISI� 14, as in Starkweather et al. (2017) [7].

Babayan task. In this task, non-zero reward sizes were determined in blocks of trials. In

block 1, the non-zero reward size was rt = 1, while in block 2 the non-zero reward size was

rt = 10. Each block consisted of 5 sequential trials. Block identities were sampled uniformly

with equal probability. On all trials, the ISIs were uniformly sampled as tISI* Unif({9, 10,

11}). For S2 Fig, sessions also included blocks of intermediate rewards: rt 2 {1, 2, 4, 6, 8, 10},

where block identities were sampled in similar proportions to those used in Babayan et al.

(2018) [10] (i.e., blocks with rt = 1 or rt = 10 comprised *90% of the total trials).

Recurrent neural network implementation

We trained recurrent network models, in PyTorch, on multiple tasks to estimate value. Each

Value RNN consisted of a GRU cell [23] withH 2 N units, followed by a linear readout of

value. At each time step t, the RNN received observations, ot 2 R
2
, from a given experiment.

The RNN’s representation can be written as zt = fϕ(zt−1, ot) given parameters ϕ. The RNN’s

output was the value estimate bVt ¼ w>zt þ w0, for w 2 RH and w0 2 R. The full parameter

vector θ = [ϕ, w, w0] was learned using TD learning. This involved backpropagating the
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gradient of the squared error loss d
2

t ¼ ðrt þ gbVtþ1 �
bVtÞ

2
with respect to bVt. Unless otherwise

noted we used γ = 0.93 as in Starkweather et al. (2018) [13].

RNNs were trained on episodes composed of 20 (Starkweather task) or 50 (Babayan task)

concatenated trials. This was necessary to allow models to accurately estimate the value of the

ITI, but it also meant that episodes included long gaps of time without any inputs. We used a

GRU cell rather than a simple Elman (i.e., gate-less) recurrent network as we found the former

easier to train to convergence. We suspect that the gate-less RNNs struggled to converge due

to the vanishing gradient problem, which is a known issue with these networks in the presence

of long time lags [47].

For each task, and for each H 2 {2, 5, 10, 20, 50, 100} units, we trained N = 12 networks.

Prior to training each network, the weights and biases of the GRU (i.e., ϕ) were initialized

using PyTorch’s default of Uð� a; aÞ where a ¼ 1ffiffiffi
H
p . Training then proceeded for a maxi-

mum of 150 epochs on a session of 10,000 trials, with a batch size of 12 episodes. Training

was stopped early if the loss increased for 4 consecutive epochs. Gradient updates used

Adam with an initial learning rate of 0.003. No hyperparameter search was performed to

fine-tune these choices. In the text, we refer to a Value RNN as the result of this training

process, while an Untrained RNN is the same network after initialization but before

training.

The Value ESN was identical to the Value RNN, except that it was initialized differently,

and ϕ was frozen during training (i.e., the only learned parameters were w and w0). For ini-

tialization, we did the following (“Tensorflow-style” initialization). All of the GRU’s biases

were initialized to zero. The GRU’s recurrent weights were sampled as a random orthogonal

matrix using torch.nn.init.orthogonal_ with a given gain [29]. The GRU’s input

weights were sampled as Uð� a; aÞ where a ¼
ffiffiffiffiffiffi

6

2þH

q
, using torch.nn.init.xavier_

uniform_ [48].

State and belief representations

Given a task with hidden states s 2 {1, . . ., K}, the belief, bt 2 [0, 1]K, is the posterior probability

distribution over each possible state [17]. The tasks we analyze here are technically discrete-

time semi-Markov processes, and so we follow previous work in formulating them equiva-

lently as Markov processes with micro-states defined over each relevant discrete time step

[6, 7]. In this setting, observations occur at the transition between states. As a result, the belief

in state can be written as:

btðkÞ /
XK

k0¼1

Oot
ðk0; kÞTðk0; kÞbt� 1ðk

0Þ ð10Þ

where T 2 [0, 1]K × K is the matrix of transition probabilities, and Oo(k0, k) is the probability of

observing o after making a transition from k to k0.
Note that for a partially observable Markov process with a finite state space and no actions,

the true value function can be written as a weighted combination of beliefs:

Vt ¼
XK

k¼1

VðkÞbtðkÞ ð11Þ

where V(k) and bt(k) are the value and belief of state st = k, respectively. This means that the

linear value function approximation in Eq (4) is sufficiently expressive for the partially observ-

able problems we consider in this paper: with enough training data, a linear value function
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approximation will perfectly estimate the true value function (i.e., given learned weights w
(k) = V(k) and features zt(k) = bt(k) for each k 2 K).

Starkweather tasks. In both Tasks 1 and 2 there are three distinct observations, ot 2 {[0,

0], [1, 0], [0, x]}, which we refer to as the null, odor, and reward observations, respectively. Let

the possible reward times be tISIs = {6, . . ., 14}. The maximum reward time is max(tISIs) = 14,

and so we let states 1 − 14 be the ISI microstates. The ITI is a Geometric distribution plus a min-

imum ITI of tITI = 10, and so we let states 15 − 25 be the ITI microstates. There are K = 25 total

states.

We first define the observation probabilities, Onull, Oodor, Oreward 2 {0, 1}K × K, where

Oo(k0, k) indicates the probability of having transitioned from state k to state k0 upon observ-

ing o 2 {null, odor, reward}. Each Oo(k0, k) = 0 except at the following:

• Onull(t + 1, t) = 1 for all t 6¼max(tISIs)

• Onull(K, K) = 1

• Oodor(t, K) = 1 for t = 1 (Task 1) or t 2 {1, max(tISIs) + 1} (Task 2)

• Oreward(max(tISIs) + 1, t) = 1 for t 2 tISIs

To define the transition probabilities, let pt 2 [0, 1] be the probability of receiving reward at

time t 2 tISIs, Ft = ∑t0�t pt0 the cumulative probability, and ht = pt/(1 − Ft) the hazard. Recall that

pITI ¼ 1

8
. Then T(k0, k) = 0 except at the following:

• T(t + 1, t) = 1 for t =2max(tISIs)

• T(t + 1, t) = 1 − ht and T(max(tISIs)+ 1, t) = ht for t 2 tISIs

• T(K, K) = 1 − pITI

• T(max(tISIs) + 1, K) = pITIpomission

• T(1, K) = pITI(1 − pomission)

Babayan task. The states in this task can be thought of as two copies of the beliefs in the

Starkweather tasks, with one copy for each of the two blocks. (Note that tISIs = {9, 10, 11},

K = 22, and the hazard probabilities must be modified from the Starkweather task to account

for the different reward timing distribution). Each copy has 11 ISI microstates (because the

maximum reward time is max(tISIs) = 11) and 11 ITI microstates. Let bð1Þt 2 ½0; 1�
22

and

bð2Þt 2 ½0; 1�
22

be the beliefs for the substates of block 1 and block 2, respectively. Let the nota-

tion x = [y, z] indicate that x 2 RK1þK2 is a concatenation of the vectors y 2 RK1 and z 2 RK2 .

Then the full belief bt 2 [0, 1]44 is as follows:

bt ¼ ½ptb
ð1Þ

t ; ð1 � ptÞb
ð2Þ

t �

pt ¼ f ðrtÞ if rt > 0 otherwise pt� 1

ð12Þ

where pt 2 [0, 1] is the estimated probability of being in block 1, and f is our likelihood func-

tion mapping nonzero rewards, rt, to the estimated probability of being in block 1 vs. block

2. In other words, we modeled the belief in the block identity as being a function only of the

most recently observed reward. We defined f following the original paper: Let ϕ(rt;μ, σr) be

the pdf of a Normal distribution with mean μ and standard deviation σr> 0. Then

f ðrtÞ ¼
�ðrt ;m1;srÞ

�ðrt ;m1;srÞþ�ðrt ;m2 ;srÞ
, where μ1 = 1 and μ2 = 10 are the rewards amounts in block 1 and 2,

respectively. Here we assumed σr was arbitrarily small, so we used σr = 0.001.
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Model analyses

We analyzed exemplars from each model class (Beliefs, Value RNNs, Untrained RNNs, Value

ESNs) using two sessions of 1,000 concatenated trials each, with the same task parameters as

those used when training the RNNs (see above). The first session was used for fitting any

parameters relevant to the analysis (i.e., value weights, regression weights, decoding weights),

while the second session was used for evaluation. Because the RNN’s responses were determin-

istic functions of their inputs, prior to analysis we added noise to all RNN representations to

prevent overfitting during regression and decoding as follows. Let σi> 0 be the sample stan-

dard deviation of the activity of hidden unit i across trials, and let g> 0 be the noise gain.

Then we added zero-mean Gaussian noise with a standard deviation of gσi to this unit’s activ-

ity, so that each unit had the same SNR, where SNR ¼ 10 log
10
ðs2

i =ðs
2
i g

2ÞÞ dB = −20 log10g dB.

For the figures in the main text, we used g = 0.05, such that SNR� 26 dB. Our main conclu-

sions did not change for other values of g (S4 Fig).

Value estimates. Each model’s value estimate was given by bVt ¼ z>t bw þ w0, where bw 2 RD

and w0 2 R are the value weights, and zt 2 R
D

is the model’s representation at time t. (For the

belief model, zt = bt).
To estimate the value weights, bw, we used Least-Squares TD (LSTD) [49]. LSTD provides a

closed-form solution for the weights, bw, that minimizes the TD error, dt ¼ rt þ gbVtþ1 �
bVt,

across all observed data as follows:

bw ¼ bD � 1bd

bD ¼
XT� 1

t¼1

ztðzt � gztþ1Þ
>

bd ¼
XT� 1

t¼1

rtzt

ð13Þ

This procedure was used to fit value weights for all models considered in the paper: the

Belief model, Value RNN, Untrained RNN, and Value ESN. Note that the Value RNN and

Value ESN learned their own value weights, bw, as part of training. However, we wanted to

ensure that the value functions of all models were estimated using the same procedure, so we

re-estimated these models’ value weights using LSTD after training.

Reward prediction errors. To assess how close each RNN’s RPEs came to the RPEs found

using the belief model, we defined an RNN’s RPE error using the mean squared error:

1

T

PT
t¼1
ðdt �

bdtÞ
2
, where bd t is the RNN’s RPE, and δt is the RPE from the belief model. Because

each trial had at most one reward delivery, for simplicity we considered the RPEs only at the

time of reward delivery on each trial (i.e., the t in the above equation refers to a trial and not a

time step); this simplification did not affect our results.

Belief R2. To assess how much variance of the beliefs could be explained by each model’s

learned representation, we used multivariate linear regression:

cW ¼ ðZ>ZÞ� 1Z>B ð14Þ

where Z 2 RT�ðHþ1Þ is the matrix whose tth row is [zt, 1], B 2 RT�K is the matrix whose tth row

is bt, andcW 2 RðHþ1Þ�K
. We considered linear (rather than nonlinear) regression to be conser-

vative in our conclusions about the degree to which model representations resembled beliefs.
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To evaluate model fit, let VarðXÞ ¼ 1

T

PT
t¼1
k xt � �x k2

2
, where xt is the tth row of X, and �x is

the mean of the rows of X. Then we calculated the total variance explained:

R2 ¼ 1 �
VarðB � ZcWÞ

VarðBÞ
ð15Þ

State decoding. We asked where we could find a decoder that could infer the underlying

state, st 2 {1, . . ., K}, using an affine transformation of the RNN’s representation, zt 2 R
H . To

find such a decoder, we first standardized each model representation (considering each

dimension of zt in isolation) to have zero mean and unit variance. We then performed a multi-

nomial logistic regression using scikit-learn’s linear_model.LogisticRegression
with the parameters multi_class=“multinomial”, C = 1, and max_iter = 1e4.

After training, the decoder’s estimated state probabilities over st are:

πt ¼ softmaxð~z>t cWÞ 2 ½0; 1�
K ð16Þ

wherecW 2 RðHþ1Þ�K contains the decoder parameters; ~z t 2 R
Hþ1 is the model representation

at time t after standardization, plus an extra constant column of 1’s to fit the offset; and the

softmax function normalizes the vector to be a valid probability over the K values of st.
To evaluate the resulting decoder, we calculated the model’s log-likelihood (ℓ) on the evalu-

ation session as follows:

‘ðcW j s1; . . . ; sT; ~z 1; . . . ; ~zTÞ ¼
1

T

XT

t¼1

logðπtðstÞÞ ð17Þ

where πt(st) 2 [0, 1] is the stht entry of the vector πt. We calculated the log-likelihood for the

belief model similarly, except instead of training a decoder we used πt = bt. For the Babayan

task (Fig 5E), we calculated the log-likelihood on all trials except the first trial in each block.

This was necessary for the beliefs to act as an upper-bound on the log-likelihood, because we

defined the beliefs in a way that did not assume knowledge of the number of trials in each

block.

Dynamics analysis. An RNN with parameters ϕ has a hidden state that evolves as zt =

fϕ(zt−1, ot). Conditioned on a particular constant input, o, an RNN is at a fixed point when

k f�ðz; oÞ � z k2
2
� 0. Numerically, we can simply look for z where k f�ðz; oÞ � z k2

2
< �. For

our analyses below we chose � = 1 × 10−5.

Identifying fixed points (Figs 5B and 7G). During training, RNNs received three distinct

types of inputs, ot 2 {[0, 0], [1, 0], [0, r]}, which we refer to as the null (⌀), odor, and reward

inputs, respectively. Under the beliefs of the Starkweather and Babayan tasks, the odor and

reward inputs always result in a change in the beliefs. As a result, any fixed points of the beliefs

must be conditional on the null input,⌀. We therefore sought to identify an RNN’s fixed

points conditional on a null input. To do this, we took a numerical approach: We initialized

the RNN to a random state, applied the null input until the RNN’s activity converged, and

then repeated this process across different random states to get a candidate set of fixed points.

More precisely, we considered N = 20 randomly selected values of z in the testing data follow-

ing an odor or reward observation as a set of starting seeds. For each starting seed, z0, we com-

puted the RNN’s representation, zt, over time, given no further odor or reward observations:

zt ¼ f�ðzt� 1;⌀Þ. We repeated this process until Zt ¼k zt � zt� 1 k
2
2
< �. We then added zt to

our list of candidate fixed points, F . For each pair of candidate fixed points within a distance

1 × 10−3 of each other, we considered these to be the same fixed point.

PLOS COMPUTATIONAL BIOLOGY Emergence of belief-like representations through reinforcement learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011067 September 11, 2023 23 / 27

https://doi.org/10.1371/journal.pcbi.1011067


Odor and reward memory duration (Fig 5C and 5D). For each Value RNN with a single

fixed point, we measured the network’s odor (or reward) memory as follows. We initialized

each RNN to its fixed point, z0, and then provided an odor (or reward) observation at time

t = 1. We then measured the RNN’s representation, zt, over time, given no further odor or

reward observations: zt ¼ f�ðzt� 1;⌀Þ, for t> 1. For each t, we calculated the distance of the

activity from its fixed point: Zt ¼k zt � z0 k
2
2

(Fig 5C). We repeated this until ηt converged to

zero, defining the odor memory (or reward memory) as the t at which ηt< 1 × 10−3 (Fig 5D).

Supporting information

S1 Fig. RNN activity before and after training on Starkweather Task 2. A. Example observa-

tions, states, beliefs, and Value RNN activity from the same Task 2 trials shown in Figs 2 and

4A. States and beliefs are colored as in Fig 2, with black indicating ITI microstates, and other

colors indicating ISI microstates. B-C. RNN unit activity (individually normalized to span

between 0 and 1), with units sorted by time of peak activation on held-out trials, on an RNN

before (panel B) and after (panel C) training. Both before and after after training, RNN units

exhibited tuning to elapsed time following observations, with variance that scaled with elapsed

time.

(TIF)

S2 Fig. Value RNNs trained on the Babayan task recapitulate dopamine activity and belief

RPEs in response to intermediate reward sizes. A-B. Average dopamine response on trial 1

(panel A) and trial 2 (panel B) during probe sessions including blocks with intermediate

reward sizes. Circles and lines depict mean ± SE across N = 11 animals. Reproduced from

Babayan et al. (2018) [10]. C-D. Same as panels A- B, but for the RPEs of the Belief model

(black) and Value RNNs (purple). Value RNNs were trained on sessions including only blocks

with rewards rt 2 {1, 10}, as in the main text. Value weights for the Belief model and Value

RNNs were fit using a test session including 39 blocks each with rt = 1 and rt = 10, and 3 blocks

each with rt 2 {2, 4, 6, 8}, similar to the proportions used in Babayan et al. (2018) [10]. RPEs

were then measured on a different test session. Purple circles and lines depict mean ± SE across

N = 12 models.

(TIF)

S3 Fig. Value RNNs trained on the Babayan task exhibit one fixed point. A. RNN activity

during two example trials, one during Block 1 (left) and the other during Block 2 (right). Same

as Fig 7D. Here we also include RNN activity trajectories if each reward had been omitted.

While activity for the Block 2 trial initially returns to the putative ITI2 state, it eventually

returns to the true fixed point at ITI1 B. Distance of RNN activity from the single fixed point

(e.g., ITI1 in panel A) following an odor observation (i.e., an omission trial). While the maxi-

mum ITI duration is theoretically infinite, the maximum ITI duration in the training data was

at t = 65. RNN activity on Block 2 trials therefore remained separate from the activity on Block

1 trials for the range of experienced ITI durations.

(TIF)

S4 Fig. Performance of Value RNNs and Untrained RNNs as a function of added noise

magnitude. A. Error between the RPEs of the Value RNN (dark purple) and Untrained RNN

(light purple) relative to the Belief model’s RPEs (“RPE MSE”; see Fig 3D) during Starkweather

Task 2, as a function of the magnitude of the Gaussian noise added to each unit prior to analy-

sis (see Materials and methods). All RNNs had 50 hidden units. Each dot is the error for a sin-

gle Value RNN model. Each circle is the median across the N = 12 Value RNNs (dark purple)

or N = 12 Untrained RNNs (light purple) at a given noise level. B. Total variance explained
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(R2) of beliefs on held-out trials (see Fig 4B). Same conventions as panel A. C. Cross-validated

log-likelihood of the state decoder using RNN activity to estimate the true state (see Fig 4C).

Same conventions as panel A.

(TIF)
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