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Abstract

We routinely observe others’ choices and use them to guide our own. Whose choices influence

us more, and why? Prior work has focused on the effect of perceived similarity between two indi-

viduals (self and others), such as the degree of overlap in past choices or explicitly recognizable

group affiliations. In the real world, however, any dyadic relationship is part of a more complex

social structure involving multiple social groups that are not directly observable. Here we suggest

that human learners go beyond dyadic similarities in choice behaviors or explicit group member-

ships; they infer the structure of social influence by grouping individuals (including themselves)

based on choices, and they use these groups to decide whose choices to follow. We propose a com-

putational model that formalizes this idea, and we test the model predictions in a series of behav-

ioral experiments. In Experiment 1, we reproduce a well-established finding that people’s choices

are more likely to be influenced by someone whose past choices are more similar to their own past

choices, as predicted by our model as well as dyadic similarity models. In Experiments 2–5, we test

a set of unique predictions of our model by looking at cases where the degree of choice overlap

between individuals is equated, but their choices indicate a latent group structure. We then apply

our model to prior empirical results on infants’ understanding of others’ preferences, presenting an

alternative account of developmental changes. Finally, we discuss how our model relates to classi-

cal findings in the social influence literature and the theoretical implications of our model. Taken

together, our findings demonstrate that structure learning is a powerful framework for explaining

the influence of social information on decision making in a variety of contexts.
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1. Introduction

Imagine you are trying to buy a bar of soap, and you don’t see the brand that you nor-

mally use. Confronted with a dozen different kinds of soaps you haven’t used before, you
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might be at a loss. However, if you see another customer choosing a particular brand of

soap, you might be tempted to make the same choice. Moreover, if her basket is full of

other items that you like (e.g., the same brand of toothpaste and shampoo you use), you

might be even more convinced that you will also like her chosen soap.

From these mundane, everyday purchases to important life decisions, our choices are

strongly influenced by the choices of others. Indeed, humans are not the only species that

learn from others; extensive prior literature documents various social influences on behav-

iors of non-human animals. For instance, rats learn to avoid poison from observing other

rats (Steiniger, 1950), and lab-raised rhesus monkeys develop fear responses to snakes

after seeing wild-raised monkeys’ responses to snakes (Cook & Mineka, 1989). Observa-

tions of others’ behaviors also influence many aspects of foraging decisions in non-human

animals, such as what, where, and when to eat (Galef & Giraldeau, 2001).

Social learning in humans goes far beyond simple imitation. Recent empirical and the-

oretical work suggests even infants have sophisticated inferential mechanisms that allows

them to go beyond simple associations (Schulz, 2012; Tenenbaum, Kemp, & Goodman,

2011), as well as the ability to understand mental states such as goals, preferences, and

beliefs (Repacholi & Gopnik, 1997; Wellman & Liu, 2004; Woodward, 1998). From

observations of others’ actions, infants draw rich causal inferences about the goals and

intentions behind these actions and use them to guide their own behavior (Gergely,

Bekkering, & Kir�aly, 2002; Gweon & Schulz, 2011; Meltzoff, 1995). From just a few

instances of an another person’s choice behaviors (e.g., selections of toys), infants infer

whether other toys share similar features (Gweon, Tenenbaum, & Schulz, 2010) and how

much the person likes the toys (Hu, Lucas, Griffiths, & Xu, 2015; Kushnir, Xu, & Well-

man, 2010). Infants also use the perceived overlap between their own and others’ choices

to guide their future choices (Fawcett & Markson, 2010).

The flexibility of children’s inferences suggests that they may be supported by an

abstract understanding of preferences (i.e., utility functions that underlie choices) rather

than mere associations (Jara-Ettinger, Gweon, Schulz, & Tenenbaum, 2016). Around 18

months of age, children already understand that another agent’s food preference may dif-

fer from their own (Repacholi & Gopnik, 1997) and provide food items that she likes

even when it conflicts with their own preferences. Recent computational work has formal-

ized preference understanding as a rational comparison of utility functions between indi-

viduals (Bergen, Evans, & Tenenbaum, 2010; Jern & Kemp, 2015) and showed that such

models predict inferences about preferences in young children (Lucas et al., 2014). How-

ever, these models rely on choice similarity between pairs of individuals (i.e., dyadic

choice similarity), and thus they may not fully capture our ability to flexibly learn from

multiple agents, even in the absence of strong differences in perceived overlap, such as

in situations where group affiliation is informative about preferences.

Prior work on social learning from multiple agents focused on how individual choices

are influenced by shared affiliations with social groups. An important assumption that

underlies many studies and theories of social influence is that individuals within a social

group share a common set of utility functions (i.e., shared preferences), such that copying

behaviors of in-group members is likely to lead to more rewarding outcomes (e.g.,
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Bikhchandani, Hirshleifer, & Welch, 1992; Rendell et al., 2010; Weitzman, 1965). Con-

sistent with this general idea, previous developmental research suggests that young chil-

dren, and even infants, are sensitive to explicit cues that distinguish in-group members

from out-group members (e.g., gender, age, language) in making food choices (Frazier,

Gelman, Kaciroti, Russell, & Lumeng, 2012; Shutts, Kinzler, McKee, & Spelke, 2009;

Shutts, Banaji, & Spelke, 2010; Whittler & DiMeo, 1991).

However, there are reasons to question the effectiveness of such cues in making real-

world choices. First, individuals hold richly heterogeneous preferences across many

domains; while some of them may be rooted in culturally shared utility functions, others

may be highly idiosyncratic and vary widely even among members within a group (e.g.,

music or movie choices). Furthermore, even when affiliation with a certain group is

potentially helpful, observable features for various groups are often simultaneously pre-

sent and confounded within individuals and across domains (e.g., a male, French-speaking

lawyer in his 50s vs. a female, Korean-speaking engineer in her 30s), making it difficult

to choose which ones are actually informative. Thus, even though these directly observ-

able features of group affiliations can signal underlying similarities in utility functions,

the causal connection between these features and observed choices are often unclear; by

contrast, overlaps in choice behaviors provide strong support for similar utility functions

within a given domain. This suggests that the most useful groups for guiding one’s future

choices might be latent and must be learned from observing others’ choices. In order to

account for the richness and the sophistication of the human ability to learn from others’

choices even when explicit cues to group affiliation are lacking or unhelpful, we must go

beyond the simple assumption that choice similarities between individuals arise from

explicitly recognizable groups. How do human learners face the complex challenge of

learning from multiple agents whose heterogeneous choice behaviors emerge from unob-

servable, latent social groups?

Here we present a formal account of how humans use others’ choices to generate rep-

resentations of latent social structures, and we present a series of experiments that demon-

strate how these representations influence people’s choice behaviors. We revise the idea

that the strength of social influence depends directly on dyadic choice similarity (Brock,

1965; Simons, Berkowitz, & Moyer, 1970). We argue that social influence involves infer-

ences about the latent structure of shared utility functions among multiple individuals.

For example, the group “people who enjoy outdoor sports and historical documentary

films” is not directly observable; it is an abstraction that enables us to capture certain reg-

ularities in observable choice behavior. Such abstractions are not only useful for learning

about about others but are also useful for guiding one’s own choices; if you infer that

someone belongs to the same group as you (e.g., both you and your friend enjoy outdoor

sports and historical documentary films), then her choices of other hobbies or films might

be a more reliable guide to what you will like compared to the choices of someone who

presumably belongs to a different latent group (e.g., people who enjoy knitting and

romantic comedies).

To formalize these ideas, we appeal to computational theories of structure learning

(Gershman & Niv, 2010), which explain how learners can discover a set of latent
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variables (e.g., groups) that could plausibly give rise to observable data. In the next sec-

tion, we introduce a computational model of latent group inference from choice patterns.

We then test the model predictions across five experiments using real-world movie pos-

ters. In Experiment 1, we reproduce the well-established finding that people’s choices are

more influenced by agents whose past choices are similar to their own (Brock, 1965;

Simons et al., 1970), confirming that our experimental paradigm can induce such social

influence on choice behaviors, and that our model can adequately account for this basic

effect. In Experiments 2–5, we test the distinctive predictions of our model: If people rep-

resent latent group structure rather than dyadic similarities, then even when two agents’

choices are equally similar to their own past choices, their decisions should be influenced

by the presence of a third agent that alters the group structure. Importantly, prior models

that rely on dyadic choice similarity would not predict differential social influence in

these cases (since choice overlap is equated for the two agents in question). Our model,

in contrast, predicts that individuals will be differentially influenced by the agent who

belongs to the same latent group as themselves. Experiments 2 and 3 test this prediction

by measuring choice behavior. Experiment 4 provides more direct evidence by asking

people to cluster agents into separate groups. Experiment 5 shows that the influence of

latent groups extends beyond choices between two novel items; it is powerful enough to

change people’s ratings for real-world items.

2. A computational model of social structure learning

Our model embodies a “rational analysis” of social influence, taking a probabilistic

approach to understanding human cognition and decision making (Anderson, 1990; Cha-

ter & Oaksford, 1999; Tenenbaum et al., 2011). We start with a description of the gener-
ative model: a set of assumptions about how latent groups are formed and how they can

be inferred from observed patterns of choices. We then describe how an individual should

reason rationally under the assumptions of the generative model.

Before specifying the model formally, we provide some intuitions about how the

model works (see Fig. 1 for a schematic). Each individual is assumed to belong to a

latent group that parameterizes the distribution over choices. Due to the stochastic nature

of choice, different individuals within the same group may not make exactly the same

choices. The assignment of individuals to groups is unknown and must be inferred from

observed data. The number of groups is also unknown; we assume a distribution over

group assignments that accommodates an unbounded number of groups, with a bias for

smaller numbers. This simplicity bias prevents the model from overfitting the choice data

(e.g., by assigning each individual to a unique group), which would hinder generalization

to new choice problems. Similar distributional assumptions have been used to model

other learning problems in which the number of groups or “clusters” is unknown (see

Austerweil, Gershman, Tenenbaum, & Griffiths, 2015, for a review).

Within this framework, reasoning rationally about preferences means combining prior

beliefs about group structure with information from choice patterns to draw inferences
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about the likely group assignments that generated the choice patterns. As we detail in our

model description below, Bayes’ rule specifies how prior beliefs and choice patterns are

combined to generate a posterior distribution that quantifies the probability over possible

groupings of individuals. The posterior can then be used to compute predictions about

choice behavior for new sets of objects. The same computation can be used to generate

predictions for one’s own choices, as well as for those of other individuals.

In our usage, reasoning rationally does not mean reasoning “optimally,” and predicting

others’ choices does not mean inferring their “true preferences.” In fact, because actual

experiences are inherently subjective, it is difficult to even define what counts as optimal;

certainly, an agent whose behavior is consistent with our model cannot be said to have

made “better” choices (i.e., choices that are actually more enjoyable) than another agent

who does not. Rather, our claim is that people systematically combine their prior knowl-

edge with new social observations to make choices in ways that are well described by

probabilistic reasoning. In other words, we are not claiming that people rationally infer

Fig. 1. Model schematic. Bayes’ rule is used to compute a posterior distribution over groupings given the

choices of several individuals (including the participant, labeled “You”). Each row of colored boxes represents

possible groupings (with each color representing a group), and the black bars indicate the posterior probabil-

ity over these groupings.
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what they actually like (their true preferences); rather, we propose that people can make

rational choices about what they think they might like (i.e., they form rational expecta-

tions of expected utility observing others’ choices).

Thus, rather than examining how people infer the structure of others’ abstract, stable

preferences, we focus on how people infer the latent structure of social groups that give

rise to choice behaviors, and how such structure informs people’s subsequent choices. As

such, we do not attempt to empirically validate whether participants’ preference predic-

tions match their actual hedonic experience; while important for other reasons, such a

match is orthogonal to our present goals.

2.1. Generative model

In our model, M individuals are presented with a collection of N choice problems,

X ¼ fX 1; . . .; XNg, where Xn is a set of objects. Let cmn 2 Xn denote the object chosen

by individual m on problem n. The probability of this choice is given by:

Pðcmn ¼ cjzm ¼ k; hÞ ¼ hckn; ð1Þ

where zm denotes the group assignment of individual m, and h is a set of multinomial

parameters (although for generality we present our model for choice sets with arbitrary

numbers of items, the experiments we describe later only involve binary choices). We

assume that hkn was drawn from a symmetric Dirichlet distribution with parameter c.
For all of our simulations, we set c = 1, which corresponds to a uniform distribution.

While we did not directly fit this parameter to our data, we found that changing its

value to 0.1 or 2 had a negligible effect on the model predictions (squared error chan-

ged by <0.001).
Finally, we assume that group assignments are drawn from a distribution known as the

Chinese restaurant process (CRP; Aldous, 1985). This distribution has “infinite capacity”

in the sense that it can generate an infinite number of groups but will tend to produce a

parsimonious grouping (see Gershman & Blei, 2012, for a tutorial introduction). Mathe-

matically, the probability of grouping z ¼ ½z1; . . .; zM� under the CRP is given by:

PðzjaÞ ¼ aKCðaÞQk CðTkÞ
CðM þ aÞ ; ð2Þ

where a ≥ 0 is the concentration parameter, Tk is the number of individuals assigned to

group k, and Γ(�) is the gamma function. A random draw from the CRP will on average

generate a ln M groups. Thus, the number of groups will generally grow as more individ-

uals are observed. The concentration parameter controls the tendency to create new

groups: When a = 0, only a single group will be created, whereas in the limit a ? ∞,

every individual will be assigned to a unique group.

To allow for uncertainty about a, we placed a prior over a and numerically marginal-

ized over all possible values:
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PðzÞ ¼
Z
a
PðzjaÞPðaÞda: ð3Þ

In the analyses reported below, we used a prior that was uniform between 0:00001 and

10. This range was chosen to cover the entire high-density region of the parameter space.

The non-zero lower bound was chosen because the Gamma function is infinite at a = 0.

2.2. Rational reasoning about latent social groups

Let us suppose that individual m observes choices C ¼ ½c1; . . .; cM�, including her

own, where cm ¼ ½cm1; . . .; cmN �. This set of choices also includes those from a final test

problem X�, where individual m first observes the choices of other individuals. The task

facing individual m is to determine the probability that she chooses option c on the test

problem:

Pðcm� ¼ cjCÞ ¼
X
z

Pðcm� ¼ cjz;CÞPðzjCÞ; ð4Þ

where

Pðcm� ¼ cjz;CÞ ¼ cþ Lczm�
jX�jcþ

P
c02X� L

c0
zm�

: ð5Þ

Here jXnj is the number of options on problem n and Lckn is the number of individuals

assigned to group k who chose object c on problem n. This equation says that the proba-

bility of choosing c monotonically increases with the number of other individuals

assigned to the same group who also chose c, averaging over uncertainty about the group

assignments. Individuals with similar choices have higher probability of being assigned to

the same group and hence will exert a stronger influence on individual m’s subsequent

choices.

In practice, we add some modeling flexibility by assuming that choice predictions are

made using the Luce choice rule (Luce, 1959):

pm�ðcÞ / Pðcm� ¼ cjCÞ½ �b ð6Þ

where pm�ðcÞ denotes the choice prediction and b is an “inverse temperature” parameter

that governs response stochasticity. When b is close to 0, responses are equiprobable; in

the limit b ? ∞, the maximum probability response is deterministically chosen. Note

that the inverse temperature does not alter the relative ordering of choice predictions,

only their magnitude, so the qualitative behavior of the model is the same regardless of

the value of b. In modeling our experimental data, we performed a coarse grid search

over b (our only free parameter) to find the value that minimized the squared error
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between model predictions and data from Experiment 1. All model predictions are

reported with the best-fit parameter value.

The posterior over groups for individual m is given by Bayes’ rule:

PðzjCÞ ¼ PðCjzÞPðzÞP
z
PðCjzÞPðzÞ : ð7Þ

The prior P(z) is given by Eq. 2 above. The likelihood is obtained by analytically

marginalizing the latent parameters under the Dirichlet-Multinomial model described in

the previous section:

PðCjzÞ ¼
Z
h
PðCjh; zÞPðhÞdh

¼
Y
n

Y
k

CðjX njcÞ
CðTk þ jXnjcÞ

Y
c

CðLckn þ cÞ
CðcÞ :

ð8Þ

The likelihood favors groupings for which choices patterns are similar between indivi-

duals assigned to the same group.

In summary, by using choice data from individuals, the model infers a posterior distri-

bution over latent group assignments. This allows us to test a number of predictions about

social influence on choice behavior. In what follows, we present a series of experimental

tests of our model.

3. Experiment 1

Experiment 1 was designed to test the prediction that similar individuals will exert a

stronger social influence on choice behavior than dissimilar individuals, where similarity

is defined in terms of overlap in choice patterns between two agents. Note that this pre-

diction need not appeal to latent group structure; existing models that rely on the fre-

quency of choice overlap also make the same prediction. The purpose of this experiment

was to verify that our current experimental paradigm and stimuli can induce this most

basic effect, and that our model shows comparable performance in explaining the results.

In this experiment, participants first made choices between pairs of movies and then

observed the choices of two other individuals (Fig. 2). We varied the proportion of trials

on which these individuals agreed with the participant, so that one of the individuals

tended to agree with the participant more than the other. In the critical test trial, we pre-

sented a “mystery choice” in which the individuals made opposite choices between a pair

of unknown movies (the poster was replaced with a question mark). We then asked par-

ticipants to choose the movie from the pair that they would prefer to watch. We predicted

that, in the absence of other information about the choice set, participants would be more

likely to follow the individual with whom they had greater choice overlap.
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3.1. Methods

3.1.1. Participants
One hundred and seventy-two adults were recruited via the Amazon Mechanical Turk

web service (N = 61, 51, and 60 for 25–75, 50–75, and 75–75 conditions, respectively.

We used TurkGate to ensure that participants did not repeatedly participate within and

across experiments (Goldin & Darlow, 2013). The current and subsequent experiments

(Experiments 1–5) were approved by the Stanford Internal Review Board; all participants

in these experiments received informed consent and were paid for their participation.

3.1.2. Materials
Stimuli consisted of movie poster images, drawn from a set of 48 movies. The movies

were organized into 24 pairs that were matched by genre (e.g., comedy, horror, action,

romance, science fiction). Each participant viewed a random set of 16 movie pairs.

3.1.3. Procedure
On each trial, participants first saw a pair of movie posters and chose which of the two

they would rather watch. After making a choice, participants observed two other

(A) Self choice (B) Other choice + feedback 

(C) Mystery choice 

Fig. 2. Schematic of task in Experiment 1. (A) Participants were presented with choices between pairs of

movies. (B) Participants then predicted (i.e., guessed) the choice of another individual and received feedback

about his/her actual choice. (C) On the Mystery Choice trials, participants first saw the two other individuals

make opposite choices between two unknown movies and then indicated which one they would like to watch.
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individuals’ choices between the same pair; they first saw a picture of an individual along

with his or her name (henceforth A) and were asked to predict which movie this individ-

ual would rather watch. The individual’s actual choice was then revealed with an arrow

pointing to one of the movies on the screen. Participants repeated this with a new individ-

ual B, predicting this individual’s choice and then observing the actual choice. There

were four trials in a block, each with different pairs of movies but all with same individu-

als. To reduce the memory demand for past choices, participants were presented with a

table showing the history of choices for all players, including the participant’s own. Each

block involved a different set of individuals and movies.

At the end of the block, participants were given a “mystery choice” trial. Participants

saw two colored boxes with question marks, representing unknown movies. They first

observed A and B make choices, indicated by an arrow pointing to each individual’s

choice (we made explicit to the participants that A and B knew the movies they were

choosing). Critically, A and B always made different choices. Finally, participants were

asked which one of the two unknown movies they would rather watch. Each participant

completed a total of four blocks. Identities of Individuals A and B changed every block,

and all movie pairs were presented only once.

Across different groups of participants, we varied A’s choice overlap with the partici-

pant (25%, 50%, and 75%) while holding constant B’s choice overlap with the participant

at 75%. For instance, in the 25–75 condition, A agreed with the participant on 25% of

choices while B agreed with the participant on 75% of the trials. There were three condi-

tions in total: 25–75, 50–75, and 75–75. All elements of the blocks (individuals, movies,

choices) were randomized except the choice overlap.

3.2. Results and discussion

Choice probabilities for the mystery choice trials, along with model fits, are shown in

Fig. 3. The only free parameter fit to the data was the choice inverse temperature b, with
maximum likelihood estimate of b = 11.05. In the 25–75 condition, the model tends to

group individual B and the participant together because of the relatively higher overlap

between B and the participant. As the agreement between A and the participant increases,

the probability of grouping both individuals with the participant increases, leading to an

indifference between the two options in the 75–75 condition. Thus, our model captures

the way in which people’s choices are socially influenced by others, and how this influ-

ence is modulated by the degree of similarity in past choice behaviors.

Participants’ choices on the mystery choice trials were consistent with these predictions

(Fig. 3). As expected, the probability of making the same choice as Individual B declined

as the choice overlap between the participant and Individual A increased. A one-way

ANOVA showed that there is a significant effect of condition (F(171) = 7.33, p < .001),

and t tests showed that probabilities were significantly greater than chance (0.5) for both

the 25–75 condition (t(60) = 5.03, p < .0001) and the 50–75 condition (t(50) = 3.03,

p < .005). When both individuals equally agreed with the participant (75–75 condition),

the probability was not significantly greater than chance (p = .77). Participants in the
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25–75 condition chose to follow Individual B significantly more often than participants in

the 75–75 condition (t(119) = 3.79, p < .001). Thus, these results show how the degree

of prior overlaps in choices of our own and others influence our future decisions, and it

confirms the validity of our model in capturing this effect.

4. Experiment 2

In Experiment 1, we replicated the well-established effect of inter-individual similarity

on choice behavior in a simple but naturalistic decision-making scenario (Brock, 1965;

Simons et al., 1970) and showed that our model captures the way in which people’s

choices are more strongly influenced by those with greater choice overlap. However,

structure learning via grouping is not necessary to predict and explain these results; a

model that represents dyadic similarity in terms of choice overlap (e.g., Akerlof, 1997)

could also capture these findings, without invoking a grouping process.

In Experiment 2, we test a novel prediction of our model that cannot be captured by

dyadic models. We examine whether differential social influence can occur even when

dyadic similarity is equated. A conceptual schematic of our design is shown in Fig. 4.

Individuals A and B have equal choice overlap with the participant (P), and hence their

dyadic similarity is equated. By adding a third individual (C) who tends to agree with

both P and B (75% overlap with B and P, respectively), we can cause P, B, and C to be

grouped together. This enhances the influence of B (relative to the influence of A) on P’s

choice. As C’s overlap with P decreases (25% overlap with P but 75% overlap with B),

the relative strength of B’s influence on P would also diminish.

25−75 50−75 75−75

0.3

0.4
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0.7

% agreement

C
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ty

Data

25−75 50−75 75−75
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0.4

0.5

0.6

0.7

% agreement
C
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e 
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ty

Model

Fig. 3. Experiment 1 results. (Left) Probability of participants making the same choice as B on the mystery

choice trial. The degree of agreement between the participant and the other individuals was varied between

conditions. For example, “25–75” means that A agreed with the participant on 25% of trials while B agreed

with the participant on 75% of trials. The dashed line indicates indifference between the two choices. Error

bars represent standard error of the mean. (Right) Model behavior.
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Note that we are not arguing against the role of dyadic similarity per se; rather, we are

claiming that it is not by itself a sufficient basis for social influence on choice. In order

to capture people’s choice behaviors, the appropriate measure of similarity must take into

account the latent clustering structure. This claim echoes other work which argues that

unsupervised learning processes underlie similarity judgments (e.g., Love, Medin, & Gur-

eckis, 2004; Shepard & Arabie, 1979; Tenenbaum, 1996).

4.1. Methods

4.1.1. Participants
One hundred and fifty-two adults were recruited via the Amazon Mechanical Turk web

service.
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Fig. 4. Experiment 2: schematic and results. (A) Individuals are represented as letters in an abstract space,

where the distance between letters indicates the proportion of the same choices made between pairs of indi-

viduals (i.e., choice overlap). In the 75% agreement condition, individual C made the same choices as indi-

vidual P (the participant ) and B on 3 out of 4 trials. In the 25% agreement condition, individual C made the

same choices as B on 3 out of 4 trials, but the same choices as P on only 1 out of 4 trials. (B) Probability of

making the same choice as individual B for the 75% agreement and 25% agreement conditions. Error bars

represent standard error of the mean.
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4.1.2. Materials
Stimuli were the same as those used in Experiment 1.

4.1.3. Procedure
The procedure in Experiment 2 was largely the same as in Experiment 1. The main

difference was that participants, after choosing between a pair of movies, observed the

choices of three individuals (A, B, and C), rather than two. A and B always agreed with

the participant on 50% of the trials, while C always agreed with A on 25% of the trials

and agreed with B on 75% of the trials. Critically, we varied the degree of overlap

between C and the participant (P). In the 75% condition, C agreed with the participant on

75% of choices in a given block; in the 25% condition, C agreed with the participant on

25% of the trials. These conditions were varied within-participant, such that each partici-

pant was presented with two blocks of each condition. The final Mystery choice trial was

identical to Experiment 1; the participant saw a pair of unknown movies, one chosen by

A and the other by B. Participants were asked to choose which one they themselves

would rather watch. C did not appear in the Mystery choice trials. As in Experiment 1,

identities of A, B, and C remained the same within a block but changed on every block.

4.2. Results and discussion

By design, the choices of the participant were equally similar to the choices of individuals

A and B. Thus, if people simply keep track of dyadic choice overlap, they should be indiffer-

ent between following A and B’s mystery choices. However, our model predicts a bias in

people’s choices caused by the presence of C. In the 75% condition, B, C, and the participant

should be clustered into a single group, leading to a bias to follow the choice of B rather

than A. However, this grouping would be weaker in the 25% condition, leading to a rela-

tively weaker tendency to follow B’s mystery choice, and possibly even a reversal.

The probability of following B ’s choice was significantly different between conditions

(t(151) = 3.31, p < 0.005), such that participants were more likely to follow B in the 75%

condition than in the 25% condition. These results cannot be explained by a dyadic similarity

account, which would predict indifference between the two options. Our structure learning

account captures these results qualitatively without any additional parameter tuning; in generat-

ing the model predictions, we used the estimate of choice inverse temperature b from Experi-

ment 1 (Fig. 4). Thus, there are no free parameters in our model predictions. Note that while

the model does predict a difference between the two conditions, it does not get the scaling

right: overall the choice probability is significantly higher in both conditions. This scaling mis-

match can be corrected by fitting b and c, but we do not explore that possibility here.

5. Experiment 3

Our third experiment was designed to replicate and extend the findings of Experiment

2 by exploring a larger range of choice overlap configurations. Using the same procedure,
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we manipulated the overlap between individual C and the other individuals (including the

participant), while holding the overlap between the participant and individuals A and B

constant at 50%. Again, if participants simply consider the inter-individual similarity in

making decisions on the Mystery choice trials, they would be indifferent between the two

options in all of the conditions. In contrast, if participants group themselves (P), A, B,

and C based on their choices, we would see systematic differences across conditions.

5.1. Methods

5.1.1. Participants
In Experiment 3, each participant received one block per condition (compared to two

blocks in Experiment 2; see Procedure); thus, we doubled our sample size and recruited

305 adults via Amazon Mechanical Turk.

5.1.2. Materials
The same stimuli were used as in Experiments 1 and 2, with additional stimuli so that

the stimuli were entirely non-overlapping across blocks.

5.1.3. Procedure
The procedure in Experiment 3 was nearly identical to the procedure in the previous

experiments. The only difference was that each participant was presented with seven

blocks (in randomized order), each from a different condition. The conditions varied in

the degree of overlap between the various individuals; specifically, we explored seven

configurations of choice overlap chosen so that the overlap between the participant and

individuals A and B was always fixed at 50%. As in Experiments 1 and 2, the participant

was shown the choices of individuals A and B (but not C) on the Mystery choice trials.

5.2. Results and discussion

Using the same value of b estimated from the Experiment 1, the results of Experiment

3 (Fig. 5) shows that our model can reliably predict choice data across conditions without

any additional parameter tuning. The model shows reasonably strong correlation with the

empirical choice probabilities (r = .79, p < .05, permutation test). As in Experiment 2,

the model correctly predicts that the strongest effects would be observed when individual

C is most similar to both the participant and individual A, and least similar to individual

B. In contrast, under a dyadic similarity account, all conditions would show uniform

choice probabilities at 0.5, since the overlap with the participant’s choices was always

the same for individuals A and B.

The results in Experiments 2 and 3 together suggest that our model captures a phe-

nomenon that is not well explained by dyadic similarity models. We predicted that if peo-

ple can learn the latent groupings underlying others’ choice behaviors, their choices

would be differentially influenced by others’ choices even when the dyadic similarity is
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equated. People’s choice behaviors were well predicted by our model, across a broad

range of choice overlap configurations.

6. Experiment 4

In previous experiments, we looked at an indirect measure of latent grouping: how

people’s choices were influenced by those of other individuals based on how they were

clustered into latent groups. In Experiment 4, we sought more direct evidence by using

the same choice patterns as in Experiment 2 and asking participants to explicitly group

the individuals (including themselves) at the end of each block. In essence, we asked par-

ticipants to do an unsupervised category learning procedure. This procedure allowed us to

ask whether participants’ ways of grouping individuals were consistent with our model’s

predictions. We hypothesized that participants would prefer to group themselves with

individual B than with individual A, even though A and B had equal overlaps with partic-

ipants’ choices, due to the presence of individual C whose choices were similar to both

the participant and individual B than to A.
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Fig. 5. Experiment 3 results. Average responses (bars) and model predictions (red circles) for each condi-

tion. The x-axis labels indicate the choice overlap configuration for each condition. Error bars represent stan-

dard error of the mean. The first three bars show the results when the overlap between C and P are fixed; the

last four bars show the results for different fixed combinations of A–C and B–C overlap.
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6.1. Methods

6.1.1. Participants
One hundred and four adults participated via the Amazon Mechanical Turk web

service.

6.1.2. Materials
The same stimuli were used as in the previous experiments.

6.1.3. Procedure
The procedure was the same as used in Experiment 2 (75% overlap condition),

with one difference: the Mystery choice on each block was replaced by a grouping

task. After the choice trials, participants saw icons of four individuals (pictures of A,

B, C, and an avatar for the participant (P)) and four blank boxes. They were

instructed to group these individuals based on their preferences by dragging the icons

into the boxes such that “individuals with similar movie preferences would be placed

in the same box” (Fig. 6, left). Participants were told that all boxes were the
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Fig. 6. Experiment 4 task and results. (Left) At the end of each block, participants grouped all the individu-

als, including themselves, by dragging icons into boxes. The individuals were labeled by names rather than

by letters, but we use letters here to maintain consistency with the text and previous figures. (Top right)

Groupings in which the participant (P) and individual B (but not A) clustered together, denoted “P + B,”

were preferred to groupings in which P and A (but not B) were clustered together, denoted “P + A.” Error

bars represent standard error of the mean. (Bottom right) Scatter plot and least-squares line relating model

predictions and empirical cluster probabilities on a log scale (see Table 1).
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same (i.e., their locations were meaningless), and that they could choose any assign-

ment of individuals to groups (including assigning each individual to a unique group

or putting everyone in the same group) as long as all four individuals were assigned

to a group.

6.2. Results and discussion

The complete set of groupings and their choice probabilities is shown in Table 1. We

aggregated the grouping responses into two classes: groupings in which the participant

(P) and individual B (but not A) were clustered together (denoted “P + B”), and group-

ings in which P and A (but not B) were clustered together (denoted “P + A”). Fig. 6 (top

right) shows the average proportion of blocks in which each grouping class was chosen.

The P + B groupings were significantly more likely to be chosen than the P + A group-

ings (t(103) = 3.93, p < .001). This is consistent with our model’s prediction that P and

B will tend to be clustered together because of the presence of C, despite no differential

similarity between P and B relative to P and A (see Fig. 4). This result holds when we

exclude groupings in which A is clustered with C (p < .005).

To compare these results quantitatively to our model predictions, we computed the

Pearson correlation between log-transformed model posterior probabilities and empirical

probabilities, finding a significant correlation between the two (r = .57, p < .05; Fig. 6,

bottom right). Even though we allowed a large degree of freedom in participants’ group-

ing responses, these results show that our model’s predictions about grouping reasonably

predict people’s responses independently of its predictions about choice. This further

Table 1

Probability for each grouping. Each letter denotes an individual (see text for details). For example (AC, BP)

denotes a grouping in which A and C are in one group and B and P are in the other

Grouping Mean Frequency (� SEM)

(ABCP) 0.002 (0.002)

(AC, BP) 0.024 (0.008)

(AB, CP) 0.202 (0.026)

(AP, BC) 0.108 (0.017)

(CP, AB) 0.137 (0.028)

(A, BCP) 0.009 (0.009)

(B, ACP) 0.024 (0.008)

(ABP, C) 0.002 (0.002)

(P, ABC) 0.002 (0.002)

(AP, C, B) 0.009 (0.009)

(P, C, AB) 0.009 (0.005)

(A, P, BC) 0.176 (0.022)

(P, AC, B) 0.019 (0.023)

(A, P, C, B) 0.019 (0.007)
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supports our hypothesis that such representations about latent groups might underlie

participants’ choices in Experiments 1–3.

7. Experiment 5

In Experiment 4, we asked people to cluster individuals into explicit groups, providing

the most direct evidence for the inference of latent groups. Our results from Experiments

1–3 can be construed as a natural consequence of such inference; people’s choices were

influenced by those of other individuals based on the latent group structure. In these

experiments, we looked at the influence of latent groups on people’s choices for unknown
items, thus removing any possible effect of existing preference or prior knowledge. After

seeing two individuals choosing each one of two “mystery” items, people were more

likely to choose the item that was preferred by the individual who was inferred to belong

in the same latent group as themselves. In real-world choices, however, we rarely encoun-

ter choices between two novel, unknown items; often we are faced with multiple items,

many of which are already colored by our prior knowledge and varying degrees of liking.

Here we provide a more stringent and ecologically valid test of our hypothesis by ask-

ing whether the social influence of latent groups can change people’s previous ratings for
familiar items. Specifically, participants first rated a set of movies based on how much

they liked the movies. Then they performed the same choice task used in Experiment 2,

in which participants indicated their choice between pairs of movies (same movies used

in the rating task) and observed two other individuals’ choices. After this task, partici-

pants were asked to rate the same movies again. We hypothesized that the difference in

people’s ratings before and after the choice task would reflect the latent group structure

inferred from the choice patterns.

During the choice task in this experiment, as in all the previous experiments, we asked

participants’ choices for movies (i.e., which movie they would rather see), rather than

their real preferences for these movies or which movie they actually liked better. In

Experiment 5, we asked participants to rate the movies as a coarse measure their existing

preference for these items. However, while we made an effort to use only well-known

movies, we remain agnostic about whether participants have seen the movies before.

Thus, we use “changes in ratings” to refer to changes in their expected (anticipated) util-

ity rather than changes in the actual experienced utility. While these changes might reflect

a change in their actual preferences, our data do not necessarily show that changes in rat-

ings indicate changes in the degree to which a participant actually enjoyed a particular

movie.

7.1. Methods

7.1.1. Participants
One hundred and nine adults participated via the Amazon Mechanical Turk web

service.
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7.1.2. Materials
For the choice task, we used the same posters used in the previous experiments. For

the rating task, 14 additional movie posters were used; all were posters of real movies

and were different from those used in the choice task.

7.1.3. Procedure
At the beginning of the experiment, participants rated 14 movies on a 1–10 scale based

on how much they would like to watch each movie. They were then presented with seven

blocks of the choice task (using different movies), with the same structure as in Experi-

ment 2. Instead of the Mystery choice trial at the end of each block, participants were

shown a pair of movies randomly selected from the 14 movies they had initially rated,

and saw that individual A chose one of them and individual B chose the other (recall that

the presence of individual C in the social learning task caused the participant to group

themselves with B and C, but not A). Participants were asked to enter new ratings for the

two movies. Thus, by the end of seven blocks, participants had given two ratings (before

and after the choice task) for all 14 movies.

7.2. Results and discussion

Our dependent measure in this study was “change in ratings”: the difference in the rat-

ing of a movie before and after observing the individuals’ choices. We separated the 14

movies based on whether it was endorsed by individual A or B. According to our model,

the participant should be more likely to group themselves with B than with A, and there-

fore B’s endorsement should lead to an increase in ratings, whereas A’s endorsement

should not. This is precisely what we found (Fig. 7); participants exhibited a significantly

positive change in ratings in response to B’s endorsement (t(108) = 3.09, p < .005), but

not in response to A’s endorsement (t(108) = 1.32, p = .19). There was no significant dif-

ference in the magnitude of change between the two groups (p = .14). Our experimental
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Fig. 7. Experiment 5 results. Participants significantly changed their ratings in response to observing individ-

ual B’s endorsement, but not in response to observing individual A’s endorsement. Error bars represent stan-

dard error of the mean.
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results suggest that latent grouping can not only influence people’s choices about about

unknown items, but also lead to graded changes in anticipated utility (i.e., how much they

would like to watch the movies in the future) in a more realistic scenario where partici-

pants brought in their real-world knowledge (e.g., of movie identity) and previous experi-

ences.

8. Further applications of the model

In this section, we go beyond applying our model to our experimental tasks to show

that the idea of latent social grouping can explain a broader range of phenomena. Specifi-

cally, we examine two classes of prior empirical work that are well captured by our

model. First, we simulate the effects of informational social influence as studied in the

social psychology literature. We then simulate a developmental shift in infants’ under-

standing of others’ preferences.

8.1. Modeling informational social influence

Traditionally, research on social influence has focused on the multiple factors giving

rise to conformity and compliance (see Cialdini & Goldstein, 2004, for a review).

Deutsch and Gerard (1955) made the important distinction between informational and

normative sources of social influence, where the former is based on the desire to correctly

interpret observational data, while the latter is based on the desire to obtain social

approval. The behavioral phenomena studied in the present paper can be understood as a

form of informational social influence. A number of quantitative models have been devel-

oped to explain informational social influence, most notably the Social Impact Model of

Latan�e (1981) and the Social Influence Model of Tanford and Penrod (1984). Both mod-

els specify a function relating the degree of social influence to the number and strength

of influence sources. While these models can account for a large number of social influ-

ence phenomena, they are essentially descriptive. These models also cannot explain why

individuals with equal choice overlap can exert differential social influence. Here we

show that our latent grouping model, which is derived from more fundamental principles

of induction and rational choice, can be applied to conformity and compliance effects in

choice behavior.

Within the domain of social decision making, a number of studies have explored the

effects of parametric variations of group structure on social influence (Burnkrant & Cou-

sineau, 1975; Cohen & Golden, 1972; Pincus & Waters, 1977). These studies, along with

others reviewed in Burnkrant and Cousineau (1975), Cohen and Golden (1972), and

Pincus and Waters (1977), have shown that social influence increases with the number

(i.e., group size) and uniformity of influence sources. As a proof of concept that our

model can account for these effects, we have simulated simple choice scenarios in which

members of a group choose between two options (Fig. 8). Consistent with the experimen-

tal data, the probability of following the majority choice increases with the number of
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group members and the degree to which they agree. These effects stem from the fact that

size and uniformity of influence sources both strengthen the inference of a single latent

group that includes the experimental subject. Indeed, we do not claim that our model pro-

vides a comprehensive account of informational social influence; here we have focused

on a particular domain to show that our model can be extended beyond the scope of our

experimental paradigm. However, we believe that the same principles can be extended to

other domains as well, including young children’s tendency to trust majority opinions

both in normative and informational contexts (Corriveau, Fusaro, & Harris, 2009; Hu,

Whalen, Buchsbaum, Griffiths, & Xu, 2015).

8.2. Modeling the development of preference understanding

Motivated by our model’s success in predicting empirical data from adults, in this sec-

tion we ask whether our model can also explain developmental changes in children’s

understanding of others’ preferences. We focus on a study by Repacholi and Gopnik

(1997) on infants’ ability to represent other people’s preferences that are either similar or

different from their own. In this study, an adult experimenter expressed a preference that

was either consistent or inconsistent with the child’s own preference. In the Matched con-

dition, an actor showed positive emotions toward a snack that was also appetizing to the

child (e.g., goldfish crackers) and disgust toward the snack that was unappetizing to the

child (e.g., raw broccoli). In the Mismatched condition, the actor’s expressions were

reversed such that her preferences contradicted the child’s own (i.e., disgust toward gold-

fish crackers and pleasure towards raw broccoli). When the experimenter requested the

child to give her some snacks, most 14-month-olds subsequently offered the actor the

food that was congruent with their own preferences regardless of condition, whereas
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Fig. 8. Modeling classical social influence effects. (Left) The probability of choosing the same option as

other group members (“influence sources”), plotted as a function of group size. (Right) Probability of choice

as a function of group uniformity. For example, 4/7 indicates that 4 out of 7 group members followed the

majority choice (i.e., low uniformity).
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18-month-olds offered the actor the food that matched her preferences (i.e., offering broc-

coli in the Mismatched condition). Repacholi and Gopnik (1997) interpreted these results

as evidence that 18-month-olds, but not 14-month-olds, are able to represent others’ pref-

erences that are different from their own.

Lucas et al. (2014) recently presented a formal model to explain the data from Repa-

choli and Gopnik (1997) as a result of “model comparison”: 14-month-olds hold a simple

model of preferences, such that everyone shares the same preferences, whereas 18-month-

olds have a more flexible model in which different individuals have distinct preferences.

The developmental change in children’s behavior reflects a shift from the simpler to the

more flexible model, driven by accumulation of data that cannot be supported by the sim-

pler model (i.e., observing that some people’s choices differ from their own, or from

other individuals). Such an account predicts a training effect; by providing more data that

the simpler model cannot explain, younger infants could be trained to behave more like

18-month-olds.

Consistent with this idea, Doan, Denison, Lucas, and Gopnik (2015) showed that

training that involves observations of heterogeneous choices of other agents indeed

improves infants’ performance on the original Repacholi and Gopnik paradigm. Four-

teen- to seventeen-month-old infants saw a series of training trials in which an experi-

menter who liked different toys and foods either from the other experimenter or the

infant herself (the “diverse desires training” condition), or trials in which an experi-

menter liked the same toys and foods as the other experimenter or the infant (the “non-

diverse desires training” condition). Following training, the infants were given a choice

between sharing with one of the experimenters a food item that she had previously

shown disgust toward (but the infant liked) or a food that she had previously expressed

preference toward (but the infant disliked). Infants in the diverse desires training condi-

tion chose to share the food that the experimenter liked, whereas infants in the non-

diverse desires training condition chose to share the food that they liked. Consistent

with the formal model offered by Lucas et al. (2014), these results suggest that infants

exposed to a more complex pattern of preferences will acquire a more complex model

of individual differences in preferences,

Inspired by prior empirical and formal work, we asked whether the developmental shift

and the effect of training can also be explained by our model. A critical difference

between our model and the model proposed by Lucas et al. (2014) is that rather than

positing a change in the preference models themselves, we suggest that the developmental

shift reflects a shift in children’s priors over groupings. As noted earlier, the concentra-

tion parameter a in our model controls the bias to cluster agents into smaller or larger

number of groups. In our modeling of the adult data reported above, the value of a was

automatically inferred. In simulating Repacholi and Gopnik’s results with our model (us-

ing the same value of b estimated from Experiment 1), we assume that young children

start off with a small value of a, based on the idea that limited experience inductively

supports simpler structures (see Gershman, Blei, & Niv, 2010; Kemp & Tenenbaum,

2008); thus, our model strongly favors a structure in which the actor and the participant

are grouped together despite the non-overlapping choices. Older children are assumed to
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have larger values of a, allowing them to accommodate a more complex social structure

with multiple groupings depending on varying preferences of agents. In other words, lar-

ger values of a favor structures in which the actor and the participant are assigned to dif-

ferent groups (Fig. 9).

The increase in a is a natural consequence of joint Bayesian inference over z and a.
As more complex data are observed (e.g., conflicting preferences between more agents),

the marginal posterior over a will shift toward higher values. This allows us to naturally

predict the training effect observed in Doan et al. (2015). Indeed, simulations (shown in

Fig. 10) confirm that the model matches the empirical data qualitatively, without addi-

tional parameter tuning.
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Fig. 9. Simulation of Repacholi and Gopnik (1997), Mismatched condition. (Left) Probability of two-group

structure (as opposed to single-group structure) as a function of the concentration parameter a. In the two-

group structure, the actor and participant are assigned to separate groups. (Right) Probability of offering the

actor the object that matches the actor’s preference. The dashed lines show average responses reported by

Repacholi and Gopnik (1997).
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Fig. 10. Effects of training on infant social inferences. (Left) Probability of offering the actor the object that

matches the actor’s preference, following “diverse desires training” (DDT) or “non-diverse desires training”

(N-DDT). Data adapted from Doan et al. (2015). (Right) Simulation results.
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The fact that our model requires more data to justify more complex structures has

important implications for the development of children’s understanding of others’ prefer-

ences, beliefs, and beyond. Our proposal is consistent with prior empirical and computa-

tional work that explains development as a theory formation process in which structural

knowledge changes with accumulation of data (Carey, 2009; Gershman et al., 2010;

Goodman, Ullman, & Tenenbaum, 2011; Gweon et al., 2010; Kemp & Tenenbaum,

2008). It is important to note that these simulations do not necessarily show that our

model performs better than prior models (Lucas et al., 2014) in predicting the empirical

data; indeed, both models emphasize the role of data and are consistent with the empiri-

cal results. Our goal here is not to compare model performance but to propose an alterna-

tive way of explaining developmental change that can be easily extended to include a

broader set of results.

Our model naturally predicts young children’s developing abilities to learn from

others’ choices. Prior empirical work shows how young children use information about

social groups to guide their own choices (Frazier et al., 2012; Shutts et al., 2009, 2010),

and use observations of choice data to make predictions about social affiliations (Liber-

man, Kinzler, & Woodward, 2014). Our model could be extended to explain these results,

further supporting the idea that humans, even early on, readily infer structures of social

groups and use these representations in making decisions. Furthermore, our simulation of

Repacholi and Gopnik (1997) suggests that people’s tendency to assign agents to different

groups might develop over time; this would predict a developmental change in children’s

responses to tasks we used in our experiments. Such results will provide further support

for our model and our theoretical proposal, and make empirical contribution to show that

even young children infer the structure of their social environment and use such structure

to guide their choices even in the absence of explicit cues to group membership. We look

forward to extending our work to directly examine this possibility.

9. General discussion

In this paper, we presented a computational model of social structure learning and a

series of experiments that tested the predictions of our model. The data suggest that

humans naturally cluster individuals into groups on the basis of their choice patterns, and

they use these groupings to guide their choices for novel items. With only a single free

parameter fit to the data from Experiment 1, our model predictions closely matched

human judgments in several experiments that varied in their task format and dependent

measures. In Experiment 1, consistent with prior work, we showed that parametrically

increasing the degree of choice overlap between pairs of individuals directly increases the

strength of social influence between these pairs. In Experiment 2, we tested a novel pre-

diction of our model to provide empirical support for our social structure learning

account. We showed that two individuals can have differential influence on our choices

even when their previous choices are equally similar with our own, by virtue of a third

individual whose choice patterns alter the group structure. These findings were well
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explained by our Bayesian model, which infers the structure of latent social groups from

patterns of choice behavior. Experiment 3 replicated and extended this finding by testing

a wider range of choice patterns. Experiment 4 provided more direct support for our

model by showing that people’s explicit grouping judgments are consistent with our mod-

el’s predictions of inferred latent groups. Experiment 5 demonstrated that latent grouping

can even lead to changes in people’s ratings of familiar choices, suggesting the possibility

that these latent groups can be powerful enough to influence people’s existing preferences.

Finally, we showed that our model can be applied to explain a broad range of social phe-

nomena, such as the effect of group size and uniformity on informational social influence

and the developmental changes in children’s inferences about others’ preferences.

Although we used a Bayesian modeling framework to formalize latent grouping, other

clustering algorithms (e.g., K-means) might also have been able to capture our findings.

The advantage of the Bayesian framework is that it makes explicit the probabilistic

assumptions that we impute to the decision-maker and can be flexibly extended to more

complex choice settings, a point we return to below. It also provides a natural decision-

theoretic framework for modeling choice behavior. Further work is needed to evaluate

alternative accounts of our data. The important point is that we have effectively ruled out

a large class of models that do not represent latent preference structure (i.e., dyadic simi-

larity models); our claim is that social influence on human choice behaviors cannot be

fully understood without explaining how latent groups are inferred from choice data.

The phenomena of interest in our current study are inherently social—the data people

observed are choices that reflect others’ underlying preferences. Nevertheless, one might

wonder if it would be possible to create analogous non-social tasks that produce similar

behaviors (e.g., varying the degree to which multiple objects have overlapping and non-

overlapping features, instead of presenting agents who exhibit overlapping or non-overlap-

ping choices). We believe that it may be possible, and in fact, such results would be con-

sistent with our idea that common inferential processes might underlie learning the

structure of social groups from choice data and learning the structure of object kinds from

object features. However, social groups in the real world are presumably more dynamic,

complex, and multi-layered compared to object categories, and our reasoning about others’

actions and choices often depends on attributions of unobservable yet stable properties of

people, such as goals, beliefs, or preferences. Thus, learning the structure of social groups

from observing others’ choices might recruit additional cognitive capacities, such as our

ability to understand, represent, and reason about others’ mental states (theory of mind).

As explained earlier, our main goal here was not to directly explain how people infer

preferences (e.g., predicting the degree to which an agent will actually like an item), but

to explain how people use observed choice data to guide their future choices. Our model

does this by computing anticipated choice probability given the inferred structure of

social groups, rather than appealing to mental representations such as preferences; how-

ever, it is reasonable to imagine that once a latent social structure is inferred in a given

domain, people might naturally attribute abstract, stable, and systematic choice structures

that we informally refer to as “preferences,” and even assign explicit labels to refer to

such groups (e.g., punk rock fans). In future work, we hope to apply our model to the

S. J. Gershman, H. T. Pouncy, H. Gweon / Cognitive Science (2017) 25



kinds of social learning in which these mental state inferences allow people to go beyond

observed choice data.

Building on prior work on simple social influence, our framework provides a broader

account of how, and what, we learn about others from their choices, and how such learn-

ing informs our own choices. Prior research in social and developmental psychology has

found a strong influence of group membership on choice (Frazier et al., 2012; Shutts

et al., 2009, 2010), showing how existing groups can shape our preferences via an

expectation that certain utilities are shared among group members. However, in the real

world, we simultaneously belong to multiple groups with varying levels and scopes. Fur-

thermore, we routinely encounter individuals with rich and heterogeneous preferences

across a wide range of domains, such that their group memberships cannot be clearly

identified. Our work provides an important step toward explaining how, despite these

challenges, people can use everyday observations of choices to inform future decisions.

People are capable of generating novel groups based on the perceived pattern of choices;

these groups not only affect our choices but also our social lives (e.g., whom to affiliate

given overlaps in choices; V�elez, Bridgers, & Gweon, 2016) and reflect the dynamic nat-

ure of cultural phenomena at a larger scale, such as fads, trends, and customs. Our

account is an important step toward a more precise understanding of our tendency to

affiliate with those who share our preferences, and how grouping facilitates social learn-

ing and reasoning in large-scale societies.

9.1. Related work

Our work is related to several lines of research in social and developmental psychol-

ogy. The effect of interpersonal similarity on social influence has been studied exten-

sively (see Simons et al., 1970, for a review). For example, Brock (1965) demonstrated

that a paint salesman was more effective at inducing a customer to switch to a higher

price level if the salesman reported a similar magnitude of paint consumption. Develop-

mental studies have revealed that children prefer objects endorsed by other children of

their own age and gender (Shutts et al., 2010), or adults speaking in their native language

(Shutts et al., 2009). While there are existing models that formalize the effect of similar-

ity on social influence (e.g., Akerlof, 1997), these models do not explain how latent
groups can structure social influence, as we report in Experiments 2 and 3.

Recently, a number of studies have explored the multinomial logit model, originally

developed in econometrics (McFadden, 1973), as a theory of preference learning (Bergen

et al., 2010; Jern, Lucas, & Kemp, 2011; Lucas et al., 2014). This model parameterizes

the utility function as a linear combination of object features and assumes that choice

probabilities are a nonlinear function of utilities. Our current model is agnostic to features

of choices. Accordingly, in our experiments, agents’ choice behaviors had no systematic

relationship to the such features (e.g., movie genre, cast, etc.); agents simply chose the

same items as the participant on varying proportions of trials. This was a deliberate

design choice to isolate the effect of structure learning. Although participants may have
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also used feature information in their reasoning, this would not predict our behavioral

results.

The key innovation of our model, missing from the multinomial logit model, is the

incorporation of structure learning, which allows it to discover latent groupings of indi-

viduals who share similar choice patterns. We emphasize that such groupings are essen-

tial for understanding the results of Experiment 2. An interesting future direction of

research will be to modify the multinomial logit model to incorporate structure learning.

This can be accomplished by allowing the utility functions to arise from a mixture distri-
bution, where each mixture component corresponds to a latent group.

More broadly, our work is related to theories of structure learning in other domains

(see Gershman & Niv, 2010, for a review). The pioneering work in this area was carried

out by John Anderson in his analysis of category learning (Anderson, 1990 1991), which

posited that the distributional structure of categories was specified by a set of latent mix-

ture components. Because the number of mixture components is unknown, Anderson

defined a nonparametric model that would discover them in an unsupervised manner; this

model was later recognized to be identical to the CRP (Sanborn, Griffiths, & Navarro,

2010). Variants of this model have been applied to many other inductive problems with

combinatorial latent structure, ranging from classical conditioning (Gershman et al.,

2010) to word segmentation (Goldwater, Griffiths, & Johnson, 2009). The model has also

been generalized in a number of significant ways, such as allowing simultaneously active

latent features and nested structures (Austerweil et al., 2015). However, until now these

structure learning principles have so far not found extensive application in social learn-

ing.

9.2. Future directions

We envision a number of other directions for future research that will enrich the theo-

retical framework presented here. First, we have assumed that all individuals within the

same group share a similar set of utility functions, or preferences (on average). Clearly

humans have heterogenous preferences even within particular groups. We can accommo-

date this additional source of heterogeneity by defining a hierarchical model in which

individuals possess unique preferences whose central tendency is group-specific. This will

allow us to capture both the normative influence of group membership and the existence

of individuality.

Second, here we have considered the social influence in just one direction: from “other

individuals (A, B, and C)” to the participants’ choices. We also did not explicitly specify

whether these other individuals were aware of the participants’ choices. However, to the

extent that people can observe each other’s choices, the social influence should be bi-

directional, and the individuals whose choices are widely broadcasted should exert stron-

ger influence on others’ choices. This is consistent with the intuition that in real-world

social environments, there are individuals whose preferences and choices have a huge

impact on many people’s behaviors (e.g., fashion choices of Hollywood stars). One
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interesting extension of our work is to directly manipulate the degree of public availabil-

ity of individuals’ choices and ask whether our model also can also capture this intuition.

Third, we have assumed a single grouping structure based on the entire set of choices;

however, evidence suggests that humans can learn cross-cutting categories, which allow

multiple layers of groupings based on different subsets of object features (Shafto, Kemp,

Mansinghka, & Tenenbaum, 2011). In the domain of choice, cross-cutting groupings are

very natural: you might follow one friend’s choices for movies but follow a different

friend’s choices for restaurants, depending on who is grouped together with you in what

domain. We can extend our model to capture multiple groupings by simultaneously learn-

ing the structure of individuals and choice sets, analogous to the work of Shafto et al.

(2011). This approach has a particularly interesting implication for future developmental

research. Unlike adults, young children might initially expect that two agents who share

preferences in one domain must also share preferences in other domains, and gradually

overcome this bias with more data. Future computational and developmental work should

test this prediction of something akin to “mutual exclusivity” (Markman & Wachtel,

1988) in preference learning.

Finally, although we have ignored explicit cues to salient social groups (e.g., age, gen-

der, and language), we note that it is possible to generalize our prior to favor groupings

based on these explicit cues. Indeed, these cues still do exert certain influences on our

real-world choice behaviors, and one interesting empirical question is whether participants

will show an initial inductive bias toward these biologically and culturally specified

groups that can be overridden by additional data.

9.3. Conclusion

We have presented a novel computational model that formalizes how individuals learn

the latent structure of social influence from observations of others’ choice behaviors. Our

model predictions are consistent with behavioral data from five experiments, and they

also offer an elegant and parsimonious explanation for various existing empirical work

including developmental shifts in children’s understanding of others’ preferences. These

results raise exciting questions for future research, and they provide the first steps toward

understanding the nature of inferential processes and representations that allow us to learn

from and influence others.
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