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Abstract

Psychophysical and neurophysiological studies have suggested that memory is not simply a carbon copy of our experience:
Memories are modified or new memories are formed depending on the dynamic structure of our experience, and
specifically, on how gradually or abruptly the world changes. We present a statistical theory of memory formation in a
dynamic environment, based on a nonparametric generalization of the switching Kalman filter. We show that this theory
can qualitatively account for several psychophysical and neural phenomena, and present results of a new visual memory
experiment aimed at testing the theory directly. Our experimental findings suggest that humans can use temporal
discontinuities in the structure of the environment to determine when to form new memory traces. The statistical
perspective we offer provides a coherent account of the conditions under which new experience is integrated into an old
memory versus forming a new memory, and shows that memory formation depends on inferences about the underlying
structure of our experience.
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Introduction

How does the brain take a continuous stream of sensory inputs

and translate it into stored memories? Theorists have offered

radically different answers to this question. According to

biologically inspired theories (e.g., [1–3]), input patterns are

continuously assimilated into a distributed network of intercon-

nected neurons via modification of synaptic connections. When a

network trained in this fashion is allowed to run freely or with

partial input, it will converge to one or more stable configurations–

attractors–corresponding to blends of stored input patterns. This

view of memory asserts that experiences are not stored individ-

ually, but rather overlaid on one another. Many modern

psychological theories of memory (e.g., [4–6]) adopt a diametri-

cally opposed view: Input patterns are stored separately, and

memory blending, if it occurs, happens at retrieval rather than

during storage (though see [7–9] for notable exceptions which

allow memory traces to be modified by multiple input patterns).

One way to approach this question is to consider the

information processing problem being solved by the memory

system. If we were to design a brain, how would it parse

experience into memory traces? This exercise in ‘‘rational

analysis’’ [10] leads us to a statistical formulation of the memory

storage problem. We propose that the memory system is designed

to facilitate optimal predictions under a particular generative

model of the environment. According to this generative model (see

also [11,12]), the environment tends to change slowly over time,

but occasionally jumps between completely different ‘‘modes.’’ For

instance, while the temperature can fluctuate slowly within

different parts of a building, going outside is characterized by

very different (but also slowly changing) temperatures than those

that were in effect indoors. Stored memories then correspond to

inferences about the latent modes (e.g., we can recall the general

temperature inside the building, and separately, the outdoor

temperature), and input patterns are clustered together if they are

inferred to have been generated by the same mode. This theory

retains the idea from the cognitive psychology literature that the

memory system contains multiple traces, but assumes that each

trace may be a blend of several input patterns, as is the case for

many neural network models.

Memories are no doubt stored at many resolutions: while you

might have a general memory of being cold when outside and

warm when inside, you will also probably remember precisely

whether you wore a hat to combat the cold. Following traditional

psychological models, we claim that separate traces for each input

pattern are stored at the finest-grained, most ‘‘episodic’’ resolution.

Layered on top of these episodic separate traces are more general

traces that serve to organize memory retrieval and form

predictions of the future. At this coarser resolution, experience

must be parsed into separate traces or combined into more general

traces. The goal of our theory is to illuminate the laws governing

memory parsing. Depending on the statistical structure of the

environment, this parsing process will produce traces that appear
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more or less ‘‘semantic,’’ in the sense that they aggregate

information over individual episodes [13,14]. In order to avoid

cumbersome terminology, we will henceforth use ‘‘traces’’ to refer

to those traces formed as the result of parsing at the coarser-

grained resolution of memory.

We tested our theory using a novel behavioral task that allows us

to assess qualitatively whether participants store different stimuli in

one or several memory traces. We presented dynamically

changing visual stimuli to participants, and subsequently asked

them to reconstruct one of the previously presented stimuli from

memory. When the stimuli changed gradually, the reconstructions

suggested that participants had, to some extent, inferred a single

dynamical mode and thus formed one memory trace in which

different instances interfered with each other. In contrast, when

the stimuli changed abruptly, participants’ behavior suggested that

they had inferred two dynamical modes, one before the abrupt

change and one after. This resulted in less interference between

stimuli experienced before and after the change, and reconstruc-

tion of stimuli presented before the change was more accurate.

Background
Recent psychophysical studies have explored the dynamics of

memory updating by presenting participants with sequences of

stimuli and then probing their ability to discriminate between

different stimuli in the sequence. The logic of these studies is that if

the stimuli are assimilated into the same dynamical mode, then

they will be perceived as being more similar, compared to a

situation where they are segmented into different modes. For

example, Wallis and Bülthoff [15] presented participants with a

rotating face that gradually morphed into a different face.

Compared to a condition in which the morphs were presented

in a mixed (scrambled) order, participants in the gradual morph

condition were more prone to perceive the final face as belonging

to the same person as the original face. Similar findings were

reported by Preminger and colleagues [16,17] using a variety of

memory tests.

These psychophysical observations are complemented by neuro-

physiological studies of spatial representation in the rodent

hippocampus. Many neurons in the CA3 subfield of the

hippocampus respond selectively when the animal is in a particular

region of space, and are therefore known as ‘‘place cells’’ [18]. We

can apply the same logic used in the aforementioned psychophysical

studies to the hippocampal representation of space [19], asking

whether morphing one environment into another will lead to

gradual changes in place cell firing rate (indicating a gradually

changing spatial memory) or a global remapping of place fields

(indicating the formation of a new memory). Leutgeb et al. [20] and

Wills et al. [21] had rats explore a set of enclosures whose shape

varied from a square to a circle (including intermediate shapes).

Gradually changing the enclosure shape (the ‘‘gradual’’ protocol)

resulted in gradual changes in place fields [20], whereas presenting

the same series of enclosures in a scrambled order (the ‘‘mixed’’

protocol) resulted in global remapping – enclosures that were more

similar to the circle than to the square tended to elicit one set of

place fields, and enclosures that were more similar to the square

than to the circle tended to elicit a distinct set of place fields [21]. As

with the psychophysical findings described above, these results

highlight the importance of sequential structure in guiding memory

organization; the same stimuli can elicit very different internal

representations depending on the order in which they are presented.

Using a Hopfield network to encode the input patterns,

Blumenfeld et al. [22] proposed a ‘‘salience-weighted’’ modifica-

tion of the standard Hebbian learning rule to model these findings.

Intuitively, the salience weight encodes a prediction error or

novelty signal that indicates the extent to which none of the

network’s existing attractors match the current input pattern.

Formally, the salience weight is the Hamming distance between

the input pattern and the network state after one step of dynamics;

the salience weight is updated incrementally after each input

pattern so as to smooth across recent history. A large salience

weight promotes the formation of a new attractor based on the

current input. For our purposes, the key idea to take away from

this model is that prediction errors are useful signals for

determining when to infer new memory modes (see also [23–

26]). In the network explored by Blumenfeld et al., a new attractor

is only formed if the prediction error is sufficiently large, but how

large is ‘‘sufficient’’? In the next section, we place these ideas

within a statistical framework, which allows us to specify the

prediction error threshold in terms of probabilistic hypotheses

about the environment.

The statistical framework
The essence of our approach is captured by the following

generic assumption about the environment: Properties of the

environment usually change gradually, but occasionally undergo

‘‘jumps’’ that reflect a new underlying state of affairs [11,12].

Returning to the temperature example, when you walk around

outside, you may experience gradual changes in temperature over

the course of the day. If you step into a building, the temperature

may change abruptly. In predicting what the temperature will be

like in 5 minutes, you might then generalize from one outdoor

location to another, but not between the indoor location and

outdoor locations. Thus, our generalizations depend strongly on

how we segment our observations; cognitively speaking, one can

view each segment as a memory trace that aggregates those

observations assigned to the segment. The empirical data reviewed

in the previous section are consistent with the idea that the brain is

attuned to abrupt changes in the state of the environment.

The problem of estimating the current state of a hidden variable

given previous sensory measurements is known in engineering as

filtering. The classic example of a filtering algorithm is the

Kalman filter (KF; [27]), which is the Bayes-optimal estimator

under the assumption that the environment evolves according to a

linear-Gaussian dynamical system (LDS) –i.e., the state of the

environment changes gradually and noisily over time. By design,

Author Summary

When do we modify old memories, and when do we create
new ones? We suggest that this question can be answered
statistically: The parsing of experience into distinct
memory traces corresponds to inferences about the
underlying structure of the environment. When sensory
data change gradually over time, the brain infers that the
environment has slowly been evolving, and the current
representation of the environment (an existing memory
trace) is updated. In contrast, abrupt changes indicate
transitions between different structures, leading to the
formation of new memories. While these ideas fall
naturally out of statistical models of learning, they have
not yet been directly tested in the domain of human
memory. In this paper, we describe a model of statistical
inference that instantiates these ideas, and test the model
by asking human participants to reconstruct previously
seen visual objects that have since changed gradually or
abruptly. The results of this experiment support our theory
of how the statistical structure of sensory experiences
shapes memory formation.

Statistics of Memory Updating
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this model cannot account for large sporadic jumps and periods of

gradual change between them.

One way to model jumps is to posit a collection of different

‘‘dynamical modes’’, each corresponding to a slowly changing LDS,

and allow the generative process to switch between them

stochastically. This is known as a switching LDS, and its

corresponding Bayes-optimal estimator is the switching KF.

However, for real-world sensory measurements, it is not reasonable

to specify the number of possible modes in advance. We therefore

adopt a Bayesian infinite-capacity (nonparametric) generalization of

the switching LDS based on the Dirichlet process [28], which allows

the number of modes to expand as necessary as measurements are

collected (another dynamical model that could capture jumps within

a single mode is a random walk with a heavy-tailed distribution on

step size, such as a Lévy flight [29]).

The infinite-capacity prior over modes leads to an intuitive

interpretation in terms of memory traces: Each mode clusters

together a number of individual observations, and thus can be

identified with a temporally extended episodic memory trace such as

the memory of the temperature outside. The number of such modes

is essentially unlimited. However, because in our model small

numbers of modes have higher probability a priori, the result is that

the memory system tries to account for its observations as

parsimoniously as possible by using existing modes to explain

multiple observations. This leads to potential modification of existing

modes each time a new observation is assigned to them, and sporadic

creation of new modes. Below we describe this model formally.

Results

We first propose a normative computational model that can

account for the psychophysical and neural findings discussed in the

Introduction. We then describe a new psychophysical experiment

that tests the predictions of our model.

Generative model
Let st[RD denote a set of sensory measurements at time t,

arising from unobservable state variables xk
t [RD, where k indexes

modes. For instance, the observation may be the current

temperature, and the state variables are the air pressure, cloud

coverage, inside/outside location, air conditioner, thermostat

status, and many other direct causes of temperature. Let

zt[f1, . . . ,?g denote the mode active at time t. This mode

specifies particular state-space dynamics, for instance, a mode

corresponding to being indoors with the air conditioning on

(which specifies the dependence of temperature on thermostat

settings), another corresponding to air conditioning being off,

another to being outside in the shade, etc.

Our model assumes that measurements (observations) are

generated according to the following stochastic process. For each

time point t:

1. Draw a mode zt from a sticky Chinese restaurant process prior

[30]:

p(zt~kjz1:t{1)~

Nkzbd½zt{1,k�
azbzt{1

if k is a previously sampled mode

a

azbzt{1
if k is a new mode,

8>><
>>:

ð1Þ

where Nk is the number of previous timepoints in which mode

k was drawn, b§0 is a stickiness parameter that governs mode

persistence, and a§0 is a concentration parameter that

specifies the probability of drawing a completely new mode.

When b~0, Eq. 1 generates a partition of trials to modes z1:t

that corresponds to the distribution over partitions induced by

a Dirichlet process [31]. This prior assigns higher probability to

partitions with a small number of dynamical modes, and hence

expresses a ‘‘simplicity principle’’ [32] –all else equal, sensory

data are more likely to be generated by a simpler environment,

comprised of fewer modes. When bw0, modes tend to persist

over multiple consecutive time points, with b controlling the

strength of this persistence.

2. If zt is a new mode, draw the state variable xzt
t from a Gaussian

base measure: xzt
t *N (m0,C), where m0 is the prior mean and

C~diag(c1, . . . ,cD) the covariance matrix of the state

variables.

3. Diffuse the state variables for each active mode:

xk
t *N (wxk

t{1,Q), where w[ 0,1½ � is a decay term and

Q~diag(q1, . . . ,qD) is the diffusion noise covariance matrix.

The diagonal terms of Q determine the rate of change: larger

values of qd induce more rapid change along dimension d.

Note that the state variable for a mode (once it is activated for

the first time) evolves even when that mode is no longer active.

4. Emit sensory measurements st from a Gaussian centered on the

state of the currently active mode zt: st*N (xzt
t ,R), where

R~diag(r1, . . . ,rD) is the sensory noise covariance matrix.

This generative model is a simplification of the nonparametric

switching LDS described in [28].

To summarize the generative model: The hidden state diffuses

gradually until a jump occurs; this jump can be either to a

previously activated mode, or to a new mode (in which case a new

starting point is drawn for that mode, from a Gaussian prior). The

concentration parameter a controls the probability that a new

mode will be activated: Larger values of a result in more modes,

and if a~0, there are no jumps and we obtain a special case of the

standard LDS formulation. The stickiness parameter b encourages

modes to persist over time; when b~0, we recover the original

Chinese restaurant process [33]. The diffusion variances fqdg
control the rate of change within a mode: Larger values of qd

result in faster change. The sensory noise variance rd controls the

informativeness of the observations about the hidden state: As rd

increases, the sensory measurements become noisier and hence

convey less information about the hidden state.

Bayesian inference with an infinite-capacity switching
LDS

Given the generative model, the filtering problem is to infer the

posterior distribution over the state variable xk
t for each mode k

given the history of sensory measurements S1:t~fs1, . . . ,stg. This

computation is given by:

p(xk
t DS1:t)~

X
z1:t

p(xk
t DS1:t,z1:t)p(z1:t)

&
X

zt

p(xk
t DS1:t,zt)p(ztDẑz1:t{1),

ð2Þ

where ẑzt~argmaxkp(zt~kDS1:t,ẑz1:t{1). This corresponds to a

‘‘local’’ approximation [34–36] that maintains only a single high

probability partition ẑz1:t of previous observations to hidden causes.

This partition is then used to calculate the probability of the

current trial being drawn from each of the latent causes zt~k by

Statistics of Memory Updating
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combining the sticky Chinese restaurant process prior (Eq. 1) and

the likelihood (conditional on the partition and the previous

observations) of the current state vector xk
t . Although we could

have used more sophisticated methods (e.g., particle filtering) to

approximate the marginalization, this method works well on the

examples we consider, and is much faster, making it easier to fit to

behavioral data.

We now describe how to compute each of the components in

Eq. 2. The conditional distribution p(xk
t DS1:t,zt) is a Gaussian, with

mean x̂xk
t and covariance Lk

t ~diag(lk1
t , . . . ,lkD

t ), updated accord-

ing to:

x̂xkd
t ~wx̂xkd

t{1zgkd
t (sd

t {x̂xkd
t{1), lkd

t ~(1{gkd
t )(w2lkd

t{1zqd )ð3Þ

for each dimension d, where the estimated mean and variance

for a new mode k are x̂xk
0~m0 and lk

0~c (respectively) and the step

size (or learning rate) g, also known as the Kalman gain, is

gkd
t ~

lkd
t{1

zqd

lkd
t{1

zqd zrd
if zt~k

0 otherwise:

8<
: ð4Þ

Using the local approximation described above, the posterior

over mode assignments is given by:

p(zt~kDS1:t,ẑz1:t{1)!p(stDS1:t{1,ẑz1:t{1,zt~k)p(zt~kD̂zz1:t{1), ð5Þ

where the second term is the prior (Eq. 1), and the first term is

the likelihood:

p(stjS1:t{1,ẑz1:t{1,zt~k)~

N (st; x̂xk
t ,Lk

t{1zQzR) if k is a previously sampled mode

N (st; m0,CzR) if k is a new mode

(
ð6Þ

where ‘‘new mode’’ refers to the first mode that has never been

active before time i. This completes the description of our

inference algorithm, which we refer to as the Dirichlet process
Kalman filter (DP-KF).

Viewed as a mechanistic psychological model, the DP-KF

assumes that the memory system keeps track of two kinds of traces:

episodic traces encoding the sensory stimulus at each time point

(st), and more general traces that encode summary statistics of

stimuli belonging to a common mode (x̂xk
t ). These summary

statistics are updated in an incremental, psychologically plausible

manner using error-driven learning. Episodes are partitioned into

modes by a competitive clustering process similar to mechanisms

that have been proposed in many other psychological and neural

models [23,24,34,37,38].

Model behavior
Eq. 6 operationalizes the idea that large prediction errors will

lead to the inference of a new mode: For an old mode the

Gaussian log-likelihood is inversely proportional to DDst{xtDD2, the

distance between the current observation and the state when the

mode was last active, where t is the time at which the old mode

last occurred, while for a new mode the log-likelihood is

proportional to DDstDD2 (with the constant of proportionality scaling

these distances by the variances of the modes). Thus when

DDst{xtDD2 is large relative to DDstDD2 the DP-KF will tend to assign

observation t to a new mode, analogous to the process by which

Blumenfeld et al. ’s [22] saliency-weighted learning rule creates a

new attractor when the input pattern fails to match any of the

existing attractors. (Although the likelihood for a new mode

depends on the absolute scale of st, in our simulations this

dependence was very weak, as the variance parameter was set to

c = 1000.) Furthermore, because the variance of a mode grows

with the length of time since its last occurrence (Dt{tD), older

modes will be more ‘‘tolerant’’ of prediction errors.

Figure 1A illustrates the results of inference using our model

with a one-dimensional sensory stimulus. Here we assumed

m0~0,r~0:01,q~0:001,w~0:99,b~0 and a = 1. The sensory

stimulus changed gradually, then underwent a jump, and then

changed gradually again. On each time point we first inferred the

hidden state based on past observations only (these are the model

predictions). Following that, the sensory measurement was

observed, thereby allowing the computation of its likelihood and

updating of the posterior distribution. As a result, model

predictions lag behind the jump. Nevertheless, due to inferring a

new mode after the jump, the DP-KF (circles) ‘‘catches up’’ with

the sensory evidence after one trial, whereas the regular KF model

(squares) takes much longer. This occurs because the KF smooths

across the jump as all observations are assumed to be generated by

one slowly diffusing mode, whereas the DP-KF achieves piecewise

smoothness by segmenting the time series into two modes, thereby

producing better predictions.

Figure 1B shows the results of applying the DP-KF to the

‘‘gradual’’ and ‘‘mixed’’ experimental protocols described in the

Introduction [15–17,20,21,39]. Here we used a sequence of one-

dimensional measurements morphing between 0 and 1. In the

gradual protocol, the sensory measurement (morphs) increased

monotonically with time, whereas in the mixed protocol the

morphs were presented in scrambled order. To analyze the

simulated data, we re-sorted the indices from the mixed condition

to match the gradual condition and calculated the posterior

probability of mode 1 for each morph. Consistent with the

psychophysical and neurophysiological data [15–17,20,21,39], the

mixed protocol results in morphs being assigned to two different

modes, whereas the gradual protocol results in all the morphs

being predominantly assigned to a single mode.

Note that even if each of the modes is already firmly ingrained

(through extensive experience with the morphs, as was the case in

some of the experimental work we discussed), we still expect to see

gradual or abrupt changes in the posterior probability of mode 1

depending on the morph sequence, since the sensory data are

ambiguous with respect to the underlying dynamical mode. In

other words, the time course of the posterior reflects uncertainty

about which mode is currently active, and this uncertainty may

change smoothly or abruptly depending on the stimulus sequence.

Experiment: Memory for dynamically changing visual
stimuli

We now describe an experiment designed to test a fundamental

prediction of our model: if different modes correspond to different

memories, inference of a new mode should protect the memory for

old observations from retroactive interference due to new

observations (see Materials and Methods for more details).

Figure 2 illustrates the task. We exposed human participants to

sequences of simple visual stimuli (lines) whose orientation and

length changed from trial to trial, and asked them, at the end of

Statistics of Memory Updating
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the sequence, to reconstruct from memory one of the stimuli from

the beginning of the sequence. To ensure that participants were

encoding the stimuli, and to provide data that can be compared to

the model’s trial-by-trial predictions for the purpose of model

fitting, we also asked participants to actively predict the orientation

and length of the next line. Each participant was exposed to

sequences belonging to two conditions: in the ‘‘gradual’’ condition,

the lines changed slowly, through small perturbations in orienta-

tion/length space; in the ‘‘jump’’ condition, this slow change was

interrupted by a large change in the middle of the sequence

(Figure 3). Importantly, we kept the overall distance (in terms of

orientation and length) between the start and end points of each

sequence approximately equal in both conditions.

We reasoned that if participants used prediction errors to

segment their observations into distinct modes, then they would

infer two modes in the jump condition (one for the first half and

one for the second half of the sequence), but only one mode for the

gradual condition. Segmenting the sequence would mean that the

memory for the first half should be less biased by observations in

the second half. We therefore hypothesized that reconstructions of

early lines would be more veridical in the jump condition. By

contrast, in the gradual condition, later observations would have

been assigned to the initial mode, leading to alteration of that

mode. Compared to the jump condition, reconstructions in the

gradual condition should therefore be more similar to lines

observed later in the block, and less similar to the target early lines.

Example trajectories and reconstructions for a single participant

are shown in Figure S1.

To test our hypothesis, for each sequence we calculated the

Euclidean distance between the participant’s reconstruction and

the true line observed at the beginning of the block, as well as the

distance from the line observed at the end of that block. The

results, presented in Figure 4A, show that participants’ recon-

structions were closer to the last line (t~3:83,pv0:001), and

farther from the first line (t~2:1,pv0:05) in the gradual condition

as compared to the jump condition. A two-way (first/last 6
gradual/jump) ANOVA confirmed that the interaction was

significant (F~10:26,pv0:005). We interpret this result as

Figure 1. Simulations. (A) Simulated sensory measurements and inferred state variables. For the DP-KF, the colors indicate the mode assignment
with the highest posterior probability, white circles = mode 1, black circles = mode 2. (B) Posterior probability of mode 1 as a function of morph
index in the gradual and mixed protocols, using the DP-KF (averaged over multiple simulation runs). See text for details.
doi:10.1371/journal.pcbi.1003939.g001

Figure 2. Experimental task. (Left) Prediction trial: participants were asked to predict the orientation and length of the next line segment
(prediction shown in the center of the screen). At the bottom of the screen, a black circle superimposed on a timeline (the black bar) was used to
indicate the trial’s serial position in the block. At the start of each block, the black circle started out in the leftmost position; after each trial, the circle’s
position shifted one position to the right. (Middle) After making a prediction, participants were shown the true line segment and received a point
score based on their prediction accuracy. (Right) Reconstruction trial: at the end of each block, participants were asked to reconstruct from memory
the line they saw on one of the first three trials (indicated by an arrow on the timeline). No feedback was given for these reconstruction trials.
doi:10.1371/journal.pcbi.1003939.g002

Statistics of Memory Updating
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Figure 3. Example trajectories and hypothetical reconstructions. Each circle represents a line segment presented in a sequence, with the
shaded circle indicating the first trial. The dimensions are standardized to a [0,100] range. The blue diamond represents a hypothetical reconstruction
of the line segment indicated by the arrow. In solid black is the distance between the reconstruction and the starting point, while the dashed black
line shows the distance between the reconstruction and the end point. (A) A gradual trajectory. Here we expected the reconstruction to be pulled
away from the start point and towards the end point. (B) A jump trajectory. Here we expected the reconstruction to stay in the vicinity of the pre-
jump points. As a result, we expected the distance between the reconstruction and the start point to be smaller in the jump condition as compared
to the gradual condition, and the distance between the reconstruction and the end point to be smaller in the gradual condition.
doi:10.1371/journal.pcbi.1003939.g003

Figure 4. Experimental results and model predictions. (A) Euclidean distance between participants’ reconstructions and the observed (true)
first and last lines in a block. Error bars represent within-subject standard error of the mean. The results show that participants were more accurate in
their reconstructions in the jump condition as compared to the gradual condition. (B) Stationary Kalman filter (KF) model predictions. Data in (A) are
represented by black circles. (C) Non-stationary KF model predictions. (D) Stationary Dirichlet process Kalman filter (DP-KF) model predictions. (E)
Non-stationary DP-KF predictions.
doi:10.1371/journal.pcbi.1003939.g004

Statistics of Memory Updating
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showing that, in the gradual condition, participants inferred one

mode, thereby causing lines from the second half to influence

memory for the lines from the first half; by contrast, in the jump

condition participants inferred separate pre-jump and post-jump

modes, thereby protecting their memory of the pre-jump lines

from being distorted by the post-jump lines.

Model-based analysis of experimental data
Assuming that the individual trace of each stimulus is noisy (see

Materials and Methods), it is reasonable for the memory system to

use information from multiple trials to aid in reconstruction. In

our model, this is accomplished at retrieval by ‘‘smoothing’’ over

(or blurring together) the traces of trials that occurred nearby in

time. This blurring removes noise under the assumption that

stimuli change slowly over time and hence the underlying signal is

temporally autocorrelated (whereas the noise is not). Formally, this

corresponds to a form of Kalman smoothing [40]. However, it is

important to not smooth over instances that are very different

from each other (i.e., across time points where an abrupt jump

occurred and as a result the signal is no longer autocorrelated).

Inference over multiple dynamical modes remedies this problem

by segmenting the time series into parts that are each internally

smooth; our smoothing algorithm operates within but not across

these modes (note that even when there is only a single dynamical

mode, smoothing can still reconstruct individual stimuli, rather

than blurring them all together, because a representation of each

stimulus is available to the retrieval system). A formal description

of this smoothing algorithm is given in the Materials and Methods.

To test how well our proposed model fit participants’ data

throughout the experiment, we fit several variants of the DP-KF and

KF models to participants’ responses on prediction trials (in which

participants had to predict the next version of the line), holding out

the responses on reconstruction trials for validation and comparison

between the models (see Materials and Methods for details of the

model-fitting methods). Four model variants were constructed from

the full model by restricting parameter values as follows:

N Stationary KF: A Kalman filter in which the hidden state is

stationary (qd~0 for all d). This means all variation is

attributed to the sensory and response noise. This model has

five free parameters: w, r1, r2, n1, and n2 (where superscripts 1

and 2 refer to the two stimulus dimensions: length and angle).

The n parameters represent response noise variances (see

Materials and Methods for more details).

Figure 5. Model comparison. (A) Predictive log-likelihood for each model, on prediction trials, relative to the stationary KF model. Larger values
indicate superior performance on held-out data from prediction trials. (B) Predictive log-likelihood for each model, on the reconstruction data, relative
to the stationary KF model. Error bars represent within-subject standard error of the mean.
doi:10.1371/journal.pcbi.1003939.g005
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N KF: A Kalman filter in which the hidden state is allowed to

diffuse over time (q§0). This model has seven free parameters:

w,r1,r2,q1,q2,n1, and n2.

N Stationary DP-KF: In this model, the hidden state can be

drawn from multiple modes, where each mode’s hidden state is

stationary in time (qd~0 for all d). Modes tend to persist over

time with the strength of persistence determined by b§0. This

model thus has seven free parameters: w,r1,r2,n1,n2, a and b.

N DP-KF: This is the full Dirichlet process Kalman filter model.

It allows multiple diffusing modes that each can change over

time (qd
§0). This model has nine free parameters:

w,r1,r2,n1,n2, q1,q2, a and b.

Figure 4B-E shows the predicted reconstruction biases for each

of these models. Unlike our participants, neither the KF models

nor the stationary DP-KF model showed a cross-over interaction

between jump/gradual and start/end. In contrast, the DP-KF

model showed a cross-over interaction effect

(F~42:23,pv0:0001). Thus among the four alternatives, only

the DP-KF model adequately captured the experimental results.

We quantitatively compared the fits of the different models in

two ways. First, we performed cross-validation by splitting the

blocks into two halves (even- and odd-numbered blocks), fitting the

model to the trial-by-trial prediction data for one half of the blocks

and computing the predictive log-likelihood of data for the other

half of the blocks. Figure 5A shows the predictive log-likelihood of

each model relative to the stationary KF model. The KF and DP-

KF models performed similarly (a paired-sample t-test revealed no

significant difference, p~0:8), and significantly better than their

stationary variants (pv0:0001).

Our second model-comparison metric was the predictive log-

likelihood of participants’ reconstructions. Note that the models

were not fit to the reconstruction data, so there is no need to

penalize for model complexity: overfitting the prediction-trials

data due to too many degrees of freedom will automatically lead to

poorer results when trying to predict the reconstruction trials.

Figure 5B shows the predictive log-likelihood of each model

relative to the stationary KF. According to this measure, the DP-

KF model outperformed both the KF variants (pv0:05) and

performed marginally better than the stationary DP-KF (p~0:07).

To illustrate the DP-KF model’s accuracy in predicting recon-

structions, we computed the Pearson correlation coefficient

between the human and model reconstructions for each partic-

ipant separately, Fisher z-transformed this value, and performed a

t-test against 0 for all participants. Correlations for both

orientation and length were significant (each pv0:001, two-tailed

t-test; Figure 6).

Finally, in keeping with our theoretical predictions, we found

that the number of modes (K) inferred by the fitted DP-KF model

was, on average, higher in the jump condition than in the gradual

condition (t~12:27,pv0:0001; Figure 7).

Discussion

We addressed, both theoretically and experimentally, a basic

question about memory: When does new experience cause an

existing memory to be modified versus a new memory to be

formed? Our answer took the form of a rational analysis [10]. In

particular, we proposed that the structure of memories reflects a

process of optimal filtering in a dynamically changing environ-

ment, where each memory encodes a distinct ‘‘dynamical mode’’

Figure 6. Comparison of model and human reconstructions. Histogram of z-transformed correlations between human reconstructions and
model reconstructions for (A) the orientation dimension and (B) the length dimension. Vertical black line indicates a correlation of 0.
doi:10.1371/journal.pcbi.1003939.g006
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of the environment. New modes are inferred when there are

abrupt discontinuities in the temporal dynamics of sensory data

that cannot be explained by existing memories. Such discontinu-

ities are typically accompanied by a large prediction error,

suggesting a biologically plausible mechanism for implementing

memory-trace formation: The brain may split off new memory

traces when large prediction errors are registered [23–25,41].

Prediction errors are believed to be computed in many areas of the

brain, including area CA1 of the hippocampus [42] and midbrain

dopaminergic nuclei [43]. Indeed, predictive coding theories

propose that prediction errors are computed throughout the

neocortex [44].

Importantly, the specific model used here belongs to a large

family of statistical models that instantiate the idea that abrupt,

inexplicable changes in the environment result in inference of a

new mode [28]. The main contribution of this paper is to provide

an experimental test of this principle in the domain of human

reconstructive memory. In our experiment, participants were

asked to reconstruct from memory a previously encountered visual

stimulus, under conditions where the stimulus had since changed

over time either gradually or abruptly. We envision inference over

dynamic modes of the environment as giving rise to temporally

extended episodic memory traces that group together individual

stimulus traces, thus causing some generalization or interference

between the memories of different specific observations. We thus

measured the degree to which later stimuli modify the memory of

earlier instances by assessing the extent to which the reconstructed

stimulus shifted from the starting point of the stimulus trajectory

towards the end point. We showed that gradual change resulted in

greater memory modification than abrupt change, in agreement

with our theoretical prediction that gradual change would favor

inference of a single dynamical mode that would incorporate all

stimuli in a block, whereas abrupt change would favor the

inference of multiple modes, each relatively untainted by

experience that is associated with the other mode.

The behavioral effect that we showed cannot be explained by

recency or primacy biases: A recency bias does not predict a

difference between the conditions, because the conditions were

matched for total distance traveled and for trial-to-trial differences

in the stimuli in all trials but the jump trial (which was always in

the middle of the sequence). Therefore, stimuli at the end of a

block, just prior to the reconstruction trial, were (on average)

equally similar to the initial stimulus across conditions. Likewise, a

primacy bias does not predict a difference between conditions,

since the stimuli in the beginning of the block did not differ

systematically between conditions.

The choice between modifying an existing memory versus

creating a new one is formalized in our model using a

nonparametric prior over partitions known as the Chinese

restaurant process [33] (see [31] for an explanation of the Chinese

restaurant metaphor and its origins). This prior has previously

been used to model category formation [34,35], Pavlovian

conditioning in multiple contexts [24,45], word segmentation

[46] and task-set learning [47] (for a review of this literature, see

[48]). All of these domains have in common the problem of

segmenting stimuli and actions into coherent clusters (or, in our

case, modes). The Chinese restaurant process is a natural prior for

segmentation because it allows an unbounded number of clusters

while preferring fewer clusters. This prior thus expresses a bias

towards simplicity [32]. Even without such a prior bias, simpler

segmentations are naturally favored by Bayesian inference due to

the ‘‘automatic Occam’s razor’’ phenomenon [49], whereby

simpler explanations of data have higher marginal likelihood than

more complex explanations. While the experiment we report does

not directly address whether humans exhibit a simplicity bias in

memory formation, this question has been addressed by other

work from our laboratory [50].

One limitation of the current study is that it did not test a

further prediction of our model: When a change occurs, an old

mode can be reinvoked, rather than creating a new mode. Thus

our findings could potentially be explained by a model that creates

a new mode every time a large change is observed (although

previous modes would still have to be maintained in memory to

allow recall, unlike some models, e.g., [11]). In future work, we will

Figure 7. Model-based analysis. Number of modes (K) inferred by the DP-KF model for each condition.
doi:10.1371/journal.pcbi.1003939.g007
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test the hypothesis that old modes can be modified in this

paradigm. Using a perceptual estimation paradigm [50] we have

shown that participants can update two modes in an alternating

fashion, if these are signaled externally (in that case, by the color of

the stimuli). However, unlike our current study, this earlier study

did not manipulate the dynamics of stimulus trajectories and so

could not address the dynamics of memory formation as a result of

(abrupt vs. gradual) change in the environment.

Related work
Several authors have proposed neural implementations of the

KF [51,52]. Wilson and Finkel [52] derived an approximation of

the KF that can be computed by a recurrent neural network when

the prediction error is small. Intriguingly, when the prediction

error is large, their approximation ‘breaks down’ by creating two

bumps in the posterior distribution (rather than one as in the exact

KF) with each bump implementing an independent KF. Our

theory suggests a normative account of this feature, since a

network that creates multiple bumps is precisely what is required

by the DP-KF algorithm. Pursuing this connection is an exciting

direction for future research.

Work on change detection [11,53–59] addresses a similar

question: how does the brain detect a change in the statistics of

sensory signals? The study of Nassar et al. [56], for example,

showed that humans use the recent history of prediction errors to

determine when a change has occurred. This work differs from our

own in several ways. First, most existing change-detection theories

assume stationary sensory statistics between jumps, whereas we

allow for gradual change between jumps. Second, once a jump has

occurred, theories of change detection assume that the statistics of

earlier epochs are no longer relevant and can be discarded; in

contrast, our model assumes that participants are able to retrieve

statistics from earlier modes, and in general allows for the

environment to return to earlier modes (as noted above, our

current experiment did not test this latter property of the model).

Our work also intersects with research in cognitive psychology on

the reuse of existing memory traces. For example, repeating items on

a list tends to aid their recognition without degrading recognition of

other items (the null list-strength effect [60]). To explain this, Shiffrin

et al. [8] assumed that repetition of items results in refinement of

existing traces, rather than formation of new traces. Thus, there must

be some reuse of memory traces. The question, then, is what counts

as a repetition. Visually similar stimuli such as those used in our

experiment may be judged by the memory system to be essentially

the same item (i.e., a ‘‘repetition’’). Our theory further asserts that

small changes in these ‘‘repetitions’’ drive modification of existing

memories, but not formation of new memories. This is similar to

what Bower and Winzenz [7] dubbed the ‘‘reallocation hypothesis,’’

according to which inputs are matched to memory traces and

incorporated into an existing trace if the match is sufficiently high;

otherwise, the input is routed to a new trace (see also [9]).

Interestingly, evidence suggests that failure to recognize a new

context can sometimes lead to neither outcome: using an auditory

statistical learning paradigm, Gebhart et al. [61] found that changes

in structural information can go undetected without the aid of

additional cues (e.g., sounds marking the transition between

structures), preventing participants from learning new structures.

This suggests that future models should incorporate a mechanism

that allows some information to evade both old and new memories.

The dynamically updated posterior posited by our model bears

some resemblance to the drifting context vector posited by several

models in the memory literature [62,63]. For example, the

Temporal Context Model (TCM) introduced by Howard and

Kahana [63] assumes that list items are bound to a context vector

that is essentially an average of recently experienced items. In

earlier work [64], we operationalized the context vector as a

posterior over latent ‘‘topics’’ that play the same role as modes in

the present paper. In our current theory, items are bound to

modes in much the same way that items are bound to the context

vector in TCM. The connection to TCM also highlights the way

in which episodic and semantic memory are deeply intertwined in

contemporary theories: ‘‘episodic’’ traces of individual items

become bound to ‘‘semantic’’ representations that average over

multiple items [65]. Likewise in our model, episodic and semantic

components are intertwined: a separate trace for each sensory

stimulus is stored, but the traces are effectively blurred together by

the smoothing operation during retrieval. Although the idea of

separate episodic and semantic memory systems has been very

influential [13], it has been known since Bartlett’s investigations

[66] that semantic knowledge exerts strong constraints on many

aspects of episodic memory [67,68]. A similar rapprochement has

emerged in theories of category learning, where ‘‘episodic’’

(exemplar) and ‘‘semantic’’ (prototype) representations are com-

bined to form varying levels of abstraction [35,69,70].

Another related line of work concerns the effects of novelty on

memory. Our model predicts that a novel stimulus is more likely to

be encoded in a separate trace compared to a familiar stimulus,

making it less likely that the novel stimulus will suffer interference

from other stimuli at retrieval. This prediction has been confirmed

many times in the form of the von Restorff effect [71]. Note that

while the von Restorff effect reflects proactive interference (older

memories interfering with the retrieval of newer memories) and our

experiment tested retroactive interference (newer memories inter-

fering with the retrieval of older memories), according to our model

these are essentially due to the same process of grouping of different

observations into temporally extended episodic memory traces.

The idea of comparing gradual and abrupt changes as a means

of influencing memory updating has also been explored in the

motor control literature [72–74]. For example, Kagerer et al. [72]

had participants make arm movements to a target and then

introduced a perturbation (by rotating the visual feedback) either

gradually or abruptly. Participants adapted to the perturbation;

following the removal of the perturbation, participants exhibited

an after-effect in which movement errors were in the direction

opposite to the perturbation. Kagerer et al. found that the after-

effect was smaller for participants in the abrupt condition than in

the gradual condition. This pattern of results is consistent with the

idea that two separate motor memories were formed in the abrupt

condition, thereby allowing the pre-perturbation memory to be

reinstated quickly. The larger after-effect in the gradual condition

suggests that in that case the gradual perturbation led to

modification of the original memory. Such modifications can be

long-lasting: Yamamoto et al. [75] have shown that learning a

gradually changing motor task produces a motor memory that can

be recovered over a year later.

Finally, we have recently reported related findings in the

domain of Pavlovian fear conditioning [41]. Rats learned to

associate a tone with a foot-shock. Subsequently, one group of rats

were presented with the tone in the absence of shock (standard

‘extinction’ of the tone-shock association). A second group of rats

experienced the same number of tones, with the the tone-shock

contingency only gradually reduced to zero (that is, to full

extinction). Although all rats showed similarly diminished fear of

the tone at the end of the ‘extinction’ phase, rats in the standard

extinction condition exhibited subsequent recovery of fear (as is

typically seen after extinction training), whereas rats in the gradual

condition showed no evidence of fear recovery. These findings are

consistent with the idea that the fear memory is more likely to be
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modified by extinction training in the gradual condition, thereby

reducing the probability of later recovery.

Conclusions
In this paper, we empirically investigated a fundamental

prediction that models of change detection make for memory. If,

as we hypothesize, new experience is incorporated into old

memories based on similarity, then abrupt change (i.e., dissimilar

data) should prompt the creation of a new memory trace, and thus

protect old memories from being modified by new data, whereas

gradual change will not. Our experimental results confirm this

prediction, thereby providing support for a statistical account of

how continuous experience is parsed into discrete memory traces.

We conclude that memories are not simply a record of our

ongoing experiences; the organization of memory traces reflects

our subjective inferences about the structure of the world that

surrounds us.

Materials and Methods

Ethics statement
The experiment was approved by the Institutional Review

Board at Princeton University.

Participants
32 undergraduate students received course credit or payment

($12 per hour) for participating in the experiment. The experiment

was approved by the Institutional Review Board at Princeton

University.

Stimuli
The stimuli consisted of oriented line segments that changed in

orientation and length on every trial. Each line segment was

generated from the previous one by (randomly) adding or

subtracting a fixed length (0.89 mm) and a fixed angle (14.4u),
thus generating a 45u ‘move’ in an orientation/length space in

which one unit was 14.4u and 0.89 mm, respectively. ‘Moves’ were

restricted so that the new line segment did not overlap with the

previous line segment (that is, there was no ‘backtracking’ in

orientation/length space; see Figure 3). Jumps were also at a 45u
angle, but traversed a distance 4 times as long as the other steps

(i.e., 3.6 mm length and 57.6u angle). Jumps always occurred (if

they did) in the middle of the trajectory (between trials 9 and 10),

and were unsignaled to the participant. Finally, in generating

trajectories through orientation/length space, we required the

Euclidean distance between the start and end points to lie within a

narrow range (60–70% of the maximum possible distance)

regardless of the condition (jump or gradual). Examples of jump

and gradual trajectories are shown in Figure 3.

Procedure
Participants played 12 blocks of the task (6 jump trajectories

and 6 gradual trajectories, randomly interleaved). Each block

consisted of a sequence of 18 prediction trials. A timeline showed

participants the serial position of each trial in a block. On each

prediction trial, participants used a mouse to adjust the

orientation and length of a line on the screen so as to predict

the next observed line. After making their prediction, participants

were shown the true line and awarded points based on how

accurate their prediction was. The prediction task was aimed at

encouraging encoding of the different line segments in memory,

and also provided data for fitting our models (see below). At the

end of the block, participants were given a reconstruction trial; on

this trial, they were shown an arrow pointing toward a point on

the timeline and asked to reconstruct the line segment they saw

on that trial. Participants were always asked to reconstruct one of

the first 3 trials in the block. No feedback was given on

reconstruction trials.

Reconstruction by smoothing
Let �xxk

t denote the estimated stimulus for time t given all

observations up to the time of retrieval conditional on zt~k.

Kalman smoothing [40] constructs this estimate through a

backward recursion:

�xxkd
t ~x̂xkd

t zw
lkd

t

lkd
tz1

(�xxkd
tz1{x̂xkd

tz1) ð7Þ

for each dimension d. In essence, smoothing combines the

filtered estimate x̂xkd
t with information from the future propagated

backward in time. We take �xxk
t to be the model’s prediction for a

participant’s reconstruction of the stimulus shown at time t.

Model-fitting
Prior to model-fitting, the stimulus values (length and orienta-

tion) were rescaled to [0, 100]. To model responses, we assumed

that participants report the posterior mean, corrupted by

anisotropic Gaussian noise (with variances n1 and n2, for length

and orientation, respectively. Depending on the model variant, the

noise variance r, the response noise variance v, the diffusion noise

variance q, the stickiness parameter b and the concentration

parameter a were treated as free parameters and fit to each

participant’s data by minimizing the negative log-likelihood of

each participant’s predictions using a numerical optimizer (the

routine fmincon in Matlab), while constraining parameters to lie in

the appropriate range. To prevent implausibly large values of v, q
and r, we constrained these to be less than 10, 30 and 20,

respectively, although our results do not depend on these precise

values. To avoid local minima, the optimization was run from 3

randomly chosen starting points. We assumed that responses were

generated from the filtered state estimate (or smoothed state

estimate, in the case of retrieval), corrupted by Gaussian noise with

anisotropic noise variance (n1 and n2). For the KF model, a was set

to 0. We set the prior covariances to be cd~1000, instantiating an

approximately uniform distribution over mode starting points.

Reconstruction trials were not used in any of the fitting

procedures. To model noise in the reconstruction process, we

added a constant of 5 to the sensory noise variance (rd). This value

was chosen by hand, but the results were not sensitive to its precise

value.

Supporting Information

Figure S1 Example trajectories and reconstructions for
a single participant. The top row shows trajectories in the

‘‘gradual’’ condition. The bottom row shows trajectories in the

‘‘jump’’ condition. The first trial is indicated by the large circle,

and the blue diamond shows the reconstruction.

(EPS)
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32. Chater N, Vitányi P (2003) Simplicity: A unifying principle in cognitive science?

Trends in Cognitive Sciences 7: 19–22.

33. Aldous D (1985) Exchangeability and related topics. In: École d9Été de
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