
Magazine
ll

immense but the true impact of 
drivers depends on their prevalence. 
Currently, it is unknown how many 
drivers are present. Answering this 
question is challenging because drive 
phenotypes can only be observed 
in heterozygotes, not all drivers are 
linked to an observable phenotype 
(e.g. sex), and drive may require a 
particular genetic background (e.g. 
the absence of drive suppressors). 
Even amongst the known meiotic 
drive systems, not much molecular 
information is known about many 
of them beyond their presence on 
a chromosome. Understanding 
the prevalence of drivers and the 
molecular mechanisms they use will 
lead to a greater understanding of how 
these parasites shape the evolution 
of eukaryotic biology, particularly 
gametogenesis. 
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To generate adaptive behaviors, 
animals must learn from their 
interactions with the environment. 
Describing the algorithms that govern 
this learning process and how they 
are implemented in the brain is a 
major goal of neuroscience. Careful 
and controlled observations of animal 
learning by Thorndike, Pavlov and 
others, now more than a century 
ago, identifi ed intuitive rules by 
which animals (including humans) 
can learn from their experiences 
by associating sensory stimuli and 
motor actions with rewards. But 
going from explaining learning in 
simple paradigms to deciphering how 
complex problems are solved in rich 
and dynamic environments has proven 
diffi cult (Figure 1). Recently, this effort 
has received help from computer 
scientists and engineers hoping to 
emulate intelligent adaptive behaviors 
in machines. Inspired by the animal 
behavior literature, pioneers in artifi cial 
intelligence developed a rigorous and 
mathematically principled framework 
within which reward-based learning 
can be formalized and studied. Not 
only has the fi eld of reinforcement 
learning become a boon to machine 
learning and artifi cial intelligence, 
it has also provided a theoretical 
foundation for biologists interested in 
deciphering how the brain implements 
reinforcement learning algorithms.

The ability of reinforcement 
learning agents to solve complex, 
high-dimensional learning problems 
has been dramatically enhanced by 
using deep neural networks (deep 
reinforcement learning, Figure 1). 
Indeed, aided by ever-increasing 
computational resources, deep 
reinforcement learning algorithms 
can now outperform human experts 
on a host of well-defi ned complex 
tasks, although signifi cant gaps 
remain. The aim of this primer is not 
to review progress in this fast-moving 
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fi eld or compare various algorithmic 
implementations. Rather, we believe 
familiarity with the algorithms 
developed for machine learning can 
help neuroscientists better understand, 
in computationally precise ways, 
how humans and animals learn from 
interactions with their environments. 
Importantly, developments in deep 
reinforcement learning can help 
inspire new ideas about how the 
brain implements neural circuit-level 
solutions to these challenges.

In this primer, we will briefl y review 
basic concepts of reinforcement 
learning, and discuss some of 
the shortcomings of traditional 
approaches and ways in which 
they can be overcome by using 
deep reinforcement learning. We 
then consider how the brain might 
implement some of the ideas 
from deep reinforcement learning, 
specifi cally: relative value coding; 
policy regularization; and effi cient 
exploration of large solution spaces.

Solving reinforcement learning 
problems with deep neural networks
In reinforcement learning, the problem 
of learning from experience can be 
reduced to an agent (which can be 
a machine or an animal) interacting 
with its environment. At each step, t, 
of this interaction, the agent observes 
the state of the world, s(t), and enacts 
a policy which determines its action, 
a(t). Each action, in turn, results in a 
reward, r(t), and changes the state to 
s(t+1). The goal is to learn a policy that 
maps states into actions in a way that 
maximizes cumulative reward (value) 
over some time horizon. One way to 
learn the optimal policy is to explore 
different actions in different states 
and use reward feedback to update 
the estimated value of taking a given 
action in a given state. Deviation from 
the value estimate is called the reward 
prediction error, which is used to 
update the estimates, and through it, 
the policy.

In the real world, both states and 
actions are continuous and high-
dimensional, which means an agent 
cannot construct a look-up table for 
the values of each state–action pairing 
(the ‘value function’, Figure 1). This is 
known as the curse of dimensionality. 
One way to overcome this problem is 
to fi nd low-dimensional representations 
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Figure 1. Deep reinforcement learning can fi nd general solutions to complex real-world 
problems.
Left: simpler problems, such as selecting the right action in response to traffi c lights, can be repre-
sented in a tabular form. Right: for more complicated problems, such as how to negotiate traffi c in 
a crowded city, both the states (road condition, traffi c, weather, and so on) and the possible actions 
(speed, direction, and so on) are continuous and high-dimensional. Deep neural networks are effective 
tools for approximating the complex high-dimensional mappings between state–action pairs and their 
values. If properly trained and regularized, these networks can generalize to new states and actions, 
such as driving in a new city. Traffi c image used with permission from Jason Thien (CC BY 2.0).  
of high-dimensional state and action 
spaces, such that good policies can 
be learned in more tractable domains. 
For example, if rewards vary smoothly 
across space (a plausible assumption 
for a foraging animal), then representing 
states by their coordinates in Euclidean 
space will allow an agent to generalize 
effectively: discovering reward in one 
region of space increases the value 
of neighboring regions. However, a 
useful representation cannot always 
be determined a priori. If the spatial 
distribution of rewards depends on 
other factors (for example, terrain, 
season, patch depletion and renewal 
rates), then the value function will not 
be well approximated by a simple 
function of spatial location.

Classical reinforcement learning 
R630 Current Biology 30, R617–R634, June

algorithms typically use fi xed and 
predetermined representations of 
state and action spaces (such as the 
Euclidean coordinate system in our 
example above). As we’ve already 
seen, the choice of representation can 
limit the capability of reinforcement 
learning agents. Modern deep 
reinforcement learning algorithms 
overcome this problem by learning 
the state and action representations 
alongside the values of state–action 
pairs and the policy, a process known 
as ‘end-to-end’ learning. This is 
accomplished by using deep neural 
networks, which consist of neuron-
like non-linear processing units that, 
when connected in a network, can 
mimic aspects of the computations 
our brains perform (Figure 1). For 
reinforcement learning, a commonly 
used architecture is a feedforward 
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network, in which units are arranged 
into layers, with dense connections 
between units in adjacent layers and 
no connections between units within 
a layer.

Such deep neural networks learn 
effi cient representations by mapping 
states and actions to values and 
adjusting the parameters of the 
network to maximize future rewards. 
Signals are propagated in one 
direction through a hierarchy of layers, 
starting with ‘raw’ sensory inputs 
(state information) and culminating 
with a scalar value estimate for 
each action. At each layer of the 
network, some details of the input 
are lost, creating an ‘information 
bottleneck’ that forces the network 
(during learning) to fi nd compact 
(low-dimensional) representations 
of the state information useful for 
reinforcement learning.

Importantly, deep neural networks 
can learn to represent any continuous 
function, making them well-suited 
to approximate complex high-
dimensional mappings between 
state–action pairs and their values. 
This property comes from large 
neural networks having many 
free parameters — the weights of 
connections between neurons — 
that can be tuned to approximate 
nearly any input–output function (the 
universal function approximation 
property). The drawback is that deep 
networks can ‘overfi t’ sparse data and 
hence may fail to properly generalize 
to new situations. This tension 
between the ability of a large network 
to represent any complex function (its 
expressivity) and the risk of overfi tting 
with small data sets is a major issue in 
deep reinforcement learning, and one 
we discuss below.

In the next sections, we highlight 
three algorithmic ideas that have 
shown promise for deep reinforcement 
learning and discuss the insights 
they provide for neuroscience. These 
examples are meant to be illustrative 
rather than exhaustive. We will return 
to some general conclusions at the 
end of the primer.

Variance reduction using relative 
value coding
One way of formulating the tension 
between generalizability and overfi tting 
is to say that deep neural networks 
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Figure 2. The bias–variance tradeoff. 
Top: illustrative one-dimensional function learning example. Each dot corresponds to an input–
output pair generated from a noisy function (in reinforcement learning problems, the relevant 
function would map state–action pairs to values). The lines in each plot show functions from 
different families (polynomials of different orders) fi t to the data. Simple functions, such as linear 
or lower-order polynomials, have high bias but low variance: they underfi t both signal and noise. 
Complex functions, such as higher-order polynomials, have low bias but high variance: they over-
fi t both signal and noise. In this example, a second-order (quadratic) polynomial function appears 
to adequately balance bias and variance. Deep neural networks are typically thought of as low 
bias and high variance estimators, necessitating regularization to prevent overfi tting. Bottom: 
generalization error can be decomposed into the sum of bias and variance, implying that mini-
mum error is achieved when the two are balanced.
have low bias (they can closely 
approximate the correct function 
given enough data) and high variance 
(approximation errors will tend to 
be large for small data sets). Low 
bias is good, because it means your 
predictions won’t be systematically 
wrong (Figure 2). High variance is a 
problem because it leads to unreliable
generalization accuracy, and results 
from deep networks being very 
sensitive to randomness in small data
sets: each time you train them with 
different samples, they’ll give you a 
different approximation. To ensure tha
deep reinforcement learning acquires 
good policies from relatively few 
samples, it is important to manage thi
bias–variance tradeoff by reducing the
variance without introducing too much
bias (Figure 2).

One source of variance comes from
action-independent fl uctuations in 
reward. As an illustration, imagine 
optimizing your choice of food 
(for example, chicken or steak) at 
restaurants in your city. Because the 
restaurants (the ‘states’) will vary 
in their ‘goodness’, the reward of 
choosing a given type of food (the 
‘action’) can be largely independent 
of the action itself. This effectively 
adds noise to your policy, in the 
sense that it will take longer to learn 
the value of each state–action pair 
from experience. This is particularly 
problematic for deep reinforcement 
learning, because the deep function 
approximator can more easily fi t 
noise compared to ‘shallow’ function 
approximators. An effective way to 
reduce this variance is to learn the 
values of actions (chicken or steak) 
relative to the average action value in 
particular state (the ‘goodness’ of the 
restaurant). These relative values are 
known as ‘advantages’, and learning 
them helps deep networks generalize 
from sparse observations without 
adding excessive bias.

There is increasing evidence that 
the brain learns and codes the value 
of actions and stimuli in terms of 
‘advantages’. For example, neurons 
in orbitofrontal cortex — an area of 
the brain involved in decision making 
and reward processing — represent 
outcome values relative to other 
options available in a given state. 
Much like sensory neurons, the fi ring 

rates of value coding neurons are 
further normalized to fi t the range 
of values likely to be encountered. 
Deep reinforcement learning gives 
a computational rationale for why 
the brain, a network tasked with 
generalizing from sparse observation
should use relative value codes.

Policy regularization in neural 
networks
Another way to manage the bias–
variance trade-off is to make sure 
policies don’t overfi t sparse data 
by ‘regularizing’ them — penalizing 
them based on their complexity. 
Take, for example, superstitious 
rituals like always eating orange 
food out of a cardboard box while 
wearing a pointy hat before your team
plays a match. Such a policy might 
Current B
appear to be weakly correlated with 
your team winning, but that’s most 
likely due to chance. Regularization 
techniques ensure that such policies 
are disfavored unless there is strong 
evidence that they work.

Clues as to whether to implement 
policy regularization can come from 
considering reward prediction errors. 
When predictions of a deep network 
are consistently poor, it is typically due 
to overfi tting — a situation in which 
low variance solutions (stronger policy 
regularization) would be preferred 
(Figure 2). On the other hand, if 
predictions are good, increased 
variance could help nudge the system 
towards more complex (and possibly 
more accurate) policies. Applying 
this idea to neurobiology could help 
iology 30, R617–R634, June 8, 2020 R631



Magazine
ll
explain why dopamine depletion, as 
for example in Parkinson’s disease, 
causes increased motor variability. In 
a normal brain, reduction in phasic 
dopamine means predictions are 
becoming better (errors are small) — 
a regime in which higher variability 
(weaker regularization) could be 
benefi cial. 

The link between prediction errors 
and regularization could also explain 
why variation in genes that regulate 
the effects of striatal dopamine 
are linked to choice variability in 
reinforcement learning tasks. However, 
deep networks with high bias would 
also produce consistently poor 
predictions, which could be remedied 
by the agent exploring new parts of 
policy space, meaning higher — not 
lower — policy variance. Some of this 
ambiguity in interpreting the prediction 
error signal can, in theory at least, be 
resolved by considering its statistics. 
Whether the brain does this is not 
known.

Deep reinforcement learning may 
also lend some intuition into how the 
brain implements policy regularization. 
One way to regularize deep networks 
is by penalizing strong connections, 
which can sparsify network 
connectivity (many connection 
strengths are pushed towards zero). 
Beyond policy regularization, such 
sparsifi cation can make network 
implementations faster and more 
reliable. Similarly, synaptic pruning in 
neural circuits is associated with many 
forms of learning and is a hallmark of 
critical period plasticity. Analogies to 
deep reinforcement learning suggest 
that it may be a mechanism for the 
brain to regularize learned policies, 
making their implementations more 
effi cient and robust.

Balancing exploration and 
exploitation in neural networks
Linked to the issue of how variability 
is regulated is the exploration–
exploitation dilemma in reinforcement 
learning. At each time step, the agent 
must decide whether to go with the 
action predicting the highest reward 
or to explore actions previously not 
taken. Exploration can lead to the 
identifi cation of options that are better 
in the long run. A classic approach for 
balancing exploration and exploitation 
is to guide exploration towards 
R632 Current Biology 30, R617–R634, June 
states and actions that haven’t been 
visited very often (ones for which 
the uncertainty about the value is 
high). This is sometimes referred to 
as ‘count-based exploration’ and 
has strong theoretical guarantees. 
However, this cannot be directly 
applied to high-dimensional 
continuous state-action spaces where 
the same state–action pair is rarely (if 
ever) revisited.

One way to implement effi cient 
exploration in vast state/action 
spaces is to randomize the value 
function. Because policies in deep 
reinforcement learning are usually 
parametrized by a neural network 
with trained weights, randomizing 
the value function has the effect 
of adding exploratory noise to the 
policy (a strategy known as random 
exploration). It turns out that effi cient 
exploration can be accomplished by 
adding noise to network weights at 
the time of action selection.

In line with reinforcement learning 
theory, behavioral studies in both 
humans and animal models have 
suggested that the brain regulates 
exploratory variability to promote 
learning. As in deep reinforcement 
learning, adding noise to the weights 
in the underlying neural network is 
a plausible mechanism. For short 
timescales, this noise could be 
driven by the probabilistic nature 
of synaptic transmission, whereas 
longer timescale exploration could 
be caused by slower structural 
changes in dendritic spine volume 
and morphology, which are 
known to fl uctuate continuously 
and stochastically over time. We 
conjecture that these stochastic 
fl uctuations drive noise in valuation 
circuits, thus randomizing the 
value function. The contributions 
of different timescales have not yet 
been systematically addressed in the 
deep reinforcement learning literature; 
doing so may lead to new and more 
effective multi-scale exploration 
algorithms.

Conclusions
Given that deep networks were 
inspired by neuroscience and are 
effective in part because they have 
properties also found in real neural 
circuits, a seductive hypothesis 
is that the brain implements deep 
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reinforcement learning. As we’ve 
alluded to here, this analogy can 
shed light on several aspects of brain 
function. Although the computational 
issues we’ve addressed — 
bias–variance and exploration–
exploitation dilemmas — apply to 
any reinforcement learning algorithm, 
they are especially salient for deep 
neural networks (and presumably also 
biological networks), because of their 
high degree of expressivity.

At the same time, there are ways 
in which the analogy breaks down: 
deep networks require much more 
training data than biological brains 
(particularly those of humans), their 
learning algorithms (in particular 
backpropagation) make biologically 
implausible assumptions, and they 
lack the cognitive fl exibility of real 
brains. All of these challenges are 
currently the focus of intense research 
efforts. Thus, we are hopeful that 
the analogy, once suitably nuanced, 
will provide a useful framework for 
thinking about reinforcement learning 
in the brain.
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