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Reconciling time and prediction error
theories of associative learning

Noé Hamou 1, Samuel J. Gershman 2,3 & Gautam Reddy 3,4,5

Learning involves forming associations between sensory events that have a
consistent temporal relationship. Influential theories based on prediction
errors explain numerous behavioral and neurobiological observations but do
not account for how animals measure the passage of time. Here, we propose a
theory for temporal causal learning, where the structure of inter-stimulus
intervals is used to infer the singular cause of a rewarding stimulus. We show
that a single assumption of timescale invariance, formulated as an hierarchical
generative model, is sufficient to explain a puzzling set of learning phenom-
ena, including the power-law dependence of acquisition on inter-trial intervals
and timescale invariance in response profiles. A biologically plausible algo-
rithm for inference recapitulates salient aspects of both timing and prediction
error theories. The theory predicts neural signals with distinct dynamics that
encode causal associations and temporal structure.

Animals learn the structure of a novel environment by forming asso-
ciations between events that share consistent spatial and temporal
relationships. Many principles of associative learning have been dis-
covered within the classical conditioning paradigm, where learning is
typicallymeasured by an animal’s anticipatory response to a rewarding
stimulus (US) that consistently follows a cue (CS)1. Classical con-
ditioning experiments reveal a rich set of behavioral phenomena,
including contingency degradation, blocking, and conditioned inhi-
bition, which can be explained by reward prediction error (RPE)
models. Notable examples include the Rescorla-Wagnermodel2 and its
temporal-difference (TD) generalizations3,4. Neuroscientific studies
provide strong support for RPE models, demonstrating that the
dynamics of mesolimbic dopamine during learning and extinction
match those of an RPE signal5–11.

Classical RPE models do not easily explain how animals form
associations across events separated by timescales spanning many
orders of magnitude12,13. TD models typically discretize time into
states that tile the interval between the cue and reward. A TD
learning rule sequentially propagates prediction errors backward in
time along those discrete states, explaining how associations
between distal cues and rewards could be learned4,14,15. The choice of

discretization fixes an intrinsic timescale that governs the rate at
which an association is acquired and the temporal precision avail-
able when anticipating reward.

However, a puzzling empirical observation is the absence of
an intrinsic timescale that sets the rate of learning. Instead, the
number of trials (nacq) required for an animal to exhibit an
anticipatory response is primarily determined by the ratio of the
cue-reward interval (T) to the reward-reward interval (C) (Fig. 1a).
Specifically, nacq has an approximate power-law relationship with
C/T16,17 (Fig. 1b). Several additional phenomena challenge con-
ventional reward prediction error (RPE) models. These include
discontinuous learning curves18 (Fig. 1c) and Weber-law-like scal-
ing of anticipatory responses19, where response profiles across
experiments collapse when time is rescaled by the cue-reward
interval (Fig. 1d). Furthermore, prior exposure to reward in the
absence of cues impacts the number of trials to acquisition
(Fig. 1e). Collectively, these behavioral results, along with broader
timing-related evidence20 suggesting animals explicitly encode
temporal intervals, highlight key limitations of standard RPE
models. Recent neurobiological findings have further questioned
whether mesolimbic dopamine encodes a pure RPE signal21,
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reinvigorating efforts to develop a unified framework that
reconciles RPE models with these phenomena.

Alternative models have been proposed to account for some of
these phenomena14,16,21–28 (discussed further in Supplementary Note 1).
Discontinuous learning curves can be explained based on the nature of
TD signal propagation in structured environments14, or by assuming
that animals implement approximate Bayesian inference by imple-
menting a sampling algorithm29. Building on rate estimation theory
(RET)16, a line of work22,30 argues that the rate of acquisition is deter-
mined by the additional information (in bits) the cue provides about
reward timing relative to the background context, which depends on
C/T. A recent model grounds RET in learning theoretic terms and
makes a link with RPE-like models, though key assumptions about
temporal structure differ from ours25. Another recent theoretical fra-
mework, called retrospective causal learning theory (RCT)21, proposes
that animals learn causal associations using an eligibility trace

mechanism whose characteristic timescale is set by the inter-trial
interval. RET and RCT help rationalize why nacq depends primarily on
the ratio C/T. Other models invoke cue competition23 to highlight the
influence of reward pre-conditioning, propose a noisy accumulator
model to explain timescale invariance in response profiles28, and pre-
dictive representations of stimulus-reward intervals12,26,31,32 to explain
how an animal could form associations across multiple timescales.

Here, we show that prior models describing complementary
aspects of associative learning can be synthesizedwithin one common
framework. The framework can be viewed as a version of model-based
RL where learning temporal structure plays a central role. We present
two main contributions. First, we formulate a general Bayesian fra-
mework for timing-based causal learning that describes how causal
associations are learned and how these associations determine
anticipatory responses. The inference process involves estimating two
interdependent quantities: the distribution of intervals between

Fig. 1 | Learning phenomena in a classical conditioning paradigm. a Schematic
representation of the delay-conditioning protocol. A reward (such as water) is
presented afixed interval after the cue (such as a bell). The interval between the cue
and the reward isT, between the reward and thenext cue is I, whileC= I+T is the the
interval between consecutive cues/rewards. b Timescale invariant learning. The
number of trials required for acquisition nacq is plotted against the C/T ratio on a
logarithmic scale. Data are compiled from studies across different laboratories, as
listed in Gallistel & Gibbon16. A linear fit is shown, highlighting the power-law
relationship between nacq and C/T. The shaded area corresponds to the 99% con-
fidence interval for the linear regression. The dashed line in the center of the
shaded area shows the estimated regression fit. c Discontinuous learning curves.
Animals trained in a Pavlovian conditioning framework learn to anticipate rewards
by licking in response to a cue. Cumulative lick counts are displayed, with traces
shown up to the 1000th lick per animal. Data adapted from Jeong et al.21.

d Timescale invariance in response profiles. In the top panel, response rates are
plotted for various cue-reward intervals T (left). In the bottompanel, both response
rates and time are normalized by their respective maxima for each T. Data are
adapted from Church et al. (1998)19 and sourced from the Timing Database64. The
shaded areas correspond to the standard error of the mean. e Effect of prior
rewards. During pre-conditioning with rewards, animals receive prior contextual
reinforcements before any cues are introduced. Increasing the number of con-
textual trials results in animals requiring more cues to form the association. The
number of subjects was n = 5 for contextual trials 4, 8, 64, and 128; n = 6 for
contextual trials 256; and n = 8 for contextual trials 0 and 1200. Average number of
trials to acquisition and error bars (standard error of themean)were obtained from
Balsam et al.38,39. Refer to the Methods section for a more detailed explanation of
the data collection procedures.
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stimuli, and a probabilistic measure of the causal association between
them. The key insight is that a single assumption of timescale invar-
iance, formulated as a hierarchical generative model, quantitatively
explains the phenomena described in Fig. 1. Second, we show that
online algorithms for learning distributions of stimulus-reward inter-
vals closely resemble prediction error models. We propose a learning
rule for estimating causal associations between stimuli, which predicts
neural signals with distinctive dynamics that encode causal associa-
tions. When applied to a common classical conditioning protocol
(Fig. 1a), the model reproduces the core features of the Rescorla-
Wagner model, including contingency degradation, blocking, extinc-
tion and a prediction error signal consistent with an RPE.

Results
A Bayesian framework for timing-based causal learning
We consider a scenario where the animal predicts when a rewarding
stimulus (r) will appear based on the timing of past stimuli (Fig. 2a).
The rewarding stimulus r appears at some (possibly stochastic) interval
after a stimulus that causes it. The causal stimulus c may either be a
previous occurrence of r itself or a previous occurrence of a stimulus c

amongst a set of possible non-rewarding stimuli (Fig. 2a). Our theory
has twomain features: (1) that the animal estimates the likelihood that
one of the stimuli causes r based on statistical regularities in stimulus-
reward intervals, and (2) that the animal displays an anticipatory
response thatmaximizes long-term reward. The anticipatory response
relies on a predictivemap of when rwill occur next given the historical
record of when past stimuli have occurred.

The framework is cast as a hierarchical Bayesian model. Given the
historical record until time t, Bayesian inference lets us compute the
probability density that rwill appear at time t. This probability is given
by

pð reward at tÞ=
X
c

pðreward at tjcause cÞpðcause cÞ, ð1Þ

whichwe express as p(t) = ∑cρc(t)πc(t), where the sum over c includes r
and all possible non-rewarding stimuli in the context. ρc(t) encodes the
information the animal has acquired about the distribution of intervals
between c and r. πc(t) is the association, defined as the posterior
probability that c causes r. Using Bayes’ rule, the association πc(t) is

Fig. 2 | Overview of the model. a Schematic representation of the timing-based
causal learning framework. Stimuli are point-events in time. Based on the timing
between stimuli and rewards, the model agent learns to respond in anticipation of
reward following stimuli that are predictive of rewards. In this example, the orange
bell is the best predictor of when reward will occur. b (Top) Schematic repre-
sentation of the learned histogram of the interval between the causal stimulus and
reward. Rewards are placed in bins, where bin locations τ1, τ2, …, τK are uniformly
spaced on a logarithmic time axis. (Bottom) The corresponding distribution of

intervals (yellow) between the causal stimulus and the reward is obtained by
smoothening the histogram (blue). c Algorithmic steps of the proposed Bayesian
learning theory. The agent learns to estimate distributions of intervals between
each stimulus and reward (including the distribution of intervals from reward to
reward). The agent uses these estimates of interval distributions to estimate the
probability that each of the stimuli causes reward. The agent then combines the
estimated interval distribution and causal associations to produce an anticipatory
response to the reward.
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proportional to the likelihood of observing the historical record until
time t if cwere the cause, weighted by the prior probability that c is the
cause. The association can generally be expressed as

πcðtÞ= σðεc + ‘cðtÞÞ, ð2Þ

where εc is the relative log prior, ℓc(t) is the relative log likelihood and
σðxcÞ= exc=

P
c0e

xc0 is the softmax function. εc and ℓc are respectively
measured relative to the log prior and log likelihood that reward
causes reward (εc = logπ0

c � logπ0
r and ‘cðtÞ= logρcðtÞ � logρrðtÞ).

The possibility that reward causes reward plays a similar role as a
common assumption in prior models that a non-rewarding stimulus
competes with a background contextual cue33,34. The relative log prior
εc captures a notion of “preparedness”35, that is, the propensity for a
particular stimulus to be associated with the reward based on the
animal’s past experiences or innate biases. We now expand on the
theory’s two key features, timescale invariance and reward
maximization.

Timescale invariance. Timescale invariance is motivated by the
viewpoint that an animal could form associations between contiguous
events (separated by fractions of seconds) but also between distant
events (separated by minutes or hours). One would expect a repre-
sentationof time intervals that supports associations across timescales
separated by orders ofmagnitude to be logarithmic.Wewill show that
this assumption is also sufficient to explain experimental data. Speci-
fically, we assume the interval distribution between the causal stimulus
and reward is represented as a (smoothed) histogram, where the
temporal locations of the K histogram bins are τ1, τ2, τ3,…, τK (Fig. 2b).
The animal learns this smoothed histogram during conditioning.
Importantly, the timescales are spaced uniformly on a logarithmic
scale, τμ+1 − τμ = kτμ for k ≪ 1.

This formulation of timescale invariance can be expressed math-
ematically as a generative model using a Dirichlet-multinomial dis-
tribution compounded with a scale-invariant emission function
(Methods). The complete inferential framework is expressive enough
to allow formulti-modal distributions of stimulus-reward intervals and
partial reinforcement. Exact inference can be computationally hard in
certain scenarios due to the many possible assignments between
rewards and their causes when stimuli and rewards are interleaved.We
discuss approximate algorithms for inference in Supplementary
Note 2, noting however that the assignment problem is absent for the
delay-conditioning protocol considered here.

In thismodel, the probability density that the reward will occur at
t if the causal stimulus c appeared at t − δ is given by

ρcðtÞ=
XK
μ= 1

wμϕðδ=τμÞ=τμ: ð3Þ

Intuitively,wμ represents the probability that the reward will fall in the
bin at timescale τμ andϕ is a normalized basis function which smooths
the estimated histogram (Fig. 2b). The weights wμ thus encode infor-
mation about the distribution of stimulus-reward intervals. A uniform
prior overwμ leads to a 1/δ power-law prior distribution over stimulus-
reward intervals. This scaling relation implies that shorter intervals are
more likely, and that the relative likelihood of observing two intervals
is equal to the ratio of those intervals.

Reward maximization. When an animal experiences a reward-
predictive stimulus, it displays an anticipatory response (for exam-
ple, by licking a water port) at a rate ω(t) that reflects its estimate of
whether the reward will occur at time t36,37. We show that if each
response has a rate-dependent cost and future rewards are discounted
at a discount rate λ, the optimal anticipatory response rate ω*(t)

generally takes the form

ω*ðtÞ= λH pðtÞ
λFðtÞ

� �
, ð4Þ

where FðtÞ= R1t pðsÞds andH is amonotonic function (seeMethods for
thederivation). For example, if the cost of a response is independent of
the rate ω, we find HðxÞ= ffiffiffiffiffiffi

γx
p � 1
� �

+ up to a maximal response rate. γ
is a constant that depends on the subjective value the animal receives
from the reward relative to the cost of each response.

Equation (4) implies that any threshold criterion applied on the
response rate to deem that the animal has acquired the association is
equivalent to a criterion on the certainty with which reward is pre-
dicted to occur, that is,p(t)/F(t) >Θ for some thresholdΘ. Importantly,
since p(t) depends on the product of ρc(t) and πc(t), equation (4) fur-
ther highlights that an association is acquired when the stimulus-
reward interval is learned (ρc is sharply distributed) and when the sti-
mulus is deemed causal (πc ≈ 1) (Fig. 2c).

Timescale invariance explains timing-related phenomena
We now examine the behavior of the model when applied to the
commonly used delay-conditioning protocol shown in Fig. 1a. The
experiment involves one unrewarding cue (CS) and a reward (US).
The cue-reward and reward-reward intervals are fixed at T and C,
respectively. The experiment begins with a pre-conditioning phase
where the reward is delivered alone. The cue is introduced after np
prior presentations of the reward. As in experiments, an association
is deemed to be acquired when the rate of anticipatory response
crosses a threshold.

Simulations successfully recapitulate discontinuous learning
curves (Fig. 3a) and timescale invariance in response profiles (Fig. 3b).
That is, response profiles across simulations with different T collapse
when time since cue presentation is re-scaled by T and their amplitude
is re-scaled by the maximum response value. Next, we examine how
the number of trials for acquisition, nacq, depends on np, C and T. We
find that nacq depends only on the ratio C/T. In particular, nacq has an
approximate power-law dependence on C/T, but tapers off for large
values of C/T (Fig. 3c). The relative log prior εc has a weak influence on
nacq and C/T. As noted previously23,38,39, the pre-conditioning phase has
a strong influence on nacq in experiments (Fig. 1e). This dependence is
also captured by our model (Fig. 3d, Supplementary Fig. 1a).

A mathematical analysis of the model shows that timescale
invariance in response profiles (Fig. 3b), the power-law scaling of nacq
with respect toC/T (Fig. 3c) and discontinuous learning curves (Fig. 3a)
are generic consequences of timescale invariance of the stimulus-
reward interval distribution. We summarize the main results derived
from our analysis and refer to the Methods for mathematical details.

Acquisition can only occur once the relative log likelihood ℓc that
the cue causes reward exceeds the relative logprior εc, ℓc>− εc (Eq. (2)).
We show that ℓc has a non-monotonic dependence on the number of
presented cues: starting from zero, it first declines and subsequently
rises to a positive value (Supplementary Fig. 1). The initial drop in ℓc is
due to the agent’s greater confidence in the reward-reward interval
distribution acquired during the pre-conditioning phase. Longer pre-
conditioning leads to a larger initial drop, which in turn leads to the
significant dependence of nacq on the number of prior rewards np.

Since shorter intervals are more likely, the shorter cue-reward
interval (T < C) leads to a subsequent rapid rise in ℓc after a sufficient
number of cue presentations. This rapid rise together with the sig-
moidal dependence of the association πc on ℓc (Eq. (2)) leads to an
abrupt learning of the cue-reward association. If the threshold criter-
ion on the response rate for acquisition is small, then acquisition
immediately follows. Thus, the theory suggests that acquisition is
primarily limited by the time taken for the animal to establish that the
cue is causal rather than the time taken for the animal to fully learn the
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cue-reward interval distribution (with some dependence on the
acquisition criterion).

After the cue-reward association and interval are learned, the
learned cue-reward interval distribution converges to ρc(δ) ≈ ϕ(δ/T)/T
(Eq. (3)). Since the response rate depends monotonically on ρc, re-
scaling δ with T and re-scaling the amplitude of the profile with the
maximal value leads to timescale invariance in the response profile.
The shape of this invariant response profile is determined primarily by
the basis functionϕ and the response functionH. Timescale invariance
in the response profile is not exact in our model unless H is linear;
however, the approximation is excellent despite the nonlinear H used
in simulations (Fig. 3c).

The analytical dependence of nacq on C and T is in general non-
trivial to obtain. We derive expressions for different parameter ranges
(Methods). When np, K ≫ nacq ≫ 1 in particular, we find

nacq � �εc

W �εc
Ke

C
T

np

np +K

� � , ð5Þ

where W is the Lambert W function. W(x) ≈ x for x ≪ 1 implies
nacq ∝ (C/T)−1 whenever the argument in theW function of equation (5)
is small.

To explain this reciprocal dependence of nacq onC/T, we first note
that nacq depends on the log likelihood ratio logðρcðTÞ=ρrðCÞÞ (see
Supplementary Note 3). Timescale invariance implies ρc(T) ∝ 1/T and
ρr(C) ∝ 1/C, and thus nacq depends only on the ratio C/T. By itself,
however, this argument would imply a linear scaling of the evidence
(� n logC=T) after n cue-reward presentations. This linear scaling

leads to an nacq / ðlogC=TÞ�1 relation inconsistent with data. The
nacq∝ (C/T)−1 relation comes about because the animal’s estimateof the
cue-reward interval also gets sharper with n. Specifically, ρc(T) at the
beginning of learning increases linearly with n: ρc(T)∝ n/T. The reward-
reward interval is learned during the pre-conditioning phase, so that
ρr(C) = 1/C. Acquisition follows soon after the likelihood that the cue is
causal exceeds the likelihood that the reward is causal ρc(T) ≈ ρr(C),
which leads to nacq ∝ (C/T)−1.

Our assumption that animals learn the empirical histogram of
stimulus-reward intervals is important to explain the relationship
between nacq and C/T. To emphasize this point, we repeat the above
analysis supposing the animal learns the rate parameter (drawn from a
scale invariant prior) of a Gamma distribution. We find that while nacq
depends only on the ratio C/T, the specific relation is inverse loga-
rithmic nacq / logC=T

	 
�1 (Methods).

A theory of temporal causal learning
Building on the Bayesian theory, we now derive a biologically plausible
algorithm for inference, which we call temporal causal learning (TCL).
TCL involves two mechanisms: an update rule for learning stimulus-
reward interval distributions, and an update rule for learning causal
associations.

Learning the interval distribution involves updating the stimulus-
specific weights wμ corresponding to each timescale τμ (Eq. (3)). For
each stimulus, we consider the update rule

dwμðtÞ
dt

=ηaμðtÞ f rðtÞ � cμwμðtÞ
� �

, ð6Þ

Fig. 3 | The Bayesian model reproduces timing-related phenomena.
aDiscontinuous learning curves. In accordancewith Fig. 1b, we plot the cumulative
responses of a Bayesian agent during the delay-conditioning protocol described in
Fig. 1a. b Timescale invariance of response profiles. Response rates of the Bayesian
agent for different values of cue-reward interval T (top) and after normalizing the
response rate by the maximum response rate and re-scaling time by T (bottom).

c Timescale invariant learning. The number of trials to acquisition, nacq, for the
Bayesian agent are plotted against C/T for different values of the relative log-prior
(εc). Note the log-log scale. d Effect of prior rewards. In the Bayesian model,
increasing the number of contextual trials results in the agent requiring more cues
to form the association. See also Supplementary Fig. 1a.
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where η is a learning rate and cμ is a constant that ensures the weights
are normalized (Methods). fr(t) = ∑iδ(t − ti) represents the reward sig-
nal, where the ti’s correspond to the times when the reward appeared
in the past. aμ(t) is a stimulus-specific gating signal that determines
whichwμ is updatedwhen the reward appears (SupplementaryFig. 2b).
The predicted probability that the reward will appear at time t is given
by a linear readout ρ̂cðtÞ=

P
μϕμðtÞwμðtÞ, whereϕμ arenormalizedbasis

functions. The aμs are set to zero after the reward appears until the
next appearance of the stimulus.

With appropriate constraints on cμ, the gating signal aμ and the
basis functions ϕμ, we show that Eq. (6) is a generic online kernel
density estimation algorithm for learning distributions of intervals
between two events (Methods). The kernel is specified by the choice of
aμ and ϕμ. The update rule is consistent with an interpretation of the
weight wμ as encoding the estimated probability that the reward
appears within the interval (τμ, τμ+1). The sum∑μwμ in turn encodes the
probability that rewarddoes indeed appear after the stimulus (∑μwμ< 1
in a partial reinforcement paradigm).

We now show how the general update rule (6) can be used to
derive a timescale invariant density estimator implementable in bio-
logical networks. Specifically, the gating signals aμs are derived from a
set of eligibility traces ψμs associated with each stimulus (Supple-
mentary Fig. 2a). The eligibility traces for each stimulus (say c) are
updated as

τμ
dψμðtÞ
dt

= � ψμðtÞ+ f cðtÞ, ð7Þ

where fc(t) represents the stimulus train corresponding to stimulus c. A
downstream network implements a soft winner-take-all operation,
aμðtÞ= eβψμðtÞ=

PK
μ0 = 1e

βψμ0 ðtÞ. In the β → ∞ limit, we find thatΔτμ = kτμ and
k ≪ 1 imply aμ(t) ≈ 1 in the interval (τμ, τμ+1) after the stimulus and 0
otherwise. Thus, aμ(t) represents the activity of “time cells” that are
active in the interval τμ to τμ+1 after the stimulus is presented
(Supplementary Fig. 2b). In simulations, we use normalized gamma
functions with scale parameter τμ and a fixed shape parameter as basis
functions ϕμ.

To derive an update rule for learning causal associations, we
observe that the log likelihood Ln after n trials can generally bewritten
as Ln = log Pðdata at njpast dataÞ+ Ln�1. Based on this recursive
equation, we propose an update rule for the relative log likelihood (ℓc)
that the stimulus c is causal:

d‘c
dt

= frðtÞ log ρ̂cðtÞ � log ρ̂rðtÞ � η0‘cðtÞ
	 


, ð8Þ

where η0 is a small constant that determines howmany past events are
averaged over when estimating ℓc. The pre-factor fr(t) in equation (8)
indicates that the causal association is updated whenever the reward
appears.

TCL reproduces both prediction-error and timing-related
phenomena
Themodel when applied to the delay-conditioning protocol reproduces
discontinuous learning curves and timescale invariance in response
profiles (Supplementary Fig. 3). The model also recapitulates the
approximate power-law scaling of nacq with C/T and has an excellent
match with the data (Fig. 4). All simulations of themodel used the same
set of parameters (see Methods). Notably, the approximate power-law
behavior is preserved across a broad range of model parameters (Sup-
plementary Fig. 4). Note that pre-conditioning trials are not strictly
necessary to reproduce these effects (Supplementary Fig. 5).

Observing that the term in the parenthesis in Eqs. (6) and (8)
resemble a prediction error, we hypothesized that TCL can reproduce
phenomena attributed to RPE learning, such as extinction (Fig. 5a, b),

blocking (Fig. 5c) and contingency degradation (Fig. 5d). Indeed, in our
model, we observe extinction of an acquired response when a pre-
viously expected reward is omitted (Fig. 5a). Consistent with
experiments40, the rate of extinction is independent of the C/T ratio
(Fig. 5b). This effect arises due to the update (6), which decreases the
weight associatedwith the cue-reward interval at a constant rate η. The
TCL model also successfully captures blocking (Fig. 5c). Specifically,
simulations show that the acquisition of a new stimulus-reward asso-
ciation is impaired when the reward has already been paired with a
different stimulus, aligning with the classical blocking phenomenon.
Blocking is a consequence of cue competition implicit in Eq. (8).

TheTCLmodel reproduces contingencydegradation, which is the
reduction of an animal’s anticipatory response when additional
uncued rewards are introduced after the cue-reward association is
learned41–43. This effect arises in ourmodel because the introduction of
new rewards in the inter-trial period shortens the intervals between
rewards, thus increasing the likelihood that rewards are caused by past
rewards rather than past cues (Fig. 5d).

Finally, themodel is alsoable to account for the scalar relationship
between the response rate and the reinforcement schedule30, and the
observation that partial reinforcement does not affect the number of
reinforcements to acquisition16 (Supplementary Fig. 6).

The dynamics of neural correlates during learning
The dynamics of the quantities related to learning intervals (Δwμ, wμ),
associations (Δℓc, ℓc, πc) and response (ω) are shown in Fig. 6 for the

Fig. 4 | The online approximation version of our model (TCL) reproduces
timescale invariant learning.Timescale invariant learning in the onlinemodel and
in experiments17. The experimental points (purple dots) correspond to the data
shown in Fig. 1c. The model was trained on the delay-conditioning protocol
described in Fig. 1a with varying C/T ratios.
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delay-conditioning protocol. The update rule for Δwμ displays similar
behavior as an RPE signal on the delay-conditioning protocol, though
their behaviormaydiffer when applied to other protocols. Specifically,
the appearance of a reward at a certain interval triggers the positive
update of weights corresponding to that interval, which eventually
decays to zero while the interval distribution is learned (Fig. 6a). The
absence of rewards after the cue-reward interval has been learned
leads to a concomitant negative update.

In the Rescorla-Wagner model, the response is considered to be a
direct reflection of the associative strength between the cue and
reward. Our model aligns with this picture; the abrupt acquisition of
the response coincides with the acquisition of the association (Fig. 6b).
However, since the association increases together with the weights,
the acquisition of the response will also be correlated with the weights
that encode timing information (Fig. 6c). Thus, whether a neural signal
encodes causal associations or timing could be challenging to disen-
tangle in experiments.

The update rule for the relative log likelihood (Eq. (8)) predicts a
non-monotonic reward-triggered signal, with the magnitude of the
update peaking just before acquisition (Fig. 6d). Themagnitude of the
negative dip in ℓc increases with the number of prior rewards pre-
sented during the pre-conditioning phase. The response is acquired
soon after ℓc becomes positive. We note however that Eq. (8) is not the

unique update rule that recapitulates this phenomenology. For
example, it is possible that the log likelihoods for each stimulus (rather
than the relative log likelihood) are represented independently, which
are later mixed when determining the response.

Discussion
A longstanding puzzle is the absence of a fixed intrinsic timescale for
how quickly animals acquire associations. Curiously, the inter-trial
interval has a large influence on learning rate: scaling the inter-trial
interval by a factor of ten reduces the number of trials required for
acquisition (nacq) by approximately the same factor16,30,44. We pro-
pose a Bayesian causal learning framework to address this puzzle
and other unresolved learning phenomena that are not easily
explained by existing models. Our approach synthesizes features
of prior models into one framework, and highlights the central
role played by temporal structure learning for forming associations.
The key insight is that a single assumption of timescale invariance,
formulated in terms of how animals represent and learn distribu-
tions of stimulus-reward intervals when maximizing reward,
can quantitatively account for abrupt learning curves, timescale
invariance in response profiles and the quantitative relationship
between nacq and the ratio of the reward-reward and cue-reward
intervals (C/T).

Fig. 5 | The TCL model is consistent with classical conditioning results.
a Extinction in experiments (top) and TCL simulations (bottom). Individual curves
correspond to individual mice. The normalization is by the maximum response
rate. Data obtained from21. b Extinction rates are not dependent on C/T in experi-
ments and TCL simulations. Data obtained from62. c Schematic representation of
the blocking paradigm and the blocking effect in the TCLmodel. The response was

normalized by the maximum response out of the two stimuli. d Schematic repre-
sentation of the contingency degradation paradigm and of contingency degrada-
tion in the online model. The dashed gray line indicates when contingency
degradation starts, which corresponds to the trial at which additional rewards are
introduced in-between cue presentations. The response is normalized by the
maximum response.
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Guided by the intuitive notion that animals form associations
across many timescales, we propose that animals learn kernel density
estimates of interval distributions while measuring time on a loga-
rithmic scale. If all intervals on this scale are equally likely, then the
probability of observing a stimulus-reward interval is inversely pro-
portional to that interval. Using a reward maximization framework to
link anticipatory response with the animal’s temporal predictive map,
we show that timescale invariance in interval distributions naturally
leads to a Weber law scaling in response profiles. Further, since the
likelihood of observing an interval is inversely proportional to the
interval, the evidence (i.e., relative log likelihood) that the cue causes
reward, and thus the number of trials to acquisition (nacq), depends
only on C/T.

The theory predicts a specific non-trivial relationship between
nacq and C/T that depends both on the animal’s prior probability of
forming the cue-reward association and on the animal’s exposure to
the reward prior to cue-reward pairing. For a broad parameter range,
we show that this relation approximates the empirically observed
power-law relation between nacq and C/T, but we expect deviations
from this law, particularly when C/T is large. The non-trivial relation
between nacq andC/T arises because the evidence that the cue is causal
increases supralinearly (� n logðnC=TÞ)with thenumber of cue-reward
presentations (n). This supralinear relation combined with the non-
linear relationshipbetweenevidenceand responseproduces an abrupt
learningeffect akin to an “a-ha”momentwhen the evidenceovercomes
the prior. We predict that the relationship between nacq and C/T

switches from the approximate nacq ∝ (C/T)−1 scaling observed in
experiments to an nacq / ðlogC=TÞ�1 dependence (and a larger
learning rate overall) if the animal is not significantly pre-conditioned
to rewards.

Building on the Bayesian theory, we propose a biologically plau-
sible model of inference, which we call temporal causal learning (TCL,
Fig. 7). The TCL update rule for learning intervals (Eqs. (6), (7)) is
closely related to a line of work highlighting the role of time cells and
temporal context cells in associative learning24,45–47. As in thesemodels,
aμ reflects the activity of time cells and ψμ (the eligibility trace) reflects
the activity of temporal context cells. However, the TCL update rule
has certain key differences. First, we show that time cells can be
derived from eligibility traces using a simple winner-take-all circuit
rather than an approximate Laplace transform24. The TCLupdate using
eligibility traces (7) can be viewed as the Laplace representation of the
derivative of the stimulus train, dfc(t)/dt. Next, our update rule has a
precise interpretation as an online kernel density estimator for learn-
ing interval distributions, where the kernel is specified by aμ and ϕμ.
This connection to density estimation emphasizes that there are
multiple update rules, corresponding to different choices of the ker-
nel, that can approximate inference and explain data equally well.
Thus, our proposed algorithm using eligibility traces and a down-
stream winner-take-all circuit is one of potentially many biologically
plausible mechanisms for implementing temporal causal learning.
Finally, the correspondence with the Bayesian framework highlights
the need for another update rule (8) to learn causal associations and a

Fig. 6 | The TCLmodel predicts the existence of two learning signals: a classical
RPE-like signal and a causal association signal. a RPE-like change of temporal
weights during acquisition (top) and during extinction (bottom).b Evolution of the
response (top) and of the association (bottom) across learning. c Evolution of the

weights (top) and of the change in weights (bottom) across learning. d Evolution of
the relative log-likelihood (top) and of the change in relative log-likelihood (bot-
tom) across learning.
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reward maximization principle to connect interval estimation with
response (4).

Our model is of similar complexity to previous models of asso-
ciative learning2,16,28 with both the Bayesian and the TCL model relying
on four and six free parameters, respectively. These are: (i) ε, the
relative log prior; (ii) γ, a scaling factor for the response function; (iii)K,
the number of timescales; (iv) k, which controls the spacing between
adjacent timescales; (v, vi) η and η0 the two learning rates for the TCL
model. Among these, γ and k have minimal influence on the model’s
predictions, as shown analytically in (5). K and the two learning rates
determine the overall rate at which an association is acquired, and ε
influences the values of C/T beyond which nacq deviates from the
power-law scaling (see Supplementary Fig. 4 for example).

We predict a neural signal with distinctive learning dynamics that
encodes the causal association between the cue and reward. Possible
candidates includedopamine itself21,48 or other neurotransmitters such
as acetylcholine which gates dopamine-dependent learning49–51. In the
delay-conditioning protocol, the dynamics of the associative signal are
non-monotonic (Fig. 6d),with its trajectoryover learning influencedby
the animal’s prior exposure to rewards. The prediction error term,Δℓc,
associated with this update rule, rises sharply before saturating near
zero. The association is acquired during the rising phase. Meanwhile, a
parallel set of signals (Δwμ) updates information about the distribution
of cue-reward intervals, and exhibit behavior similar to reward pre-
diction errors (Fig. 6a,c) in the commonly used delay-conditioning

protocol. Notably, the update associating with timing could be tied to
serotonin, which regulates the temporal window during which
stimulus-shock associations form in Drosophila52.

Consistent with the dynamics of dopamine observed in ref. 21, the
evolution of both RPE signals (Δℓc andΔwμ) in themodel is gradual and
yet leads to the abrupt emergence of a response. The model predicts
that the two prediction error signals display similar dynamics but with
opposite signs. One potential approach to disentangle neural corre-
lates of causal learning and temporal coding is to design anexperiment
in which the cue-reward interval follows an atypical (say bimodal)
distribution. Our model predicts that distinct signals will code for
different intervals, but a common signal will code for causal associa-
tions. Systematically varying the temporal structure (e.g., adjusting the
likelihood of one mode in the distribution) and the cue-reward con-
tingency (e.g., changing the proportion of rewards following the cue)
would allow for examining whether specific neuromodulators convey
timing information or convey causal associations.

The computations described in our model could thus involve,
among other regions, the striatum, cortex, and the hippocampus. In
contrast, the timing of learned responses on the scale of tens to hun-
dreds of milliseconds has been shown to depend on the cerebellar
cortex53. These shorter timescales differ from those examined here,
which span a few seconds to hundreds of seconds. Accordingly, our
model’s predictions are more closely associated with dopaminergic
signaling and neural processes characterized by longer timescales.

Fig. 7 | Associative learning theories. We distinguish two large classes of asso-
ciative learning models: Prediction-error models (bottom left) and temporal
models (right). Proposed temporalmodels can be classified into rate-basedmodels
and interval-based models. Rate-based models estimate the rates of cues and
rewards to produce a response that depends on the ratios of these quantities.
Interval-basedmodels estimate the full distribution between cues and rewards. It is,
however, unclear how, in a purely interval-based model, a response is computed.
Classical prediction-error models (bottom left) do not estimate time, but update

the value of association on each trial based on the difference between the actual
reward and the predicted reward. The response reflects the weighted sum of the
different associative values. The model proposed in this study (bottom right) is a
temporal model that estimates both the intervals between events and a causal
association term. The response of the agent reflects the sum of the interval esti-
mates weighted by the causal association. While this model explicitly constructs a
representation of time, we show that this model can also be approximated by a
prediction-error model.
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Nonetheless, the presence of temporal basis functions in the
cerebellum54 suggests the possibility of a convergent timing mechan-
ism that allows for forming long-range temporal associations.

A limitation of our model is that it does not account for second-
order conditioning and temporal integration20 (that is, the expression
of temporal relationships between cues that were never paired toge-
ther). As a result, it cannot explain how a predictive conditioned sti-
mulus (CS) acquires “value” after learning, such that it elicits a
dopaminergic response. One extension of the model to second-order
conditioning would be analogous to the one proposed by21, where the
learned CS will acquire the status of a “meaningful causal target” once
the CS-US association is learned. In this extended framework, both
prediction errors (i.e., dopaminergic reward responses) tend toward
zero as the CS-US association is learned. At a certain point, the CS is
granted the status of a meaningful causal target and will begin to elicit
a positive dopamine response. Recent experiments suggest that this
CS response of dopamine neurons encodes information about the
timing and magnitude of future rewards55,56, but these effects are
beyond the scope of our current framework.

The theory does not explain how animals infer causes in realistic
scenarios that involve many putative causal stimuli. Attentional
mechanisms may play an important role in such scenarios57,58. An
attentional mask could be introduced as a scaling factor that mod-
ulates the rate at which the stimulus-reward interval is learned based
on the probability that the stimulus is causal. Another extension to
account for changing environments is to incorporate the influence of
context, where each context is associated with a common temporal
structure of causes and effects27,59,60. While a full-fledged theory of
temporal reinforcement learning61 incorporating attention, higher-
order conditioning, actions and context remains to be fleshed out, this
work establishes a link between reward prediction errors and the
learning of temporal relationships, and thereby offers a foundational
basis for such a theory.

Methods
Data curation
Experimental data used in the plots were obtained directly from
openly accessible datasets whenever available. In cases where the
datasets were not publicly accessible, data points were extracted from
published figures using the online tool Automeris.io.

Below, we provide a detailed description of the experimental
protocols corresponding to the datasets considered.

Discontinuous learning curves. The data for this section were
obtained from one of the experiments reported by Jeong et al. (2022)21

(Fig. 4, Panel E in the original paper). In this experiment, mice were
trained using a Pavlovian conditioning task. Each trial consisted of a
2-second auditory cue, followed by the delivery of a water reward
1 second after the cue ended. The cumulative number of anticipatory
licks—licks occurring during the cue presentation—was recorded for
seven individual mice.

Time-scale invariant learning. The data for this section were taken
from Gallistel and Gibbon16, based on 12 experiments conducted on
birds (primarily pigeons) across several laboratories. The subjects
were trained using an autoshaping procedure, where a visual light cue
predicted the delivery of a food pellet. Acquisition was defined as the
first sequence of four successive trials during which a peck occurred
on at least three trials. The fixed cue-reward interval is denoted by T,
while I represents the mean of an approximately exponentially dis-
tributed set of intertrial intervals.

Time-scale invariance in response profiles. The data for this section
were obtained from Church et al.19, in an experiment that tested four
groups of rats (five rats per group) across 30 sessions using a peak

procedure paradigm. Each group experienced a different fixed interval
(30 s, 45 s, or 60 s) between the onset of a white noise stimulus and
food availability. Trials included both reinforced (food delivered after
a lever press) and nonreinforced (no food) conditions, presented in
random order. The response curves presented here are based exclu-
sively on behavior during nonreinforced trials.

Effect of prior rewards. The data for this sectionweredrawn from two
studies: Balsam and Gibbon (1977) and Balsam and Schwartz38,40, both
conducted on birds (pigeons and doves). Before the introduction of
auditory cues, the animals received unsignaled rewards delivered at
regular intervals, referred to as prior context reinforcements. In both
studies, the intertrial-to-trial duration ratio (I/T) was approximately 6,
where I is the intertrial interval and T is the duration of the conditioned
stimulus. The number of acquisition trials was measured as the num-
ber of trials required for animals to begin responding to the newly
introduced cue. For Fig. 1e, individual animal data points could not be
recovered; however, the average number of trials to acquisition and
corresponding error bars (standard error of the mean) were extracted
from the original figures using a graphical analysis tool (automeris.io).

Extinction. The data for this section were derived from the extinction
experiment reported by Jeong et al.21 (Fig. 4, Panel K in the original
paper). In this experiment, mice were first trained to associate a tone
(cue) with a water reward. During the extinction phase, the cue was
presented without the reward, breaking the learned association. The
number of anticipatory licks—licks occurring during the cue pre-
sentation after the onset of extinction—was recorded for five
individual mice.

Time-scale independence of extinction. The data for this section
were obtained fromGibbon et al.62 (Fig. 4 of the original paper). In this
experiment, pigeons underwent an autoshaping procedure in which a
visual light cue predicted the delivery of a food pellet. Subjects were
initially trained to associate the cue with the reward. During the
extinction phase, the cue was presented without the reward, thereby
breaking the learned association. Although the original study included
groups exposed to partial reinforcement, we restricted our analysis to
subjects that received continuous (full) reinforcement during acqui-
sition. For these groups, the extinction trial was defined as the first trial
in which the response rate dropped below 20% of the baseline rate
measured prior to extinction.

Model simulations
All simulations of the biologically-inspired version of the model (TCL)
presented in the main figures of the paper were conducted with the
following parameters: learning rate η = 1.5 × 10−2, η0 = 10�2, and ε = − 20.
A notebook containing all the simulations and the code to plot the
figures can be found on Github63.

A Bayesian framework for estimating interval distributions
Wepresent our generativemodel anddiscuss algorithms for inference.
In thismodel, there areCpossible stimuli generatedby apoint process.
Our goal is to predict when the rewarding stimulus, indexed by r, will
appear next, based on the times at which stimuli have appeared in the
agent’s history. We assume that the rewarding stimulus r has a single
cause, which we index as c. This causal stimulus c can be any one of the
C stimuli, including r itself. The interval between r and its cause c is
drawn probabilistically from a distribution described further below.
Wedenote εi as the logarithmof the ratio between the prior probability
that stimulus i causes r and the prior probability that stimulus r causes
itself. Clearly, εr = 0.

We denote the posterior probability that stimulus i is the causal
stimulus as πi. Following our terminology in the main text, we call πi

the association of stimulus i to the reward r. After observing data, πi is
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given according to Bayes’ rule as

πi =
e εi + ‘iPC

i0 = 1 e εi0 + ‘i0
, ð9Þ

where ‘i = log PðdatajiÞ
Pðdata jrÞ

� �
is the log-likelihoodof observing thedata given

that i is the cause, relative to the log-likelihood of observing the data
given that r is the cause.

The reward r appears after cause c with probability p, where p is
drawn fromaBeta priorB(p;a,b) with hyperparametersa and b. If rdoes
appear after c, the interval t is drawn fromadistributionρc. To sample the
interval t ~ ρc(t), we first sample an index μ from a Dirichlet-multinomial
distribution. Specifically, μ (ranging from 1 to K) is drawn from a multi-
nomial distribution with class probabilities q = (q1, q2,…, qK). The prob-
abilities q are in turn drawn from a Dirichlet prior D(α), where
α = (α1, α2, …, αK). Given the sampled index μ, we then draw t ~ ϕμ(t),
where ϕμ(t) is a normalized probability density function defined below.

We now specify the key features of timescale invariance required
to recapitulate the behavioral phenomena of interest. Informally, we
would like our model to capture the notion that the animal builds a
histogram based on past stimulus-reward intervals. The histogram’s
bins are spaced uniformly on a logarithmic scale, and thus the width of
a histogram bin is proportional to the bin’s location. Formally,
1. Each class μ is associatedwith a timescale τμ. The timescales τμ are

spaced uniformly on a logarithmic scale; that is, τμ+1 = (1 + k)τμ,
where k ≪ 1. The smallest and largest timescales are thus τ1 and
τK = (1+k)K−1τ1, respectively. We assume that the support of the
distribution spansmany orders ofmagnitude, i.e., τK/τ1≫ 1, which
implies K ≫ 1 if k ≪ 1.

2. The emission probabilities ϕμ(t) for all μ have the form
ϕμðtÞ= τ�1

μ ϕðt=τμÞ, where ϕ(x) is a density function that nor-
malizes to one,

R1
0 ϕðxÞdx = 1. Thus, the functions ϕμ tile the

interval axis from τ1 to τK, and the width of ϕ determines how
much smoothing is applied when inferring the probability
density from finite data. A reasonable choice is to require
that ϕμ has width proportional to the difference in
adjacent timescales, Δτμ = kτμ. Two possible choices for ϕ are:
(a) a uniform distribution where ϕμ(t) = 1/(kτμ) when τμ ≤ t ≤ τμ+1
and zero otherwise; and (b) a Gamma distribution

ϕμðtÞ= 1
τμ

� �
k 0k0

Γðk0 Þ

� �
t
τμ

� �k0�1
e�k0t=τμ for k0≫1.

Inference. Exact inference in this model is challenging due to the
“assignment”problem. For instance, consider a scenariowhere the causal
stimulus c (cue) appears thrice at times t1 < t2 < t3, and the target stimulus
r (reward) appears thrice afterward at times s1 < s2 < s3, with t3 < s1. Exact
inferencewould involve iterating over the six possible assignments of the
three causal cues with the three rewards. Unless the separation between
successive rewards is significantly larger than the cue-reward interval, the
number of possible assignments increases exponentially with the num-
ber of presentations of c and r in the worst case scenario. We outline a
method for performing approximate inference in Supplementary Note 2,
although our analysis of the standard conditioning protocol later allows
for exact inference due to its trial structure.

Optimal response rates
In this section, we derive the optimal anticipatory response rates
(equation (4) in the main text) given the agent’s estimate of the density
p(t) that the reward will appear at time t. We set t = 0 to be the moment
when the most recent stimulus appeared. The agent’s responses are
samples from an inhomogeneous Poisson process with a time-depen-
dent, controlled response rate ω(t). Whenever the agent responds, it
incurs a rate-dependent cost κ(ω). The agent receives reward R once it

responds after the reward has appeared.We aim tofindω*(t), the optimal
response rate that maximizes long-term reward, provided that future
rewards and costs are discounted at a rate λ. The discount ratemotivates
the agent to develop an anticipatory response, as the agent would prefer
to obtain reward as quickly as possible after it appears.

We first compute the expected discounted reward minus the cost
given that the reward appears at time t. The expected discounted cost
incurredup to t is givenby

R t
0 κðωðt0ÞÞe�λt0ωðt0Þdt0. Now, since the reward

appears at time t, the expected discounted reward is determined by
when the agent first responds after t. The expecteddiscounted reward is
then R

R1
0 e�λðt + t0 ÞωðtÞe�ωðtÞt0dt0 =Re�λtωðtÞ=ðωðtÞ+ λÞ. Note that we

have ignored the variation in ω over the timescale of the first response.
The expected discounted cost due to this response is κ(ω)e−λtω(t)/
(ω(t) + λ). Adding the expected discounted costs and rewards together
and averaging over t, the net expected discounted reward (including
rewards and costs) is given by

R=
Z 1

0
ΩðtÞpðtÞdt, ð10Þ

with

ΩðtÞ= r � κðωðtÞÞð Þe�λt ωðtÞ
ωðtÞ+ λ�

Z t

0
κðωðt0ÞÞe�λt0ωðt0Þdt0:

To optimize over ω, we take the functional derivative of R w.r.t ω(t)
and set it to zero. This yields an expression for the optimal response
rate, ω*(t). Defining FðtÞ= R1t pðt0Þdt0, a series of straightforward steps
shows that ω* satisfies

pðtÞ
FðtÞ

ðR� κÞλ
ðω* + λÞ2

� κ0ω*

ω* + λ

 !
= κ0ω* + κ, ð11Þ

with the constraint ω*(t) ≥ 0. Re-scaling ω* with the discount rate λ, we
get

pðtÞ
λFðtÞ

ðR� κÞ
ðω*=λ+ 1Þ2

� ðλκ0Þðω*=λÞ
ω*=λ+ 1

 !
= ðλκ0Þðω*=λÞ+ κ: ð12Þ

Note thatω* always appears as the ratio ω*/λ and the time-dependence
only appears as the ratio p(t)/λF(t). The optimal response rate thus
generically takes the form

ω*ðtÞ= λH pðtÞ
λFðtÞ

� �
, ð13Þ

where H is a function obtained by solving (12) and depends on the
specific formof κ(ω). If κ(ω) =C (a constant cost), equation (12) gives us

pðtÞ
λFðtÞ

ðR� CÞ
ðω*=λ+ 1Þ2

=C ð14Þ

Re-arranging, we get

ω*ðsÞ= λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR� CÞpðsÞ
λCFðsÞ

s
� 1

" #
+

, ð15Þ

where []+ is the rectified linear function. Re-scaling the optimal
response rate by λ, ~ω=ω*=λ, and defining γ ≡ (R − C)/Cλ we get

~ωðtÞ=
ffiffiffiffiffiffiffiffiffiffiffi
γpðtÞ
FðtÞ

s
� 1

" #
+

: ð16Þ
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Behavior of the Bayesian model on the delay conditioning
protocol
We now examine the behavior of the Bayesian model on the delay
conditioning protocol with a single cue and reward. Specifically, the
reward is presented np times during the pre-conditioning phase with
reward-reward interval C. Subsequently, the cue and the reward are
presented n times. The cue-reward interval is T and the reward-reward
interval remains at C (C > T). Since C > T, the experiment has a trial
structure, and n indexes the trial number.

Recall that πc and πr = 1 − πc are the associations of the cue and
reward respectively. Our goal is to examine the behavior of πc as the
experiment progresses (increasing n) for different experimental pro-
tocols (different np, C, T). To derive analytical expressions, we assume
ϕμ(t) is a uniform distribution with width τμ+1 − τμ = kτμ. We do not
expect the results to change qualitatively for other scale-invariant
choices of ϕμ(t) as long as the density ϕμ(t) is localized around τμ.

For convenience, we index πc and ℓcwith the trial number n rather
than time t. From the definition of πc, we have πc(n) = σ(εc + ℓc(n)),
where εc is the relative log prior, ℓc(n) is the relative log likelihood after
n trials and σ is the logistic function. The relative log prior εc is a
constant. We now derive an approximate expression for ℓc(n).

To do this, we first derive an exact expression for the likelihood of
observing a sequence of intervals c1, c2, …, cn. Each of these intervals
will fall into one of the K bins whose timescales are τ1, τ2, τ3, …, τK.
Recall that the timescales are logarithmically spaced and the width of
the μth bin is τμ+1 − τμ = kτμ. Denote mμ as the number of intervals
amongst c1, c2, …, cn that fall in bin μ. Note

PK
μ= 1 mμ =n.

The likelihood of observing c1, c2, …, cn with a uniform ϕμ is pro-
portional to the likelihood of the counts m1, m2, …, mK for a Dirichlet-
multinomial distribution. Suppose class μ has Dirichlet parameter αμ.
Using the expression for the likelihood of a Dirichlet-multinomial dis-
tribution, the likelihood of observing c1, c2,…, cn is given by

Pðc1, c2, . . . , cnÞ

=
Γðα0ÞΓðn+ 1Þ
Γðn+α0Þ

YK
μ= 1

1
kτμ

 !mμ Γðmμ +αμÞ
ΓðαμÞΓðmμ + 1Þ

,
ð17Þ

where Γ is the Gamma function and α0 �PK
μ= 1αμ.

We now apply the general expression (17) to compute the log
likelihoods of observing the cue-reward intervals and the reward-
reward intervals in the delay conditioning protocol. We assume αμ = 1
for all μ. This choice corresponds to a uniform prior over the K time-
scales, though the calculation below can be generalized to arbitrary αμ
as long as they are not too large. Since all the cue-reward intervals fall
into the same bin (say μc), we have mμ = n if μ = μc and 0 otherwise.
Moreover, when k ≪ 1, τμc

� T . The likelihood (denoted pc(n)) given n
cue-reward intervals is thus

pcðnÞ �
ΓðKÞΓðn+ 1Þ
Γðn+KÞ

1
kT

� �n

: ð18Þ

The likelihoodof the reward-reward intervals is affectedby thenpprior
contextual rewards. Suppose the index of the bin corresponding to the
reward-reward interval C is μr. The effect of the prior contextual
rewards is to update the Dirichlet prior for the reward-reward interval
before the cue-reward pairing begins. Using properties of the Dirichlet
distribution, updating the prior is equivalent to updating the Dirichlet
parameter corresponding to the μrth bin from αμr

to αμr
+np.

Assuming again that αμ = 1 for all μ, the likelihood pr(n) of observing
the reward-reward intervals is

prðnÞ �
Γðnp +KÞΓðn+np + 1Þ
Γðn+np +KÞΓðnp + 1Þ

1
kC

� �n

: ð19Þ

The relative log likelihood ‘cðnÞ= logpcðnÞ=prðnÞ is then

‘cðnÞ �n log
C
T

+ log
ΓðKÞΓðn + 1Þ
Γðn+KÞ

� �

� log
Γðnp +KÞΓðn+np + 1Þ
Γðn+np +KÞΓðnp + 1Þ

 !
,

We plot ℓc for different n, np, C/T values in Supplementary Fig. 1. Next,
we find analytical expressions for ℓc in two relevant limits. Recall that
k ≪ 1 and τK/τ1 = (1+k)K−1 implies K ≫ 1 as the minimal timescale τ1 and
the maximal timescale τK are separated by orders of magnitude.

Consider np = 0. The last two terms in (20) vanishwhen np = 0 and
we have ‘cðnÞ � n log C

T. Denote nacq the trial at which the likelihood of
the data overcomes the prior, ℓc(nacq) = − εc. The non-trivial scenario is
when εc < 0, i.e., when the prior probability that the cue is causal is
small. When εc > 0, there is no learning required to form the associa-
tion. We have

nacq � �εc
log C=T
	 
 , whennp =0: ð20Þ

We now consider the asymptotic limit np, K ≫ n ≫ 1. Intuitively, this
corresponds to the scenario when the animal has learned the reward-
reward interval (to a much better extent than the cue-reward interval)
during the pre-conditioning phase and is going through the process of
learning the cue-reward interval. Using Stirling’s approximation, we
get

log
ΓðKÞΓðn+ 1Þ
Γðn +KÞ

� �
� 1

2
log 2πn+n log

n
Ke

� �
, ð21Þ

Similarly,

log
Γðnp +KÞΓðn+np + 1Þ
Γðn+np +KÞΓðnp + 1Þ

 !
ð22Þ

= log
Γðnp +KÞΓðnÞ
Γðn +np +KÞ

� �
+ log

Γðn+np + 1Þ
ΓðnÞΓðnp + 1Þ

� �
� n log n

ðnp +KÞe

� �
� n log n

npe

� �
=n log

np

np +K

� � ð23Þ

Combining (20), (21), (23), we have

‘cðnÞ �
1
2
log 2πn+n log

n
Ke

� � C
T

� �
np +K
np

 ! !
: ð24Þ

Since the leading order term is Oðn lognÞ, we ignore the lowest order
term 1

2 logð2πnÞ and solve for nacq. After re-arranging terms, we get

nacq � �εc

W �εc
Ke

	 

C
T

	 
 np

np +K

� �� � , whennp,K≫n≫1, ð25Þ

whereW is the Lambert W function (x =W(y) if xex = y). From (25), we
see that nacq has weak dependence on np when np ≫ K. Moreover,
W(x) ≈ x for x ≪ 1, which leads to

nacq � Ke
C
T

� ��1 np +K
np

 !
: ð26Þ

Thus, the nacq / C
T

	 
�1
relation indeed holds, but onlywhen the term in

the argument of the W function in (25) is small.
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Other parameterizations of stimulus-reward interval distribu-
tions are inconsistent with data
Here, we show that other parameterizations of stimulus-reward inter-
val distributions inadequately explain data. This analysis highlights the
importance of our assumption that animals estimate Dirichlet-
multinomial distributions (i.e., histograms) of stimulus-reward inter-
vals. We focus our attention on Gamma distributions of intervals:

Γðt; ν, λÞ= λν t
ν�1e�λt

ΓðνÞ , ð27Þ

where ν is the shape parameter and λ is the rate parameter. We assume
ν isfixed and λ is learned.We also consider a scale invariant prior of the
rates p0(λ)∝ 1/λ (with the normalization constant determined by upper
and lower cutoffs which are not important here). The assumption of
fixed ν is reasonable as ν controls the maximal resolution (i.e., the
mean to standard variation) of the distribution after the parameters
converge. That is, we assume the animal cannot learn the interval to an
arbitrarily high precision. The scale invariant prior p0 captures time-
scale invariancebut also allows us to derive an exact expression for the
data likelihood.

Following our analysis in the previous section, we first write down
the likelihood of observing a sequence of intervals c1, c2,…, cn and then
specialize to the delay conditioning protocol. The likelihood is given by

Pðc1, c2, . . . , cnÞ=
Z

dλ
1
λ

Yn
i = 1

Γðci; ν, λÞ, ð28Þ

=
Z

dλ
λnν�1

ΓðνÞn
Yn

i= 1
ci

� �ν�1
e�nλ�c, ð29Þ

=

Qn
i = 1ci

	 
ν�1

ΓðνÞn
ΓðnνÞ
ðn�cÞnν ,

ð30Þ

where we have defined �c � 1
n

Pn
i= 1 ci and performed the integral in the

second step recognizing that it can be written as a Gamma function.
We use this expression to compute the relative log likelihood ℓc(n)

as in the previous section. After a few straightforward steps, we get

‘cðnÞ=n log
C
T

� �
+ log

ΓðnνÞΓðnpνÞ
Γððn+npÞνÞ

 !

+ ν log
ðn +npÞn+np

nnn
np
p

 !
:

ð31Þ

This is an exact expression.Wenowexamine ℓc(n) whenn,np≫ 1 (recall
that in the previous section we assumed np ≫ n ≫ 1, so this is a weaker
condition). Using Stirling’s approximation, we have

log
ΓðnνÞΓðnpνÞ
Γððn+npÞνÞ

 !
�nν logn +npν lognp

� ðn+npÞν logðn+npÞ,
ð32Þ

which exactly cancels out with the third term in the exact expression
for ℓc(n). The leading order term in ℓc(n) is thus n logðC=TÞ. We
therefore obtain nacq � �εc= logðC=TÞ rather than a power-law scaling
observed in data.

The biologically plausible model for timing estimation as an
online kernel density estimator
In this section, we show that the biologically plausible model for
learning stimulus-reward interval distributions can be interpreted as

an online kernel density estimation method. The estimated distribu-
tion of stimulus-reward intervals for a particular stimulus is encoded in
stimulus-specific weights wμ. Given wμ, the estimated distribution ρ̂
given that the stimulus appears at time t = 0 is

ρ̂ðtÞ=
X
μ

wμϕμðtÞ, ð33Þ

where ϕμ is a basis function. We prescribe a update rule for updating
weights wμ,

dwμ

dt
=ηaμðtÞ f rðtÞ � cμwμðtÞ

� �
, ð34Þ

where η is a learning rate, aμ represents the activity of “time cells”
(discussed further below) and the constant cμ is introduced to ensure
the weights are normalized. fr(t) = ∑iδ(t − ti) is the reward train, where
the tis are the times when the reward appeared. We will show that the
kernel estimator is definedby the specific choiceofaμ andϕμ. Ensuring
that the estimated density integrates to the true probability of reward
given the causal cue imposes constraints on aμ and ϕμ.

We assumea trial structure. If η≪ 1, integrating (34), the change in
wμ over one trial is

Δwμ =η
Z

aμðtÞf rðtÞdt �wμcμ

Z
aμðtÞdt

� �
, ð35Þ

where the integral is over the duration of a single trial and we have
used η ≪ 1 to ignore changes in wμ during the trial. To remove the
dependence on the second integral, we fix cμ = ð

R
aμðtÞdtÞ�1. This leads

to

Δwμ =η
Z

aμðtÞf rðtÞdt �wμ

� �
, ð36Þ

After many trials, the “prediction error” term in the parenthesis
converges to zero. After convergence, plugging in
wμ =

R
dt0aμðt0Þhf r ðt0Þi=

R
dt0aμðt0Þρðt0Þ into the expression for ρ̂ gives

ρ̂ðtÞ=
Z

dt0ρðt0Þ
X
μ

aμðt0ÞϕμðtÞ ð37Þ

=
Z

dt0ρðt0ÞKðt, t0Þ, ð38Þ

where Kðt, t0Þ �Pμaμðt0ÞϕμðtÞ is the kernel. The estimated density is
thus a smoothed version of the true density.

For anyparticular choiceofaμ andϕμ, wewould like to ensure thatR
dtρðtÞ= R dtρ̂ðtÞ, i.e., the true probability of reward appearing

within a trial matches the estimated probability. To enforce this con-
straint, we integrate both sides of (37) to get

Z
dtρ̂ðtÞ=

Z
dt0ρðt0Þ

X
μ

aμðt0Þ
Z

ϕμðtÞdt ð39Þ

=
Z

dt0ρðt0Þ
X
μ

λμaμðt0Þ, ð40Þ

where λμ ≡ ∫ϕμ(t)dt. The probabilitymatching constraint (which should
apply for arbitrary ρ) thus requires ∑μλμaμ(t) = 1 for all t. Let’s consider
ϕμ that are normalized, i.e., λμ = 1 for all μ, which implies ∑μaμ(t) = 1 for
all t. Recall that in the main text, we specify aμðtÞ= eβψμðtÞ=

P
μ0eβψμ0 ðtÞ

and ϕμ(t) = ϕ(t/τμ)/τμ, where
R1
0 dxϕðxÞ= 1. This choice does indeed

satisfy λμ = 1 for all μ and ∑μaμ(t) = 1 for all t.
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Requiring scale invariance would impose additional constraints
on aμ and ϕμ. In particular, we would like the kernel to be symmetric
and translation invariant in logarithmic time coordinates, x = log t.
Suppose the true and estimated densities in x coordinates are ζ(x) and
ζ̂ ðxÞ, respectively. By the law of density transformations, we have

ζ̂ ðxÞ=
Z

dx0ζ ðx0Þ
X
μ

~aμðx0Þ~ϕμðxÞ=
Z

dx0ζ ðx0Þ~Kðx0, xÞ, ð41Þ

where ~aμðxÞ � aμðexÞ, ~ϕμðxÞ � ϕμðexÞex and ~Kðx0, xÞ �Pμ
~aμðx0Þ~ϕμðxÞ=P

μaμðexÞϕμðexÞex . If ϕμ is normalized, then so is ~ϕμ. The kernel is
symmetric if ~aμðxÞ= ξμ ~ϕμðxÞ for some constant positive coefficient ξμ.
One can construct appropriate aμ’s and ϕμ’s by first constructing a
symmetric, translation invariant kernel ~K in x (on a finite interval) and
diagonalizing the kernel to obtain ~ϕμ’s and ξμ’s. Our particular choice
of aμ and ϕμ (which are derived from eligibility traces ψμ) is motivated
by the simple linear update rule for updating ψμ.

Note that for the behavioral experiments considered in this paper,
updating a single timescale at a time is sufficient, and a unimodal aμ(t)
(i.e., with a single peak) captures the essential dynamics. To model
more complex scenarios, such as those where the cue-reward interval
has a bimodal distribution, amore elaborate computation of aμ(t) may
be required.

Data availability
No experimental data was collected in this work. All datasets analyzed
in this study are either publicly available from their original sources or
were extracted from published figures using automeris.io. Both
openly accessible and extracted datasets have been uploaded to the
project’s GitHub repository under the data/ folder63. The referenced
datasets are listed below.

Code availability
A notebook containing all the simulations and the code to plot the
figures can be found at63.
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