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Humans and animals are endowed with a large number of effectors. Although this enables great behavioral flexibility, it presents an
equally formidable reinforcement learning problem of discovering which actions are most valuable because of the high dimensionality of
the action space. An unresolved question is how neural systems for reinforcement learning—such as prediction error signals for action
valuation associated with dopamine and the striatum— can cope with this “curse of dimensionality.” We propose a reinforcement
learning framework that allows for learned action valuations to be decomposed into effector-specific components when appropriate to a
task, and test it by studying to what extent human behavior and blood oxygen level-dependent (BOLD) activity can exploit such a
decomposition in a multieffector choice task. Subjects made simultaneous decisions with their left and right hands and received separate
reward feedback for each hand movement. We found that choice behavior was better described by a learning model that decomposed the
values of bimanual movements into separate values for each effector, rather than a traditional model that treated the bimanual actions as
unitary with a single value. A decomposition of value into effector-specific components was also observed in value-related BOLD signal-
ing, in the form of lateralized biases in striatal correlates of prediction error and anticipatory value correlates in the intraparietal sulcus.
These results suggest that the human brain can use decomposed value representations to “divide and conquer” reinforcement learning
over high-dimensional action spaces.

Introduction
The number of effectors with which the body is endowed is both
blessing and curse. Having many effectors permits flexible ac-
tions, but the task of deciding between candidate movements
must compare many movement combinations: the number of
possible combinations scales exponentially with the number of
effectors. This is a vivid problem for prominent accounts of the
brain’s mechanisms for reinforcement learning (RL) (Daw and
Doya, 2006; Dayan and Niv, 2008), which envision that the brain
learns to map each candidate action to its expected consequences,
to choose the best one. Although such action–value learning
mechanisms work well for experiments involving choice between
a few options (Sugrue et al., 2004; Lau and Glimcher, 2005; Same-
jima et al., 2005; Daw et al., 2006a; Behrens et al., 2007), for
movements comprising multiple effectors, they would require
unrealistic amounts of experience to adjudicate between the
many combinations of choices.

One approach to this “curse of dimensionality” (Bellman,
1957) is to “divide and conquer” (Ghahramani and Wolpert,
1997; Doya et al., 2002), subdividing a complicated problem into
simpler subproblems. A subject in a visuomotor task might real-

ize that rewards depend solely on eye movements, whereas other
tasks reward multiple effectors independently, like driving while
talking on the phone. Work in computational RL (Chang et al.,
2003; Russell and Zimdars, 2003) uses decomposition to simplify
learning tasks such as controlling fishing by a fleet of boats. These
approaches focus on cases in which each overall “joint” action
can be subdivided into a set of subactions (e.g., what sort of net
each boat casts), and the reward received can be approximated as
a sum of rewards received for each subchoice (the fish of each
boat, assuming the “credit assignment” problem of matching fish
to boats is solved). In such cases, joint actions can be evaluated
more simply by assessing each subaction separately.

The topographic organization of the sensorimotor systems of
the brain seems a promising substrate to support a similar de-
composition of the values of actions between effectors. For in-
stance, eye-specific value maps (Platt and Glimcher, 1999; Sugrue
et al., 2004) might represent the value of a saccade separately from
the value of any other movements made with the saccade, al-
though this remains to be tested. If true, the choice of multieffec-
tor actions could be simplified by decomposing them into
separate choices for individual effectors. In contrast, the mecha-
nisms by which the brain learns these valuations are often envi-
sioned as unitary. RL theories hypothesize that learning is driven
by a “prediction error” (PE), typically assumed to be a single
signal broadcast by dopaminergic projections (Houk et al., 1995;
Schultz et al., 1997; Daw and Doya, 2006). However, learning
effector-specific action values is facilitated when the PE also decom-
poses into a separate PE for each subaction (Chang et al., 2003).

We used a bimanual choice task to investigate whether hu-
mans can decompose value between conjoint multieffector ac-
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tions, and to probe decomposition of value- and PE-related
neural signaling. The movements in the study were all multief-
fector in the motor sense of involving near-simultaneous move-
ments of both hands. We asked whether the underlying reasons
for the movements (the values of the actions and their neural
correlates) were decomposed as though for two parallel single-
effector choices. In functional magnetic resonance imaging
(fMRI), correlates of value and PE have often been observed in
medial prefrontal cortex (mPFC) and striatum (Pagnoni et al.,
2002; McClure et al., 2003; O’Doherty et al., 2003; Daw et al.,
2006a; Delgado, 2007; Schönberg et al., 2007; Hare et al., 2008).
However, previous designs were not suited to identifying val-
ues localized to particular effectors, let alone those executing
subcomponents of a multieffector action.

Subjects made paired choices in a probabilistic bandit task,
indicated simultaneously with left- and right-hand move-
ments. Rewards for each hand were computed independent of
the other’s choice, and displayed separately. This allowed the
task to be decomposed into two hand-specific learning prob-
lems. We investigated whether subjects exploited this decom-
position by comparing the fit to subjects’ choice behavior of
RL models using decomposed or unitary value representa-
tions, by comparing the results to additional behavioral tasks
with different reward structures, and by searching for lateral-
ized neural correlates for the subvalues of either hand.

Materials and Methods
Subjects. Eighteen right-handed subjects participated in the study. All
were free of neurological or psychiatric disease and fully consented to
participate. Two subjects’ data were lost because of technical failures

during the experiment, so results are reported
for 16 subjects. Informed consent was obtained
in a manner approved by the New York Uni-
versity Committee on Activities involving Hu-
man Subjects. Subjects were paid for their
participation, with a portion of their payment
determined by their actual winnings in the
choice task.

Behavioral procedure. In the task (Fig. 1A),
subjects were presented on each trial with four
shapes and asked to pick two of them. Each
hand could choose between two shapes (from
triangle, circle, square, and diamond; the as-
signment of shapes to hands was counterbal-
anced between subjects and fixed over the
course of the task). Shapes were colored
uniquely for each hand and presented on the
side of the screen ipsilateral to the correspond-
ing hand. Thus, there were 2 � 2 � 4 possible
joint actions. Responses were entered via
presses on two magnetic resonance-compatible
button boxes, one in either hand. Subjects were
given 1 s to respond, and were required to make
both responses within 100 ms of each other.
Once a response was made, the nonchosen
shapes disappeared and the chosen shapes
remained on screen for 1 s, after which the
rewards won by each hand were displayed
above the corresponding shape. Rewards
were binary, with a “win” represented by a
dollar bill and a “lose” represented by a
phase-scrambled dollar bill. The rewards
were displayed on screen for 2 s, followed by
a pseudorandomly jittered intertrial interval
chosen uniformly between 2 and 10 s. Each
subject was presented with 300 trials. If
choices were not obtained in time, or if the

two hands did not respond within 100 ms of each other, the trial
entered the intertrial interval.

Reward was delivered, or not, for each shape chosen pseudorandomly
according to a probability associated with each shape. Subjects could
learn these probabilities only by trial and error. The probabilities deter-
mining the chance each shape would be rewarded were changed slowly
and independently throughout the experiment (Fig. 1 B). Specifically, the
probabilities each diffused stochastically from trial to trial according to a
Gaussian random walk (at each trial, noise is added with mean of 0 and
SD of 0.05) with reflecting boundaries at 0 and 1 (to ensure the parame-
ters stayed in the appropriate range). This diffusion was intended to
incentivize subjects to learn continuously throughout the experiment
rather than reaching a steady-state level of performance, thus facilitating
study of their learning (Daw et al., 2006a). Since each shape (that is, each
hand’s choice) was independently rewarded, total rewards expected on a
trial could be decomposed into independent hand-specific components.
Moreover, the hand-specific rewards actually obtained were displayed at
the end of the trial.

Subjects were instructed to make choices so as to maximize rewards,
and received 7% of the money won during the task at the conclusion of
the experiment. The task was presented using the Psychophysics Toolbox
(Brainard, 1997), projected onto a screen that was visible via an angled
mirror on top of the fMRI head coil.

We also performed two additional behavioral experiments to examine
choice behavior under different reward structure and feedback condi-
tions. The methods and results of these experiments are presented in the
supplemental material (available at www.jneurosci.org).

Reinforcement learning model-based analysis. Two alternative RL mod-
els were fit to the choice data (Fig. 1C), both based on the temporal
difference (TD) algorithm (Sutton and Barto, 1998). The first, which we
will call the “joint” model, was a traditional TD model defined on the
space of joint actions. Specifically, the model assigns a value Q to each

Figure 1. Task design. A, On each trial, subjects chose simultaneously between green shapes with their left hand and
between red shapes with their right hand. Monetary reward was then sampled from separate choice-dependent Bernoulli
distributions (one for each hand). Rewards for each hand were presented simultaneously. In this example trial, the left
reward is $0 (indicated by a phase-scrambled dollar bill), and the right reward is $1. ISI, Interstimulus interval; ITI, intertrial
interval. B, Reward probability for each of the shapes is shown in a different color. Each probability diffused in a Gaussian
random walk with reflecting boundaries at 0 and 1. C, Schematic depiction of the decomposed model (left) and joint model
(right). RPE, Reward prediction error.
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joint action; these are learned according to the following update on each
trial t:

Qt�1�at� � Qt�at� � ��t. (1)

In this equation, at represents the combination of two shapes chosen on
trial t (that is, it takes four possible values corresponding to the possible
combinations of a choice from the left and the right hand). The free
parameter � controls the learning rate, and �t is the prediction error on
trial t. This is defined as follows:

�t � �rL,t � rR,t� � Qt�at�. (2)

Here, rL,t and rR,t are the rewards received by each effector on trial t. Thus,
the joint model is the same TD algorithm that has been used to model
human and animal decision making in many other studies, but treating
the multidimensional action as a unitary choice over both effectors and
for reward summed over both choices.

The second model we considered, which we call the “decomposed”
model, modifies the first model to incorporate knowledge about struc-
ture in the action space. It assumes that the joint value function can be
decomposed into a sum of effector-specific components, one for each
hand as follows:

Qt�at� � QL,t�aL,t� � QR,t�aR,t�. (3)

This allows us to define a separate TD update for each effector, with its
own prediction error in its own reward as follows:

QL,t�1�aL,t� � QL,t�aL,t� � ��L,t, (4)

�L,t � rL,t � QL,t�aL,t�, (5)

and similarly for QR and �R. Because the updates for each effector are
independent of one another, they can be performed in parallel. Thus, this
model applies the standard TD model twice, in parallel, to learn valua-
tions for each effector separately.

For both models, we assume that the action values Q control the prob-
abilities P by which joint actions a are chosen on trial t, according to a
“softmax” (logistic) rule as follows:

P(a) � exp���Qt�a� � � � Mt�a���. (6)

Here, � is a free “inverse temperature” parameter controlling how exclu-
sively choices are focused on the highest valued actions. The additional
factors Mt are action traces included to capture residual autocorrelation
in choice behavior (Lau and Glimcher, 2005; Schönberg et al., 2007).
These capture a tendency to repeat (positive �) or avoid (negative �)
recently chosen actions, weighted according to the free parameter �.
Traces are assumed to decay exponentially, with a free decay parameter �.
Thus, in the joint model, if k(at) is the time since joint action at was last
chosen, Mt(at) � �k at. In the decomposed model, traces for the actions of
each hand are maintained separately, and Mt(at) � �k aL,t � �k aR,t. Note
that, although Equation 6 expresses the choice probability in terms of the
four joint actions at, in the case of the decomposed model this may
equivalently be treated as the product of a probability for the action of
each hand separately (since both M and Q factor into sums over each
hand); thus, the decomposed model could be implemented using inde-
pendent, effector-specific choice mechanisms.

For a setting of the free parameters, the likelihood of a subject’s choice
dataset under either model was computed as the product over all trials of
the probability of the choice made on that trial (Eq. 6) given action values
computed from the subject’s experience thus far. Maximum-likelihood
estimates of the parameters �, �, �, and � were found for each model by
constrained nonlinear optimization, so as to maximize the choice likeli-
hoods. To avoid local optima, the search was repeated from 20 different
starting points. For behavioral analysis, we estimated a separate set of
parameters for each subject (treating the individual parameters as ran-
dom effects). To generate regressors for fMRI analysis (below), we refit
the behavioral model to estimate a single set of the parameters that opti-
mized choice likelihood aggregated over all subjects (i.e., treating the
behavioral parameters as fixed effects). This is because in our experience

(Daw et al., 2006a; Schönberg et al., 2007) unregularized random-effects
parameter estimates tend to be too noisy to obtain reliable neural results.

To compare the fit of models to choice behavior, we used likelihood
ratio tests for comparisons involving nested models, and, when the mod-
els being compared were not nested, compared models using Bayes fac-
tors (Kass and Raftery 1995), approximated using Bayesian information
criterion (BIC) (Schwartz, 1978) scores. BIC is as follows:

BICm � 	LLm � 0.5 � Kmln�N�, (7)

where LLm is the log-likelihood of model m, Km is the number of param-
eters of model m, and N is the number of data points (choices). The log
Bayes factor between the two models can then be approximated by the
difference in BIC scores (in which a smaller BIC score indicates a superior
model fit).

Note that, for the main comparison of interest here, that between the
joint and decomposed model, both models considered have equivalent
sets of free parameters (�, �, �, and �). As a result, the models are
effectively matched in complexity, and so comparing the BIC, the AIC
(Akaike information criterion) score, or simply the uncorrected log-
likelihoods will give the same rank ordering of the models.

For additional tests of model fit, we compared the RL models to a
parameter-free “null model” that assumes all choices are random and
equiprobable. We also use the random choice model to compute a stan-
dardized metric of model fit, a pseudo-R 2 statistic (Camerer and Ho,
1999; Daw et al., 2006a), defined as (R 	 L)/R, where R is the log data
likelihood under the chance model and L is that under the fit model.

Imaging procedure. Functional imaging was performed on a 3T Sie-
mens Allegra head-only scanner and a Nova Medical NM-011 head coil
to acquire gradient echo T2* weighted echoplanar images (EPIs) with
blood oxygenation level-dependent (BOLD) contrast. Thirty-three con-
tiguous oblique-axial slices (3 � 3 � 3 mm voxels) were obtained, tilted
23° off the anterior commissure–posterior commissure axis so as to op-
timize sensitivity in the orbitofrontal cortex. This provided coverage
from the base of the orbitofrontal cortex and temporal lobe to the supe-
rior parietal lobule. Slices were acquired with a repetition time of 2 s. A
high-resolution T1-weighted anatomical image (magnetization-prepared
rapid acquisition with gradient echo sequence, 1 � 1 � 1 mm) was also
acquired for each subject.

Imaging analysis. Preprocessing and data analysis were performed us-
ing Statistical Parametric Mapping software (SPM5; Wellcome Depart-
ment of Imaging Neuroscience, Institute of Neurology, London, UK).
Images were realigned to correct for subject motion, spatially normalized
by estimating a warping to template space from each subject’s anatomical
image (SPM5, “segment and normalize”) and applying the resulting
transformation to the EPIs, resampled to 2 � 2 � 2 mm voxels in the
normalized space, and smoothed using an 8 mm full-width at half-
maximum Gaussian kernel. High-pass filtering with a cutoff period of
128 s was also applied to the data.

Each trial was modeled with impulse regressors at two time points: the
time of the presentation of the options (shapes), which was taken to be
the time of the decision, and the time of presentation of the outcome. The
options event was modulated by two parametric regressors, representing
the left and right chosen action values (QL,t and QR,t, respectively) for the
action chosen on each trial, derived from the decomposed model fits. The
outcome event was modulated by two parametric regressors, represent-
ing the left and right prediction errors (�L,t and �R,t, respectively). Im-
portantly, because left and right rewards are determined by independent
random processes, these regressors are mostly uncorrelated from each
other between sides, which improves statistical power to search for any
lateralized neural correlates.

These regressors were then convolved with the canonical hemody-
namic response function and entered into a general linear model (GLM)
of each subject’s fMRI data. The left and right parametric modulators
were orthogonalized separately to their corresponding events but not to
one another. The six scan-to-scan motion parameters produced during
realignment were included as additional regressors in the GLM to ac-
count for residual effects of subject movement. Linear contrasts of the
resulting SPMs were taken to a group-level (random-effects) analysis.
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We report whole-brain results at an uncorrected threshold of p 
 0.001
for areas in which we had a previous hypothesis, and whole-brain cor-
rected for familywise error elsewhere. All voxel locations are reported in
Montreal Neurological Institute coordinates, and results are overlaid on
the average over subjects’ normalized anatomical scans.

Interaction analysis of region of interest data. We used univariate statis-
tical parametric maps (SPMs) to identify voxels for additional study.
Specifically, we found maxima of the contrasts QL � QR and �L � �R in
anatomically defined regions of interest (ROIs). Because this analysis was
specifically concerned with detecting lateralized value decomposition,
we attempted to group voxels into well aligned pairs in clusters with
multiple maxima. To help to compensate for between-subject variability
in anatomy or normalization, we searched for individual-subject local
maxima within a small sphere (9 mm) around the group maxima.

We then performed a two-way repeated-measures ANOVA on the
strength of value-related BOLD effects in the selected maxima with fac-
tors hemisphere (left/right) and effector (left hand/right hand). The data
tested were per-subject effect sizes (betas from the first-level GLM) for
effector-specific chosen action values (QL and QR) in the case of intrapa-
rietal sulcus (IPS) and mPFC, or prediction errors (�L and �R) in the case
of ventral striatum. Note that, because the contrast used to select the
voxels was unbiased with respect to the interaction test, it is unnecessary
to correct for multiple comparisons involved in the selection. However,
when multiple maxima within a region were identified, we grouped them
into left/right hemisphere pairs and applied a Bonferroni correction for
the number of pairs tested.

Results
Behavioral results
Subjects were able on most trials to complete the bimanual move-
ments within the time constraints; on average 12 � 2.9 (mean �
SEM over subjects) of 300 trials were eliminated because of
subjects failing to enter responses for both hands within 100 ms of
each other and within 1 s total. On correct trials, response times
for the left and right hands were 456 � 15 ms for left-hand re-
sponses and 457 � 15 ms for right-hand responses (grand means �
SEMs across subjects). Collapsed across left and right hands, the
mean was 457 � 15 ms.

Over the course of the game, subjects won 360 � 9.4 (mean �
SEM) points. This was significantly higher (paired-sample t
test, t(15) � 10.27, p 
 0.00001) than the amount that would be
expected assuming random choices (281 � 4.5 points, com-
puted for each subject in expectation over his or her reward
probabilities).

Reinforcement learning model results
To investigate behaviorally whether subjects took advantage of
the decomposition of the task across left and right hands to learn
choices, we fit computational models to the behavioral data. A
key difference between the joint and decomposed hypotheses is
that, if an agent learns the hands’ values separately, then the net
expected value of a particular joint action (such as left, circle;
right, square) will depend on the agent’s experience with the
outcomes of other joint actions that share the same subactions
(such as left, triangle; right, square). In contrast, if learning is over
joint actions, value is expected to depend only on past experience
with the same joint action, and not to “generalize” between joint

actions that share the same left- or right-hand choices. We tested
this prediction using a conditional logit regression analysis (see
supplemental material, available at www.jneurosci.org), which
indicated that subjects’ choice of joint action was better predicted
not just by the rewards received for particular joint actions on the
previous trial, but in addition by the rewards received for the left
and right hand’s subactions.

To examine learning in more detail, we compared the fit to
subjects’ choices of RL models that learn action values either
jointly or decomposed across the effectors. For reasons such as
that discussed above, these two models generalize from experi-
ence to action preferences in different ways and thus predict dif-
ferent trial-by-trial patterns of choices.

Parameter estimates and BIC measures for the joint and de-
composed models are summarized in Table 1. For additional
discussion of the parameter values, see supplemental material
(available at www.jneurosci.org). We first tested whether both
models performed better than random chance at explaining the
choices; they did (likelihood ratio tests, 64 df; values of p not
numerically different from zero at machine precision). Compar-
ing the two models, the observed choices were more likely under
the decomposed than the joint model for 15 of the 16 subjects.
Summing BIC scores across subjects, the estimated log Bayes
factor was 572 in favor of the decomposed model, indicating that
the choices were approximately exp(572) times more probable
given the decomposed model than the joint model. Convention-
ally (Kass and Raftery, 1995), a log Bayes factor of 4.6 (100:1
ratio) constitutes “decisive” evidence in favor of one model over
another.

Finally, we wanted to further verify the sensitivity of our
methods and to test the broader prediction of our framework that
effector-specific decomposition should depend on task factors
such as actual value separability and task instructions. For this, we
repeated the model-based analysis for two additional behavioral
experiments, in one of which the reward structure (and also the
visual display of the options) could not be decomposed into sep-
arate contributions from each hand’s choice. In this case, we
hypothesized that subjects would be encouraged to learn action
valuations in the space of joint rather than decomposed actions;
model fits (see supplemental material, available at www.jneurosci.
org) supported this interpretation.

Together, these results indicate that, in the fMRI study in
which the choice problem could be decomposed across effectors,
subjects learned action values in a way that respected this decom-
position. That is, subjects learned in an intuitively plausible way
appropriate to the task, even though the rejected joint RL model
is arguably the more straightforward application to this task of
standard theories.

Imaging results
We next sought evidence whether neural valuation or value
learning signals reflected the decomposition of the action values
across effectors. We hypothesized that value-related neural sig-
nals would exhibit lateralized signaling. Such a hypothesis posits

Table 1. Reinforcement learning model fits

Model 	LL BIC p-R 2 � � � �

Joint 3553 3734 0.44 0.53 � 0.06 4.37 � 0.48 0.46 � 0.10 1.43 � 0.30
Decomposed 2981 3162 0.53 0.72 � 0.15 4.43 � 0.60 0.56 � 0.11 0.12 � 0.94
Random 6378 6560 — — — — —

Shown are negative log-likelihood (	LL), BIC, pseudo-R 2 (p-R 2), and random-effects maximum-likelihood parameter estimates (mean � SEM across subjects) for the joint and decomposed RL models. The bottom row shows summary
statistics for the random (null choice) model in which all joint actions have equal probability.
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an interaction between the strength of
value effects for the left and right hands in
areas in the left and right hemispheres.
Since this is inherently a claim about mul-
tiple voxels, the hypothesis cannot be
tested via standard univariate analysis. In-
stead, we first used univariate contrasts
to locate paired functional ROIs in left
and right hemispheres with value-
related signaling, and then tested within
these pairs of areas for an interaction of
effector by hemisphere. It is crucial that
the contrast used to identify ROIs be un-
biased with respect to the subsequent in-
teraction test (Kriegeskorte et al., 2009).
Thus, we selected maxima from the uni-
variate net value contrasts QL � QR and �L

� �R, which indicate regions of neural chosen value or error
signaling but are indifferent (since they sum equally over these) as
to the relative strength of left- or right-effector related signals.
Note that our QL and QR value regressors represent the value of
the chosen action for each hand, and their sum thus represents
net value for the joint choice. We tested our hypotheses concern-
ing decomposition using the chosen action value (rather than,
say, the option-specific action value for some particular option
such as the triangle) since this is the value most often reported to
correlate with BOLD signaling (Daw et al., 2006a; Behrens et al.,
2007; Gläscher et al., 2009).

On the basis of previous studies (Platt and Glimcher, 1999;
Pagnoni et al., 2002; O’Doherty et al., 2003; Sugrue et al., 2004;
Daw et al., 2006a; Delgado, 2007; Schönberg et al., 2007; Hare et
al., 2008; Gläscher et al., 2009; Seo and Lee, 2009), we focused on
three regions that have been repeatedly implicated in value-based
learning and decision making: the IPS, ventral striatum, and
mPFC. We found significant correlations between net chosen
value QL � QR and neural activity in bilateral parietal (Fig. 2A)
(left hemisphere, peak p � 6e-9, uncorrected; right hemisphere,
peak p � 5e-8, uncorrected) and medial prefrontal regions (Fig.
2B) (left hemisphere, peak p � 4e-6, uncorrected; right hemi-
sphere, peak p � 1e-4, uncorrected). The mPFC activations ex-
tended from dorsal mPFC down through ventral regions of the
structure, similar to activations sometimes identified as ventral
mPFC or medial orbitofrontal cortex (supplemental Fig. S1, avail-
able at www.jneurosci.org as supplemental material) (Daw et al.,
2006a; Hare et al., 2008). Note that, in IPS, the correlation was
negative, that is, BOLD activity was lower for actions with a larger
QL � QR. We found a significant correlation between net predic-
tion error �L � �R and neural activity bilaterally in ventral stria-
tum (Fig. 2C) (left hemisphere, peak p � 6e-4, uncorrected; right
hemisphere, peak p � 6e-4, uncorrected). Supplemental Table 3
(available at www.jneurosci.org as supplemental material) sum-
marizes uncorrected Z values for the left and right chosen value
regressors separately for each of these coordinates. We also noted
correlations with net chosen value and prediction error in a
number of additional areas in which we did not have previous
hypotheses; these are summarized in supplemental Tables 1
and 2 (available at www.jneurosci.org as supplemental
material).

We then tested for hemispheric interactions at the maxima of
the chosen value contrast in IPS and mPFC and the prediction
error contrast in ventral striatum. In left and right IPS (Fig. 2A),
we identified two distinct pairs of maxima for the net chosen
value contrast, which were well aligned bilaterally and which we

label caudal [left (	32, 	50, 38); right (40, 	50, 44)] and rostral
[left (	34, 	38, 38); right (38, 	34, 44)]. The ANOVA analysis
(Fig. 3A; supplemental Fig. S2A, available at www.jneurosci.org
as supplemental material) revealed that only the caudal pair
exhibited an interaction (Fig. 3A): F(1,15) � 6.28, p 
 0.025
(Bonferroni corrected for two comparisons).

In mPFC (Fig. 2B), there were several maxima for the net
chosen value contrast, but only one pair that was clearly well
aligned across hemispheres [left (	10, 40, 	10); right (8, 40,
	12)]. The ANOVA analysis (supplemental Fig. S2B, available at
www.jneurosci.org as supplemental material) failed to reveal a
significant interaction between hemisphere and effector: F(1,15) �
0.0025, p � 0.96.

In the ventral striatum (Fig. 2C), we identified only one max-
imum in each hemisphere for the net prediction error contrast
[left (	4, 14, 	8); right (10, 10, 	8)]. The ANOVA analysis (Fig.
3B) revealed a significant crossover interaction between hemi-
sphere and effector, with each hemisphere responding preferen-
tially to the contralateral hand’s prediction error: F(1,15) � 11.16,
p 
 0.005.

Together, the findings that both chosen value- and learning-
related neural signals show a lateralized pattern of activation sup-

Figure 2. Random-effects analysis of fMRI. A, Axial slice showing voxels in parietal cortex correlating with net chosen value,
thresholded at p 
 0.00001, uncorrected. The caudal pair of coordinates is circled in green. A stringent threshold was selected to
highlight the peak of interest. B, Axial slice showing voxels in medial prefrontal cortex correlating with net chosen value, thresh-
olded at p 
 0.001, uncorrected. C, Coronal slice showing voxels in ventral striatum correlating with net prediction error, shown
thresholded at p 
 0.005 (red) and p 
 0.001 (orange), uncorrected.

Left caudal IPS Right caudal IPS

−25

−20

−15

−10

−5

0

E
ffe

ct
 s

iz
e

 

 
Q

L

Q
R

Left Striatum Right Striatum
0

2

4

6

8

E
ffe

ct
 s

iz
e

 

δ
L

δ
R

A

B

Figure 3. Parameter estimates in functional ROIs. A, Responses in caudal IPS to the left and
right chosen value regressors, separated by left (	32, 	50, 38) and right (40, 	50, 44)
hemisphere. B, Responses in ventral striatum to the left and right prediction error regressors,
separated by left (	4, 14, 	8) and right (10, 10, 	8) hemisphere.
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port the hypothesis that the RL systems of the brain decompose
values across effectors.

Discussion
Using a bimanual decision task, we found that subjects exploited
structure in the rewards to learn action valuations that decom-
posed into independent effector-specific components whose
neural correlates exhibited a lateralized bias. Neurally, this bias
was evident in a multivoxel pattern of interaction between hemi-
sphere and effector in the strength of value-related BOLD effects
in two areas. Although voxels in both hemispheres correlated
with values for both effectors (Fig. 3; supplemental Table 3, avail-
able at www.jneurosci.org as supplemental material)—that is,
value-related effects on the BOLD signal were not entirely segre-
gated to the contralateral hemisphere—the significant biases ob-
served imply that the brain must represent the subcomponents of
values separately, since a pattern of differential signaling would
not be expected to arise if only net values (and scalar errors in
these net values) were represented.

Of course, it has long been known that the sensory and motor
systems of the brain are organized topographically and contralat-
erally. Here, we report evidence that neural representations of the
values of movements may follow a similar organization, as would
be expected if “value maps” for decision are overlaid on “motor
maps” for execution (Platt and Glimcher, 1999). Furthermore,
and more importantly, we show evidence that the brain main-
tains such decomposed effector-specific action values even in the
context of simultaneous bimanual movements, implying the
ability to divide and conquer the problem of learning to evaluate
simultaneous multieffector movements. We chose a bimanual
task because much evidence supports a contralateral organiza-
tion in the motor systems of the brain, and should this be re-
spected by the value representations of the brain, it would be
expected to be observable at a spatial scale detectable by fMRI. A
fruitful avenue of research may be to explore more fine-grained
forms of decomposition with single-unit recordings.

The ability to decompose values of multieffector actions
would greatly simplify the RL problem of learning valuations for
multidimensional actions. This is indeed what is suggested by our
behavioral finding that subjects’ trial-by-trial choices are better
explained by a computational learning model that exploits such
decomposition than by one that treats multieffector actions
jointly. Note that, in the present study, in order not to confound
task difficulty with value structure, we used a two effector by two
action design that matched the number of values learned between
decomposed (2 � 2) and joint (2 � 2) approaches. This approx-
imately equated the task complexity from the viewpoint of our
two hypothetical models, and also with the version of the task in
which values were not decomposable (supplemental material,
available at www.jneurosci.org). Thus, in the present study, sub-
jects did not actually face or resolve a curse of dimensionality.
Nevertheless, since in higher dimensions, decomposing a prob-
lem as appropriate to the task structure will be more efficient,
such an ability to decompose learning may suggest how simple
computational and neural mechanisms for value learning studied
previously in one-dimensional action choice problems (Platt and
Glimcher, 1999; O’Doherty et al., 2003; Sugrue et al., 2004; Daw
et al., 2006a; Schönberg et al., 2007; Lau and Glimcher, 2008;
Pesaran et al., 2008; Seo and Lee, 2009) might “scale up” to more
realistic multidimensional movements.

If values are learned using prediction errors, as commonly
supposed, then decomposed values are most efficiently learned
using separate prediction errors (Chang et al., 2003). We thus

sought evidence of such a decomposition in the oft-reported
(Pagnoni et al., 2002; McClure et al., 2003; O’Doherty et al., 2003;
Daw et al., 2006a; Schönberg et al., 2007; Hare et al., 2008) pre-
diction error correlates of ventral striatal BOLD, and our results
demonstrate a contralateral bias to these signals. This result
stands in contrast to the predominant assumption from compu-
tational models that a unitary dopaminergic prediction error
broadcast supports value learning throughout the forebrain
(Houk et al., 1995; Schultz et al., 1997; Bayer and Glimcher, 2005)
(but see Daw et al., 2006b; O’Reilly and Frank, 2006; Bertin et al.,
2007). The basis for this assumption is the relatively coarse orga-
nization of the ascending dopaminergic projection (Haber et al.,
2000), in which relatively few dopamine neurons innervate a very
large territory of forebrain (Schultz, 1998; Matsuda et al., 2009).
Moreover, in recordings, different dopaminergic neurons re-
spond with considerable (Schultz, 1998), although not perfect
(Roesch et al., 2007; Brischoux et al., 2009), homogeneity.

Although there is some evidence suggesting prediction error
correlates in striatum may reflect dopaminergic input (Pessiglione
et al., 2006; Knutson and Gibbs, 2007), we cannot identify
whether the contralateral bias in BOLD signaling we report re-
flects dopaminergic activity or some other lateralized neural
source. Nevertheless, this result suggests a particular sort of re-
sponse heterogeneity that might fruitfully be sought in dopami-
nergic unit recordings. The possibility that the prediction error
signal is vector-valued, encoding decomposed effector-specific
signals, means that the brain has recourse to a wider range of
learning algorithms than would be possible with a scalar signal
(Chang et al., 2003; Russell and Zimdars, 2003).

The cortical results reported here are consistent with a wide
range of neuroimaging and single-unit studies that have impli-
cated parietal cortex in value-based learning and decision making
(Platt and Glimcher, 1999; Coe et al., 2002; O’Doherty et al.,
2003; Sugrue et al., 2004; Daw et al., 2006a; Pesaran et al., 2008).
The posterior parietal cortex is a key candidate for effector-
specific value signaling. There is evidence that the lateral intrapa-
rietal (LIP) area in the posterior parietal cortex contains a “spatial
map” for guiding eye movements (Snyder et al., 1997) and neu-
rons in area LIP encode the value associated with eye movements
(Snyder et al., 1997; Platt and Glimcher, 1999; Sugrue et al.,
2004). Other areas in the posterior parietal cortex show activity
that is specialized for other effectors such as reaching and grasp-
ing (Murata et al., 1996; Connolly et al., 2003; Kalaska et al., 2003;
Pesaran et al., 2006; Cui and Andersen, 2007), and more work is
needed to identify the relationship of these areas to expected
value (but see Musallam et al., 2004).

We identified an area of IPS whose left and right maxima
showed differential sensitivity to left and right chosen action val-
ues. Although we hypothesized that value representations would
show a contralateral bias, reflecting the underlying motor orga-
nization, the value modulation effect we observed in IPS is larger
for the ipsilateral action. This may relate, in turn, to another
seemingly inverted aspect of our parietal results: the correlation
between BOLD response and chosen action value throughout IPS
is negative. Although the underlying neural source of this nega-
tive modulation remains to be understood, the sign of the effect
may explain why value correlates have not to our knowledge
previously been reported in IPS using fMRI [but see Daw et al.
(2006a) for a related result, in which the increased IPS activity on
exploratory compared with exploitative trials implies a negative
relationship to value, since exploitative choices by definition are
more valuable], despite strong evidence that the activity of pari-
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etal neurons is modulated by value in primates (Platt and Glim-
cher, 1999; Coe et al., 2002; Sugrue et al., 2004).

The negative parametric effect of chosen action value on IPS is
unlikely to be simply a confound of response time (e.g., prepara-
tory activity accumulated for longer on lower valued trials), since
it remains highly significant even when RT is included as a nui-
sance covariate (data not shown; the IPS results are essentially
identical). Also, although we did not track eye position, we think
it is unlikely that the value-related modulations in IPS are driven
by uncontrolled saccadic eye movements, since the area most
commonly associated with saccades—the putative human analog
of primate LIP—is generally more medial and posterior to the
areas we report here (Koyama et al., 2004; Grefkes and Fink,
2005). The area in which we see lateralized activation may corre-
spond to the putative human homolog of the nonhuman primate
parietal reach region (Astafiev et al., 2003; Connolly et al., 2003;
Grefkes et al., 2004), which has been associated with visually
guided arm movements (Batista et al., 1999; Cohen and Andersen,
2002; Kalaska et al., 2003; Pesaran et al., 2006).

Although we also observed value-related BOLD modulations
in mPFC, as seen in many other studies (O’Doherty, 2004;
Hampton et al., 2006; Plassmann et al., 2007; Boorman et al.,
2009; Gläscher et al., 2009), we did not find evidence that these
were lateralized. However, such a negative result must be inter-
preted with caution. Indeed, one question that cannot be statis-
tically addressed by our design is whether there are areas in which
value signals are explained by net chosen action values, but not
biased toward one effector or the other (e.g., a monolithic, net
chosen action value). The existence of such a net (chosen, or
chosen relative to unchosen; Boorman et al., 2009) action value
signal is the underlying assumption of most studies of neural
value signaling in the fMRI literature, including those mentioned
above. But in the present study, this plays the role of a “null
hypothesis” to the alternative entertained here: that, under ap-
propriate conditions, the brain can decompose value signals.
Given our results, one candidate for such a net chosen action
value signal is the medial PFC, since it correlated with net chosen
action values but showed no evidence for laterality. However,
from a failure to reject the null hypothesis that there is no pattern
of effector-by-value interaction, we cannot affirmatively con-
clude that the two effectors are really equally weighted in the
medial prefrontal value representation.

Another important limitation of our study concerns the tim-
ing of events. Because there is 
2 s between the trial onset and the
onset of feedback, we are not able to distinguish between brain
activity related to the decision, response, or outcome periods.

Finally, a significant lacuna of the computational model pre-
sented here, and an opportunity for future work, is that it offers
no explanation of how the decomposition of value between effec-
tors is learned from experience. Indeed, because our primary
question was whether or not subjects were capable of treating RL
problems in a decomposed manner, we explained the reward
structure to them in detail before their participation in the task.
Additionally, our supplemental behavioral data (available at
www.jneurosci.org as supplemental material) indicate that sub-
jects are also able to learn values jointly over multieffector actions
under other conditions. However, because that study differed
from the separable value studies on more than one dimension—
including the actual reward structure, the instructed reward
structure, and the decomposability of the visual stimuli—addi-
tional experiments will be needed to determine how these vari-
ables each contribute to whether subjects decompose an RL
problem. More generally, future experimental and computa-

tional work should address how structure learning, which has
often been studied in the context of Bayesian models of inference
(Griffiths and Tenenbaum, 2005; Courville et al., 2006; Kemp
and Tenenbaum, 2008) can be integrated with reinforcement
learning.
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