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Abstract

This chapter surveys rational models of memory, which posit that memory is optimized to
store information that will be needed in the future, subject to the constraint that information can
only be stored with a limited amount of precision. This optimization problem can be formalized
using the framework of rate-distortion theory, which addresses the trade-off between memory
precision and task performance. The design principles that emerge from this framework shed
light on numerous regularities of memory, as well as how cognitive and environmental factors
shape these regularities.

Introduction

One of the fundamental questions about memory is why we remember some things and forget
other things. What is special about the things that we remember? Answers to this question
have typically come in the form of process models that describe encoding and retrieval operations.
Rational process models push the question back one notch further: why are our brains equipped with
certain encoding and retrieval processes and not others? This why question can only be answered
by appealing to design principles. Memory evolved because it fulfills an adaptive function. What
is that function?

John Anderson was the first to systematically address this question (J. R. Anderson & Milson, 1989;
J. R. Anderson & Schooler, 1991). Starting from the assumption that we remember information
because we will need it in the future, Anderson derived a wide range of memory properties from
ecological estimates of the need probability. The same logic has been extended to disparate areas of
memory research, including semantic memory, working memory, serial order memory, reconstructive
memory, classical conditioning, and motor adaptation. The goal of this chapter is to synthesize
many of these phenomena within a unifying framework, focusing on recognition and reconstructive
memory tasks as case studies.
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Figure 1: Memory formalized as a communication channel. The input signal x is sampled from an
information source p(z) and stochastically encoded into memory trace m with probability p(m/|z).
The trace can later be decoded into output # according to p(z|m). This output is evaluated
according to the distortion function d(z, Z).

Anderson’s rational analysis was primarily concerned with encoding: how should information be
prioritized for storage in memory such that useful information is more easily retrieved later? This
chapter will also address the rational analysis of decoding (retrieval): how can we accurately recon-
struct the information stored in memory, possibly corrupted by noise at encoding and/or retrieval?
By placing the encoding and decoding problems within a single framework, we will arrive at a more
complete picture of the design principles underlying human memory.

Memory as a communication channel

A general framework for the rational design of memory systems is schematized in Figure 1. Accord-
ing to this framework, memory is viewed as a communication channel that transmits information
about the past into the future by first encoding the information into a memory trace, and then
later decoding the information from that trace. Expressed in terms of traditional memory theory,
decoding refers to the process of retrieving information from memory and possibly correcting errors
based on background knowledge (i.e., the retrieval process is reconstructive rather than a veridical
readout).

The communication channel is capacity limited, which means that not all information about the past
can be transmitted accurately—encoding is lossy. Loss of information can occur at the encoding
stage (noisy storage) or at the decoding stage (noisy retrieval), or both. The key point for now is
that channel design must consider which information to prioritize, by selectively reducing storage
and/or retrieval noise. If some piece of information is needed in the future but cannot be accurately
reconstructed, a cost is incurred. The goal is to design a memory system that minimizes the
expected cost. This is the problem addressed by the branch of information theory known as rate-
distortion theory (see Sims, 2016, for a psychology-oriented overview).

More formally, an information source (the environment or experimental task) generates an input



signal x with probability p(xz). For example, z might be a word, and p(z) is the probability
of encountering the word in the environment. To ground the framework more concretely, let us
consider two examples. In an item recognition memory task, subjects judge whether items are old
(O) or new (N). Thus, in our framework, = € {O,N}. New items cannot have a trace stored
in memory, so m in this case represents a signal sampled from some “noise” distribution. The
information source p(z) describes the proportion of old items in the test list. In a reconstructive
memory task, subjects report a continuous variable x such as spatial location or line length, and
the information source p(x) is the distribution over locations or lengths.

The signal is encoded into memory trace m by sampling from the encoding distribution p(m|z),
where m may be a single number (as in signal detection models discussed below) or a vector repre-
senting a collection of perceptual features (e.g., color, shape, etc.). These abstract representations
could arise from the collective activity of many neurons, but a detailed neurobiological account is
beyond the scope of this chapter. I will look at some specific examples of abstract memory traces
in subsequent sections (see also Cox and Shiffrin, Chapter 1.4, this volume).

In the case of episodic memory, the trace may encode information about the spatiotemporal context
of the signal (e.g., the list position of an item in a serial memory task), such that each signal is effec-
tively assigned a unique trace (this is the assumption of multiple trace theories; see Hintzman, 1988;
Nadel, Samsonovich, Ryan, & Moscovitch, 2000). However, if episodic memory storage has limited
capacity, then multiple signals may share elements of the same trace. The degree to which storage
is capacity-limited has been the subject of long debate (Brady, Konkle, Alvarez, & Oliva, 2008;
Hintzman, Grandy, & Gold, 1981; Shiffrin, Ratcliff, & Clark, 1990; Whitlow & Estes, 1979), and
is relevant to the fundamental question of where memory distortions occur in the communication
channel (either at storage, retrieval, or both).

At a later time point, the memory trace is retrieved, producing output & (an estimate of the
signal, for example an old/new judgment in a recognition memory task), and evaluated according
to a distortion function, d(x, ), which quantifies the cost of reconstruction errors. In general, the
distortion will be higher to the extent that = and Z are different (e.g., incorrect old/new judgments
in a recognition memory task). Three common distortion functions are given below:

1. Squared error distortion: d(z,2) = (z — %)2.
2. Absolute error distortion: d(z,z) = |z — Z|.

3. Hamming (binary) distortion: d(z,z) = I[x # %], where I|-] = 1 when its argument is true,
and 0 otherwise.

Typically, the squared and absolute error distortion functions are applied to continuous-valued
signals (e.g., length or location in reconstructive memory tasks), whereas the Hamming distortion
is applied to discrete signals (e.g., old /new judgments in a recognition memory task). The choice of
distortion function is likely task-dependent, but may be constrained by some general principles. For
example, lower reconstruction errors require higher precision, which may be metabolically costly.

In general, the decoder p(&|m) can be stochastic, which could arise in cases where the optimal
decoder is approximated using a sampling algorithm due to computational constraints. For example,



in some cases (discussed further below), the optimal decoder is the mean of the posterior distribution

p(z|m):
T = p(:p\m Zp a:|m (1)

where the expectation operator E,[-] averages the quantity in the brackets under distribution p.
For continuous variables, the summations are replaced by integrals. Intuitively, the optimal re-
construction is computed by adding up each possible signal weighted by its posterior probability,
which is given by Bayes’ rule:

p(m|z)p(x)
> . p(mlz)p(z)

Bayes’ rule says that a hypothetical signal will be a plausible reconstruction if (i) it is likely to have
been encoded in trace m (the first term in the numerator), and (ii) it has high probability of being
encountered in the environment (the second term in the numerator). If the space of signals is very
large or continuous, the posterior mean may not be computationally tractable. Nonetheless, we
may still be able to approximate the expectations with a set of samples, {z1,...,xx}, drawn from
the posterior:

p(xim) = (2)

As N grows larger, the approximation becomes increasingly exact. This still leaves the problem
of how to generate samples from the posterior, which may itself be computationally intractable.
There are a number of ways to do this that are computationally tractable (Dasgupta, Schulz, &
Gershman, 2017; Sanborn & Chater, 2016). A neural implementation of stochastic decoding via
sampling has been studied by Savin, Dayan, and Lengyel (2014).

Optimal channel design

We can now formally define the channel design problem as finding the conditional distribution
p*(&|z), specified by an encoder-decoder pair, that minimizes the expected distortion:

p*(Z|x) = argmin E d(z,z)]. (4)

(x,ﬁc[
oGl T

When z and m are discrete, this expectation corresponds to:
Epeald(z, @) = Y p(x) Y p(mlz) Y _plilm)d(z, 7). (5)
T m T
In other words, the expected distortion is computed by averaging the distortion over randomness
in the source p(z), the encoding distribution p(m/|x), and the decoding distribution p(z|m).

If there are no constraints on p(Z|z), then the optimal memory channel will encode and decode
all input signals with perfect fidelity. We are concerned with the situation in which the channel
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Figure 2: Rate distortion curve for a binary source p(z = 1) = % and Hamming distortion.

has a fixed information rate, which is the number of bits available to encode an input signal into
memory. More bits per signal means the signal can be encoded with higher fidelity. The channel
design problem is then to find the conditional distribution that minimizes expected distortion for
a fixed information rate. Intuitively, the optimal channel will encode high probability signals with
higher fidelity; if a signal is rarely encountered, there is no point encoding it accurately. We return
to this point later when we discuss recognition memory.

The trade-off between rate and expected distortion can be visualized by plotting the rate-distortion
curve. An example is shown in Figure 2 for a binary source (random coin flip), z ~ Bernoulli(%),
and the Hamming distortion function. The rate-distortion curve separates a suboptimal region
(above the curve) from an infeasible region (below the curve) that cannot be achieved by any
channel. Optimal channels always lie on the rate-distortion curve.

The rate-distortion analysis is extremely general—applying to any communication channel, be
it artificial or biological—and encompasses a wide range of rational models as special cases. To
simplify the exposition of these ideas, I will first consider the design of the optimal decoder, holding
the encoder constant. I will then consider the design of the optimal encoder, holding the decoder
constant.

Optimal decoding

The optimal decoder (holding the encoder constant) will in general depend on the distortion func-
tion. For a number of common cases, we can obtain the analytical solution (Berger, 1985).

1. For the squared error distortion, the optimal decoder is the posterior mean: & = Ep ;) [z].

2. For the absolute error distortion, the optimal decoder is the posterior median.



3. For the Hamming (binary) distortion, the optimal decoder is the posterior mode (the signal
with the highest posterior probability): & = argmax, p(x|m).

All of these special cases are deterministic functions of the posterior distribution over the input
signal given the memory trace, computed according to Bayes’ rule (Eq. 2). I now examine these
models, and the evidence supporting them, more closely, using case studies from recognition and
reconstructive memory tasks.

Recognition memory

Recall that in a recognition memory task, subjects judge whether items are old (z = O) or new
(x = N). In building a model of this task, some theorists have found it useful to abstract away from
the item encoder, which may result in a high-dimensional memory trace (see the section below on
encoding), and instead focus on a one-dimensional “strength” variable s that is derived from the
memory trace. The idea is that we can draw inferences about memory retrieval even in the absence
of detailed knowledge about the memory traces themselves. As we will see, this tactic runs into
problems. Nonetheless, it simplifies our examination of optimal decoding, and allows us to draw
connections to signal detection theories of recognition memory.

Typically, the strength variable is modeled as a scalar drawn from a Gaussian distribution, s|x ~
N (g, 0?), as illustrated in Figure 3. Strength variability can arise from multiple sources, including
variability of pre-experimental experience as well as encoding or retrieval noise.! In signal detection
theory, this is known as the equal-variance normal model, because old and new items differ in their
mean trace strength but share the same variance (Green & Swets, 1974). One can generalize this
distribution to the unequal-variance case (Egan, 1958; Mickes, Wixted, & Wais, 2007), where the
old and new items differ in both their means and variances. Other strength distributions have
also been studied (Glanzer, Adams, Iverson, & Kim, 1993); I will discuss more detailed encoding
models (which eliminate the strength abstraction) below. Generally speaking, the choice of strength
distribution is often a matter of convenience, permitting analytical tractability and transparency.

Under the Hamming distortion (the decoder is either correct or incorrect, as in the example of
old/new recognition memory), we can express the optimal decoder as a decision rule that returns
& = O whenever the likelihood odds ratio exceeds the prior odds ratio:

psle=0) _ p
pslz=N) ~ p

The likelihood odds ratio expresses the evidence in favor of the hypothesis that an item is old
rather than new—how likely is it that signal x = O was encoded in memory m, relative to signal
x = N7 The prior odds ratio expresses the probability of new vs. old based only on knowledge of
the information source p(x). Intuitively, you need stronger evidence to report “old” if the frequency
of new items exceeds the frequency of old items.

N)
5 (6)

X
x

! Also note that the value of s should not be conceived literally as a “strength” variable, since it can take negative
values. All values of s can be shifted by an arbitrary constant without affecting the results.



One convenience of the Gaussian encoder is that it facilitates analytical calculations of useful
decision-theoretic quantities. The hit rate (probability of responding “old” when presented with
an old item) is given by:

H:p(i:O|x:O):Q)(Cg—B>, (7)

where ®(-) is the standard Gaussian cumulative distribution function (with mean 0 and variance

1), d' = (po — pun) /o is the sensitivity, and 8 = In Z((iig; is the criterion. Similarly, the false alarm

rate (probability of responding “old” when presented with a new item) is given by:

d/
FA =p(z = Olz N):<I><—2—B>. (8)
The sensitivity measures how discriminable old and new items are; sensitivity increases with the
separation between the signal and noise distributions.? The criterion measures the subject’s re-
sponse bias for reporting old vs. new, depending on their subjective beliefs about the information
source. When the criterion is larger, subjects will be more likely to report that an item is new.

Some evidence suggests that people learn the optimal criterion based on trial-by-trial feedback (see
below).

This signal detection model has been used to explain a number of phenomena in recognition memory
(Glanzer, Hilford, & Maloney, 2009). The most extensively studied phenomenon is the mirror effect:
manipulations that increase the hit rate generally also decrease the false alarm rate. If we assume
that strengthening an item (e.g., through repetition or presentation time) increases d’ (typically
by increasing the signal strength, uo), then the mirror effect is immediately apparent from the
expressions given above, where the hit and false alarm rates both depend on d’ but with opposite
signs.

The mirror effect shows that changing sensitivity pushes hit and false alarm rates in opposite
directions. Another important implication of the signal detection model is that changing the
criterion 3 should push hit and false alarm rates in the same direction. As the criterion increases,
then subjects should tend to make both fewer hits and fewer false alarms. Assuming a Gaussian
encoder, we can make an even stronger predictions. Let ®~!(H) = %/ — [ denote the z-transformed
hit rate (the inverse of the Gaussian cumulative distribution function evaluated at the hit rate), and
similarly let ®~1(FA) = —%, — (3 denote the z-transformed false alarm rate. We can then formulate
the following relationship between the two measures:

d1(H) =d + & 1(FA). (9)

In other words, the z-transformed hit rate should be a linear function (with slope 1) of the z-
transformed false alarm rate. We can visualize this relationship by plotting the two quantities
against each other in what is known as a z-transformed receiver operating characteristic (z-ROC)
curve. Empirically, the z-ROC curve is linear, but its slope is typically around 0.8. This finding
motivates the unequal-variance normal model (Egan, 1958; Mickes et al., 2007), in which the encoder

2 As the variance goes to 0, sensitivity will get arbitrarily large—memories will not be confused when encoding
noise is close to 0, no matter how similar their traces. Thus, similarity between memory traces is not sufficient to
produce confusions.
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Figure 3: Tllustration of signal detection theory applied to recognition memory. (A) Strength dis-
tributions for old and new items under the equal-variance normal model. The dotted line indicates
the criterion. (B) The relationship between hit rate and false alarm rate, plotted on z-transformed
axes (the z-ROC curve). Dashed line indicates the identify function. (C) Strength distributions
for old and new items under the unequal-variance normal model, where trace strength has a higher
variance for old items. (D) The z-ROC curve for the unequal-variance normal model.



for old items has higher variance (¢3) than the encoder for new items (with variance o%;). In this
case, the slope of the z-ROC curve is oy /00, as illustrated in Figure 3.

A third phenomenon predicted by the signal detection model is strategic adjustment of the criterion
according to the relative base rates of new and old items. Rhodes and Jacoby (2007) reported an
experiment in which items were presented on one of two sides of the screen, such that items were
more likely to appear on one side of the screen. At test, subjects made more hits and more false
alarms to items presented on the “mostly old” side, consistent with the adoption of a lower criterion

value, as predicted by the distortion-minimizing criterion placement, 8 = In Z ((izg; . There is some

evidence that the optimal criterion can be learned incrementally through corrective feedback (Han
& Dobbins, 2009; Kantner & Lindsay, 2010; Scimeca, Katzman, & Badre, 2016).

Despite these successes, a number of challenges for the signal detection theory of memory have
been identified. One challenge is that, even with extensive practice, recognition memory decisions
appear to be stochastic (Thomas & Legge, 1970), such that the probability of responding “old”
increases with the base rate, P(x = O). This and related observations have motivated models
that posit decision noise as an additional source of variance beyond the contribution of perceptual
noise (Benjamin, Diaz, & Wee, 2009; Mueller & Weidemann, 2008). Within the rate-distortion
framework, decision noise could arise mechanistically from stochastic decoding, as described above.
If exact decoding is computationally costly, and this cost is reflected in the distortion function,
then the optimal rate-distortion trade-off can be achieved by approximate decoding using a small
number of samples from the posterior.? The optimal number of samples depends on the relative
cost of sample generation and memory errors (see Vul, Goodman, Griffiths, & Tenenbaum, 2014).

A second challenge is that nonlinear z-ROC functions are sometimes reported (Heathcote, 2003;
Ratcliff, McKoon, & Tindall, 1994), whereas the Gaussian signal detection analysis described above
always requires the z-ROC functions to be linear. Nonlinearities could arise from a threshold-based
decision process in which evidence is dichotomized into two discrete states, as has been proposed by
some authors (e.g., Yonelinas, 1999). Alternatively, nonlinearities could arise from decision noise
(Malmberg & Xu, 2006; Ratcliff et al., 1994). This possibility is appealing from a rate-distortion
perspective in light of the relationship between stochastic decoding and decision noise.

There are bigger problems that cannot easily be addressed by small extensions of the abstract model
presented here. By focusing on the one-dimensional strength variable, I have abstracted away the
structure necessary to account for major laws of recognition memory. In particular, perceptual and
temporal proximity between items exerts substantial influence on memory performance by causing
retrieval interference. It has long been argued that such interference is the primary determinant of
forgetting (McGeoch, 1932). This principle has been formalized in modern computational theories
(e.g., Brown, Neath, & Chater, 2007; Howard & Kahana, 2002; Mensink & Raaijmakers, 1988)
that capture a wide range of regularities, such as recency (later items in a list are remembered
better), contiguity (memory for an item is facilitated by retrieval of another item at a nearby list
position), similarity (performance is typically impaired by inter-item similarity), and association
(performance is typically impaired by repeated co-occurrence of items). Critically, these models rely
upon a multidimensional representation of memory traces over which proximity is defined. Below

3Note that experimentally it is more straightforward to manipulate the prior (base rate), but this typically has a
monotonic effect on the posterior.



I will review more detailed encoding models that follow in the tradition of multidimensional trace
representations, and hence are in principle equipped to account for the regularities cited above.

Reconstructive memory

In reconstructive memory tasks, subjects report an estimate of a studied item’s features. Many
studies have observed that estimates are systematically biased by distributional information. For
example, Huttenlocher, Hedges, and Vevea (2000) asked subjects to reproduce stimuli that varied
along a single dimension, such as fish cartoons varying in fatness, squares varying in shade of
gray, and lines varying in length. Estimates were systematically biased towards the mean of the
stimulus distribution (the central tendency bias), and the bias was strongest for stimuli far from
the mean. Similar results have been obtained with temporal reproduction tasks, in which subjects
report an estimate of the time interval between two stimulus presentations (Acerbi, Wolpert, &
Vijayakumar, 2012; Jazayeri & Shadlen, 2010), and serial recall tasks, in which subjects recall
the sequence of items presented during a study phase (Botvinick & Bylsma, 2005). Hemmer and
Steyvers (2009) have shown that multiple sources of distributional information can bias estimates;
for example, reconstructing the size of an apple depends both on the distribution of apple sizes and
the distribution of fruit sizes. Distributional information can also be derived from simultaneously
presented information. For example, Brady and Alvarez (2011) found that size estimates for a
target stimulus were biased towards the mean size of simultaneously displayed stimuli.

The effect of distributional information can be understood naturally from the perspective of Bayesian
decoding. Following previous studies (e.g., Acerbi et al., 2012; Huttenlocher et al., 2000; Jazayeri
& Shadlen, 2010), let us assume a Gaussian information source, x ~ N (pug, 0'(2]), and a Gaussian
encoder, m|z ~ N(x,0?). Under these assumptions, the optimal Bayesian decoder is the same for
squared error and absolute error distortion functions:

T =wm+ (1 —w)po, (10)
where
2
99
=Y 11
=2 + o2 (11)

Intuitively, the optimal signal estimate is a linear combination of the memory trace and the prior
mean, where the weighting depends on their relative reliability (a consequence of the balance
between likelihood and prior in Bayes’ rule). When the encoder has low noise variance relative
to the prior variance (small o2 relative to 03), the memory trace will be weighted more. The
reconstruction bias is the expected difference between the estimate and the true signal:

Ep(m|:r) [(IJ — .f'] = (.’L‘ — Mo)(l — w). (12)

Thus, bias goes to 0 as encoder noise goes to 0 (w — 1). Importantly, the bias always points in
the direction of the prior mean (negative when = < pg, positive when = > pg), and the bias is
largest when the signal is far from the mean (larger |x — p|), consistent with the empirical findings
describe above.
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Factors that affect encoding noise influence central tendency bias in accordance with the prediction
of the model. Cognitive load, which plausibly increases encoding noise by consuming bits that
could otherwise be used to store information about the signal, increases the central tendency bias
(Allred, Crawford, Duffy, & Smith, 2016; Ashourian & Loewenstein, 2011; Huttenlocher, Hedges,
& Duncan, 1991). A similar effect is achieved by increasing the delay between study and test
(Crawford, Huttenlocher, & Engebretson, 2000; Olkkonen & Allred, 2014; Olkkonen, McCarthy, &
Allred, 2014). I will later consider other properties of the information source and memory channel
that affect encoding noise through the optimization of the encoder.

Optimal encoding

I now turn to the question of encoder design: how should memories be stored? Because the
memory channel is constrained by the number of bits that it can communicate on average per
signal, encoder design is essentially a problem of compression: how can the number of bits be
reduced while maintaining sufficient information to achieve low distortion?

For illustration, imagine a reporter interviewing various witnesses and trying to remember two
features for each interview: what was said and who said it. If the interviewer only ever interviews
the same witness, then the number of bits needed to describe the witness identity is very small,
while the number of bits needed to describe each witnesses testimony might be relatively large due
to the diversity of content. In general, more diversity means more bits. Shannon’s source coding
theorem (Shannon, 1948) is a formal statement of this idea: the minimum number of bits needed
on average to communicate a signal over a noiseless channel is given by the entropy of the source,
H(z) = =), p(x)logp(x). A concrete example of a code that achieves optimal compression is
entropy coding, where the number of bits allocated to signal = is — log p(x).

If the channel is noisy (e.g., due to storage or retrieval noise), then optimal compression requires
allocating extra bits to signals in order to protect against transmission errors. The extra bits
typically introduce redundancy into the code, so that if one bit is corrupted, the other bits can
correct the error. In the simplest case, the code could just store multiple copies of the memory trace.
More sophisticated techniques (e.g., parity check codes) can correct errors with fewer redundant
bits, although these have yet to be studied systematically in the cognitive psychology literature.

An important insight into the encoding problem can be obtained by recognizing the connection
between compression and statistical inference. Let us start by assuming a generic model of the
information source, parametrized in terms of latent variable z:

p(z) =Y p(z|2)p(2). (13)

This corresponds to a generative process in which a latent variable z is first sampled from the prior
p(%), and then a signal x is sampled from the condition distribution p(x|z). Continuing the reporter
example, if some witnesses received privileged information (z = 1) and some did not (z = 0), then
their conditional distributions over testimony (the signal, x) will cluster based on the value of
z. Because these conditional distributions are lower entropy than the marginal distribution p(z),
knowing z allows the signal to be compressed further. In practice, z is typically unknown but can
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be estimated from z. The cost of transmitting both = and the estimate Z is —logp(x, 2), which is
minimized by setting Z to the value that maximizes the posterior. In this way, optimal compression
and optimal inference are closely related.

So far, the discussion of optimal encoding has assumed that the goal is to store all information.
However, rate-distortion theory allows for prioritization of certain information, depending on the
choice of distortion function. If, for example, the reporter’s employer cares only about what was
said and not who said it, then there is no need to allocate any bits at all to the witness identity. In
the interest of brevity, I will not pursue this angle, and focus instead on the role of the information
source. The key idea is that if memory reflects probabilistic beliefs about latent variables, then
we should be able to derive properties of memory from properties of those beliefs. To explore this
idea, I will again use recognition and reconstructive memory tasks as case studies.

Recognition memory

The signal detection model described earlier cannot adequately account for a number of important
recognition memory phenomena. One reason is that its representation of the individual items is
too impoverished; all items are collapsed into “old” and “new” categories. This has prompted
the development of more elaborate item-level models (McClelland & Chappell, 1998; Shiffrin &
Steyvers, 1997), which also rely on a likelihood ratio computation at retrieval, but make different
assumptions about how items are represented and encoded in memory.

McClelland and Chappell (1998) assumed that items are represented as vectors of binary features,
stochastically generated from some distribution such that the same item can elicit different feature
vectors across multiple presentations. Memory traces are vectors of feature probabilities (equivalent
to feature expectations). Thus, the information constraint in this model is the lossy compression
of noisy binary vectors (one for each item presentation) into probability vectors (one for each
item). The feature probabilities are initialized randomly. When an item is encountered, the feature
probabilities are updated to improve the match between the expected and observed item features.
We can understand this updating process as a form of approximate encoder optimization. The
latent variables in this case correspond to the unknown feature probabilities.

A key consequence of the updating process is differentiation: repeated experience with an item
causes that item to be more distinguishable from other items, in the sense that the feature expec-
tations become more distinct. McClelland and Chappell (1998) invoke differentiation to explain
several phenomena that proved problematic for earlier models (Shiffrin & Steyvers, 1997, offer a
similar account, though differing in a number of details). For example, strengthening some items
on a list in a recognition memory task does not affect memory for other items on the list, a phe-
nomenon known as the null list strength effect (Ratcliff, Clark, & Shiffrin, 1990). According to the
differentiation mechanism, the strengthened items should become more dissimilar from the other
items on the list (thus decreasing the hit rate for those items), while also becoming more dissimilar
from the new test items (thus decreasing the false alarm rate). These factors roughly cancel each
other out, leaving d’ unaffected.

Anderson’s approach to the rational analysis of memory (J. R. Anderson & Milson, 1989; J. R. An-
derson & Schooler, 1991) was grounded more explicitly in claims about the information source

12



(i.e., the environment). He posited that memories are consulted in order of their need probability.
Because only a subset can be consulted, memories with higher need probability are more likely
to be retrieved. We can situate his analysis in the rate-distortion framework by assuming that x
corresponds to item labels and z corresponds to the parameters of a categorical distribution over
items, p(x = i) = z;, which defines need probability. When an item is encountered, z is adjusted to
make that item more probable, similar to the updating process in McClelland and Chappell (1998).
Anderson used the relationship between retrieval probability and need probability to derive the
form of several canonical memory functions from naturalistic information sources. For example,
J. R. Anderson and Schooler (1991) showed that need probability is a power function of item fre-
quency (consistent with the power law of practice), and a power function of the interval between
item repetitions (consistent with the power law of forgetting).

Need probability can also be manipulated experimentally. R. B. Anderson, Tweney, Rivardo,
and Duncan (1997) had subjects study lists of numbers and then tested them probabilistically (i.e.,
subjects were asked to recall some proportion of the studied items) after a distractor-filled retention
interval. Subjects had a lower rate of forgetting when the test probability was an increasing function
of the retention interval, compared to when it was an increasing function of the retention interval,
consistent with the predicted effect of need probability.

One apparent challenge for the relationship between need probability and memory is the finding
that low-frequency words are often remembered better than high-frequency words (the word fre-
quency effect; Glanzer & Bowles, 1976; Gorman, 1961; Lohnas & Kahana, 2013). As mentioned
earlier, the rate-distortion analysis implies that high-frequency words should be remembered bet-
ter, because these contribute more to the expected distortion. Some rational models have sought
to accommodate the word frequency effect by assuming that low-frequency words are composed
of more distinctive features, and hence their memory traces will be more discriminable from other
traces (McClelland & Chappell, 1998; Shiffrin & Steyvers, 1997). In support of this hypothesis,
Malmberg, Steyvers, Stephens, and Shiffrin (2002) found that words composed of rare letters were
remembered better than words composed of common letters. A fundamental problem for this class
of explanation is that some recognition memory studies have found that the word-frequency ef-
fect is actually non-monotonic when measured over a sufficiently large range of frequencies: very
low-frequency words and very high-frequency words are remembered better than words with inter-
mediate frequencies (Hemmer & Criss, 2013; Rao & Proctor, 1984; Zechmeister, Curt, & Sebastian,
1978). A non-monotonic word-frequency effect has also been reported for free recall tasks (Lohnas
& Kahana, 2013). Thus, feature distinctiveness may account for the low-frequency advantage,
whereas need probability may account for the high-frequency advantage.

Reconstructive memory

Sims, Jacobs, and Knill (2012) considered the optimal encoder design for a channel with a Gaussian
information source and a squared error distortion function.* They assumed that the encoder stores
a trace of the stimulus with Gaussian-distributed noise, and the noise variance is a free parameter
that can be adjusted to minimize distortion subject to the channel’s information rate constraint

“See also C. Bates and Jacobs (2020), who analyzed rate-distortion trade-offs in reconstructive memory using a
more expressive family of deep neural network channels.
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(R, measured in bits). These assumptions are essentially the same as those described earlier for
reconstructive memory tasks with Gaussian channels. The optimal encoding noise variance is given
by:
2
2 70

o= E (14)

5 The key implication of this result is that

where o3 is the variance of the information source.
encoding noise should increase with stimulus variability (03). Sims et al. (2012) found evidence

consistent with this prediction in two change detection experiments.®

Another prediction of the rate-distortion framework is that encoding precision should increase for
stimuli with high need probability. Evidence for this prediction comes from delayed estimation tasks
in which subjects are asked to reconstruct a stimulus feature following a delay. Yoo, Klyszejko,
Curtis, and Ma (2018) showed that the precision of spatial memories was greater when a precue
indicated that an item was more likely to be tested. van den Berg and Ma (2018) found similar
results when manipulating need probability for color memory, and have argued that set size effects in
such tasks are fully mediated by need probability (see also Fougnie, Cormiea, Kanabar, & Alvarez,
2016).

The rate-distortion framework also sheds light on the ubiquitous scalar variability in magnitude
estimation tasks: the standard deviation of stimulus estimates is a linear function of stimulus
magnitude. One explanation for scalar variability is that encoding noise increases with stimulus
magnitude (Petzschner, Glasauer, & Stephan, 2015; Shi, Church, & Meck, 2013). However, this begs
the question why the encoder should have this property. The answer comes from an analysis of need
probability, which shows that magnitude-dependent encoding precision arises when larger stimulus
magnitudes are lower probability, and hence can be represented with lower precision (Piantadosi,
2016; Sun, Wang, Goyal, & Varshney, 2012).

Conclusions and outlook

The idea that memory might obey rational design principles has been explored from many different
perspectives. The purpose of this chapter was to unify some of these perspectives within the
framework of rate-distortion theory. I have shown how Bayesian approaches to memory, when
combined with an appropriate measure of distortion, arise naturally within this framework. On the
retrieval side, Bayes’ rule prescribes the optimal decoder design for a number of common distortion
functions. On the storage side, the optimal encoder uses probabilistic information to efficiently
compress signals.

I have focused on cases where the information source is stationary, so that there is a single optimal
channel design for a given task. However, it may be more realistic to assume that the information

®Sims et al. (2012) distinguished between the variance of the information source and perceptual noise variance,
which I have collapsed together here for simplicity.

5Change detection is not actually a reconstructive memory task, and thus squared error is not the most natural
choice for the distortion function. C. J. Bates, Lerch, Sims, and Jacobs (2019) developed a model that uses the
Hamming distortion, a more natural fit with change detection tasks.
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source changes over time. Models like the one developed by McClelland and Chappell (1998) can
accommodate a changing information source by continually updating beliefs about the parame-
ters governing the source. Some models posit that there are discrete change points where one
information source is replaced by another. For example, Gershman, Radulescu, Norman, and Niv
(2014) developed a model for reconstructive memory in which changes can be both gradual and
abrupt. Consistent with the predictions of this model, reconstructions were biased only by the
central tendency of stimuli that putatively belonged to the same information source as the target.

In the interest of brevity, I have focused on recognition and reconstructive memory tasks. However,
the ideas presented here are much more general, and have been been applied in various forms
to semantic memory (Griffiths, Steyvers, & Firl, 2007), change detection (Brady & Tenenbaum,
2013; van den Berg & Ma, 2018; Wilken & Ma, 2004), classical conditioning (Gershman, Monfils,
Norman, & Niv, 2017), and motor adaptation (Kording, Tenenbaum, & Shadmehr, 2007). Even
though these tasks presumably tax distinct neural systems, all of them must obey the fundamental
constraints of rate-distortion theory, which hold even for systems that have not been optimized.
The substantive theoretical claim, which has now received extensive empirical support, is that these
systems do in fact resemble the optimal channel design.

An exciting direction for the future is to more directly probe the underlying neural systems for
signatures of optimal channel design. Promising work in this direction has recently been pursued
by a number of authors. For example, Gershman (2017) discussed how need probability is related
to predictive representations in the hippocampus (cf. Stachenfeld, Botvinick, & Gershman, 2017),
and could be implemented using spike timing-dependent plasticity (Brea, Gaal, Urbanczik, & Senn,
2016). Mattar and Daw (2018) have shown how this idea can be used to explain many aspects of
hippocampal replay activity. Although prior work has mostly concentrated on the hippocampus,
it seems likely, given their generality, that these principles apply to other systems as well.
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