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Abstract

In reinforcement learning (RL), a decision maker searching for the most rewarding option is

often faced with the question: What is the value of an option that has never been tried before? One

way to frame this question is as an inductive problem: How can I generalize my previous experi-

ence with one set of options to a novel option? We show how hierarchical Bayesian inference can

be used to solve this problem, and we describe an equivalence between the Bayesian model and

temporal difference learning algorithms that have been proposed as models of RL in humans and

animals. According to our view, the search for the best option is guided by abstract knowledge

about the relationships between different options in an environment, resulting in greater search effi-

ciency compared to traditional RL algorithms previously applied to human cognition. In two behav-

ioral experiments, we test several predictions of our model, providing evidence that humans learn

and exploit structured inductive knowledge to make predictions about novel options. In light of this

model, we suggest a new interpretation of dopaminergic responses to novelty.

Keywords: Reinforcement learning; Bayesian inference; Exploration–exploitation dilemma;

Neophobia; Neophilia

1. Introduction

Novelty is puzzling because it appears to evoke drastically different responses depending

on a variety of still poorly understood factors. A century of research has erected a formida-

ble canon of behavioral evidence for neophobia (the fear or avoidance of novelty) in

humans and animals, as well as an equally formidable canon of evidence for its converse,

neophilia, without any widely accepted framework for understanding and reconciling these
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data. We approach the puzzle of novelty through the theoretical lens of reinforcement learn-

ing (RL; Sutton & Barto, 1998), a computational framework that is concerned with how we

estimate values (expected future rewards) based on experience. Viewed through this lens,

novelty responses can be understood in terms of how values learned for one set of options

can be generalized to a novel (unexperienced) option, thereby guiding the decision maker’s

search for the option that will yield the most reward.

The starting point of our investigation is the idea that value generalization is influenced

by the decision maker’s inductive bias (Mitchell, 1997): prior beliefs about the reward

properties of unchosen options. An inductive bias is distinguished from non-inductive

biases in that an inductive bias involves an inference from observations to unknowns.

For example, if you have eaten many excellent dishes at a particular restaurant, it is rea-

sonable to infer that a dish that you have not tried yet is likely to be excellent as well. In

contrast, a non-inductive bias reflects a prepotent response tendency not derived from an

inferential process. From a psychological perspective, it seems plausible that humans

possess a rich repertoire of inductive biases that influence their decisions in the absence

of experience (Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010). Here we ask:

Does human RL involve inductive biases, and if so, how are the biases acquired and

used?

We hypothesize that humans and animals learn at multiple levels of abstraction, such

that higher level knowledge constrains learning at lower levels (Friston, 2008; Kemp,

Perfors, & Tenenbaum, 2007; Lucas & Griffiths, 2010). Learning the specific properties

of a novel option is guided by knowledge about the class of options to which the novel

option belongs—high-level knowledge plays the role of inductive bias. In the restaurant

example above, high-level knowledge is comprised of your evaluation of the restaurant,

an inductive generalization made on the basis of previous experience at that restaurant as

a whole, which enables predictions about new dishes and future experiences. This form

of inductive generalization has the potential to accelerate the search for valuable options

by effectively structuring the search space.

The inductive nature of responses to novelty is intimately related to the exploration-
exploitation dilemma (Cohen, McClure, & Yu, 2007), which refers to the problem of

choosing whether to continue harvesting a reasonably profitable option (exploitation) or

to search for a possibly more profitable one (exploration). Choosing a novel option corre-

sponds to an exploratory strategy. Traditional theoretical treatments approach the problem

of determining the optimal balance between exploration and exploitation in terms of the

value of information (Howard, 1966): Reducing uncertainty by observing the conse-

quences of novel actions is inherently valuable because this can lead to better actions in

the future. This principle is formalized in the Gittins Index (Gittins, 1989), which dictates

the optimal exploration policy in multi-armed bandits (choice tasks with a single state

and multiple actions). The Gittins Index can be interpreted as adding to the predicted

reward payoff for each option an “exploration bonus” that takes into account the uncer-

tainty about these predictions. The influence of this factor on human behavior and brain

activity has been explored in several recent studies (Acu~na & Schrater, 2010; Daw,

O’Doherty, Dayan, Seymour, & Dolan, 2006b; Steyvers, Lee, & Wagenmakers, 2009).
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We shall come back to the exploration-exploitation dilemma when we discuss the results

of Experiment 2.

The rest of the paper is organized as follows. We first review the rather puzzling and

contradictory literature on responses to novelty in humans and animals, and relate novelty

responses to the neuromodulator dopamine, thought to play an important role in RL.

Then, in Section 2 we lay out a Bayesian statistical framework for incorporating induc-

tive biases into RL and show how this framework is related to the temporal difference

(TD) algorithm (Sutton & Barto, 1998) that has been widely implicated in neurophysio-

logical and behavioral studies of RL (Niv, 2009; Schultz, Dayan, & Montague, 1997). In

Sections 3-4 we present the results of two experiments designed to test the model’s pre-

dictions and compare these predictions to those of alternative models. Finally, in Section 5

we discuss these results in light of contemporary theories of RL in the brain.

1.1. The puzzle of novelty

In this section, we briefly survey some representative findings from prior studies of

neophobia and neophilia (see Corey, 1978; Hughes, 2007, for more extensive reviews).

We define neophobia operationally as the preference for familiar over novel stimuli (and

the reverse for neophilia). This encompasses not only approach/avoidance responses (the

typical behavioral index of novelty preference) but also instrumental or Pavlovian

responses to novel stimuli. For example, in the experiments we report below, we use pre-

diction and choice as measures of novelty preferences, under the assumption that both

choice and approach/avoidance result from predictions about future reward (see Dayan,

Niv, Seymour, & Daw, 2006).

Evidence for neophilia comes from a variety of preparations. Rats will learn to press a

bar for the sake of poking their heads into a new compartment (Myers & Miller, 1954),

will forgo food rewards in order to press a lever that periodically delivers a visual stimu-

lus (Reed, Mitchell, & Nokes, 1996), will display a preference for environments in which

novel objects have appeared (Bardo & Bevins, 2000), and will interact more with novel

objects placed in a familiar environment (Ennaceur & Delacour, 1988; Sheldon, 1969).

Remarkably, access to novelty can compete with conditioned cocaine reward (Reichel &

Bevins, 2008) and will motivate rats to cross an electrified grid (Nissen, 1930). The

intrinsically reinforcing nature of novelty suggested by these studies is further indicated

by the similarity between behavioral and neural responses to novelty and to drug rewards

(Bevins, 2001). Finally, it has been argued that neophilia should not be considered deriva-

tive of basic drives like hunger, thirst, sexual appetite, pain, and fear, since it is still

observed when these drives have ostensibly been satisfied (Berlyne, 1966).

Despite the extensive evidence for affinity to novelty in animals, many researchers

have observed that rats will avoid or withdraw from novel stimuli if given the opportu-

nity (Blanchard, Kelley, & Blanchard, 1974; King & Appelbaum, 1973), a pattern also

found in adult humans (Berlyne, 1960), infants (Weizmann, Cohen, & Pratt, 1971), and

non-human primates (Weiskrantz & Cowey, 1963). Flavor neophobia, in which animals

hesitate to consume a novel food (even if it is highly palatable), has been observed in a
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number of species, including humans (Corey, 1978). Suppressed consummatory behavior

is also observed when a familiar food is offered in a novel container (Barnett, 1958); ani-

mals may go 2 or 3 days without eating under these circumstances (Cowan, 1976).

Another well-studied form of neophobia is known as the mere exposure effect: Simply

presenting an object repeatedly is sufficient to enhance preference for that object relative

to a novel object (Zajonc, 2001). As an extreme example of the mere exposure effect, Ra-

jecki (1974) reported that playing tones of different frequencies to different sets of fertile

eggs resulted in the newly hatched chicks preferring the tone to which they were prena-

tally exposed.

A number of factors have been identified that modulate the balance between neophilia

and neophobia. Not surprisingly, hunger and thirst will motivate animals to explore and

enhance their preference for novelty (Fehrer, 1956; File & Day, 1972). Responses to nov-

elty also depend on “background” factors such as the level of ambient sensory stimulation

(Berlyne, Koenig, & Hirota, 1966) and the familiarity of the environment (Hennessy,

Levin, & Levine, 1977). For our purposes, the most relevant modulatory factor is prior

reinforcing experience with other cues. Numerous studies have shown that approach to a

novel stimulus is reduced following exposure to electric shock (Corey, 1978). One inter-

pretation of this finding is that animals have made an inductive inference that the envi-

ronment contains aversive stimuli, and hence new stimuli should be avoided. In this

connection, it is interesting to note that laboratory rats tend to be more neophilic than

feral rats (Sheldon, 1969); given that wild environments tend to contain more aversive

objects than laboratories, this finding is consistent with idea that rats make different

inductive generalizations based on their differing experiences.

1.2. Dopamine and shaping bonuses

RL theory has provided a powerful set of mathematical concepts for understanding the

neurophysiological basis of learning. In particular, theorists have proposed that humans

and animals employ a form of the TD learning algorithm, which uses prediction errors

(the discrepancy between received and expected reward) to update reward predictions

(Barto, 1995; Houk, Adams, & Barto, 1995; Montague, Dayan, & Sejnowski, 1996;

Schultz, Dayan, & Montague, 1997); for a recent review, see Niv (2009). The firing of

midbrain dopamine neurons appears to correspond closely to a reward prediction error

signal (Bayer & Glimcher, 2005; Hollerman & Schultz, 1998; Schultz et al., 1997).

Despite this remarkable correspondence, the prediction error interpretation of dopamine

has been challenged by the observation that dopamine neurons also respond to the

appearance of novel stimuli (Horvitz, Stewart, & Jacobs, 1997; Schultz, 1998), a finding

not predicted by classical RL theories.

Kakade and Dayan (2002b) suggested that dopaminergic novelty responses can be

incorporated into RL theory by postulating shaping bonuses—optimistic initialization of

reward predictions (Ng, Harada, & Russell, 1999). These high initial values have the

effect of causing a positive prediction error when a novel stimulus is presented (see also

Suri, Schultz, et al., 1999). Wittmann, Daw, Seymour, and Dolan (2008) have shown that
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this model can explain both brain activity and choice behavior in an experiment that

manipulated the novelty of cues. Optimistic initialization is theoretically well motivated

(Brafman & Tennenholtz, 2003), based on the idea that optimism increases initial explo-

ration. However, the contribution of inductive biases to the dopaminergic novelty

response has not been systematically investigated, although there is evidence that dopa-

mine neurons will sometimes “generalize” their responses from reward-predictive to

reward-unpredictive cues (Day, Roitman, Wightman, & Carelli, 2007; Kakade & Dayan,

2002a; Schultz, 1998).

It is important to distinguish between multiple forms of generalization that can occur

when a cue is presented. For example, Kakade and Dayan (2002b) examined generaliza-

tion arising from partial observability: uncertainty about the identity of an ambiguous

cue. This can result in neural responses to different cues being blurred together (see also

Daw, Courville, & Touretzky, 2006a; Rao, 2010), effectively leading to generalization.

Similarly, uncertainty about when an outcome will occur can also lead to the blending

together of neural responses across multiple points in time (Daw et al., 2006a). Our

focus, in contrast, is on generalization induced by uncertainty about the reward value of a

cue, particularly in situations where multiple cues occur in the same context. Our conjec-

ture is that contextual associations bind together cues such that experience with one cue

influences reward predictions for all cues in that context. In the next section, we present

a theoretical framework that formalizes this idea.

2. Theoretical framework

To formally incorporate inductive generalization into the machinery of RL, we appeal

to the theory of Bayesian statistics, which has received considerable support as the basis

of human inductive inferences (Griffiths et al., 2010) and has been applied to RL in a

number of previous investigations (Behrens, Woolrich, Walton, & Rushworth, 2007;

Courville, Daw, & Touretzky, 2006; Gershman, Blei, & Niv, 2010; Kakade & Dayan,

2002a; Payzan-LeNestour & Bossaerts, 2011). Our contribution is to formalize the influ-

ence of abstract knowledge in RL through a hierarchical Bayesian model (Kemp et al.,

2007; Lucas & Griffiths, 2010). In such a model, the reward properties of different

options are coupled together by virtue of being drawn from a common distribution. As a

consequence, an agent’s belief about one option is (and should be) influenced by the

agent’s experience with other options.

We derive our Bayesian RL model from first principles, starting with a generative

model of rewards that expresses assumptions, which we ascribe to the agent, about the

probabilistic relationships between cues and rewards in its environment.1 The agent then

uses Bayes’ rule to “invert” this probabilistic model and predict the underlying reward

probabilities. Finally, we show that there is a close formal connection between application

of Bayes’ rule and TD learning (see Dearden, Friedman, & Russell, 1998; Engel, Mannor,

& Meir, 2003, for other relationships between Bayes’ rule and TD learning).
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2.1. Hierarchical Bayesian inference

For concreteness, consider the problem of choosing whom to ask on a date. Each

potential date has some probability of saying “yes” (a rewarding outcome) or “no” (an

unrewarding outcome). These probabilities may not be independent from each other; for

example, there may be an overall bias towards saying “no” if people tend to already have

dates. In the Bayesian framework, the goal is to learn each person’s probability of saying

“yes,” potentially informed by the higher level bias shared across people.

Formally, we specify the following generative model (see Fig. 1) for reward rt on trial

t in a K-armed bandit (a choice problem in which there are K options on every trial, each

with a separate probability of delivering reward):

1. In the first step, a bias parameter b, which determines the central tendency of the

reward probabilities across arms, is drawn from a Beta distribution:

bjb0;q0 �Betaðq0b0;q0ð1� b0ÞÞ; ð1Þ

where b0, the mean, and q0, which is inversely proportional to the variance.2 In the dating

example, b represents the overall propensity across people for agreeing to go on a date.

2. Given the bias parameter, the next step is to draw a reward probability hi for each
arm. In the dating example, hi represents a particular individual’s propensity for

agreeing to go on a date. These are drawn independently from a Beta distribution

with mean b:

b

θi

rt

K

T

Inductive 
bias

Reward 
probability

Reward

ρ = 5

ρ = 20

Fig. 1. Hierarchical Bayesian model. (Left) Graphical representation of the model as a Bayesian network.

Unshaded nodes represent unknown (latent) variables, shaded nodes represent observed variables, plates rep-

resent replications, and arrows represent probabilistic dependencies. See Pearl (1988) for an introduction to

Bayesian networks. (Right) Probability distributions over the reward parameter h induced by different settings

of b and q.
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hijb;q�Betaðqb;qð1� bÞÞ: ð2Þ

The parameter q controls the degree of coupling between arms: High q means that

reward probabilities will tend to be tightly clustered around b (see Fig. 1).

3. The last step is to draw a binary reward rt for each trial t, conditional on the chosen

arm ct, and the reward probability of that arm hct :

rtjh; ct �BernoulliðhctÞ; ð3Þ
where i 2 {1,. . .,K} indexes arms (options) and ct 2 f1; . . .;Kg denotes the choice made

on trial t. In the dating example, rt represents whether or not the person you chose to ask

out on a particular night (ct) agreed to go on a date.

Given a sequence of choices c ¼ fc1; . . .; cTg and rewards r ¼ fr1; . . .; rTg, the

agent’s goal is to estimate the reward probabilities h ¼ fh1; . . .; hKg, so as to choose the

most rewarding arm. We now describe the Bayesian approach to this problem, and then

relate it to TD reinforcement learning. Letting Ci denote the number of times arm i was
chosen and Ri denote the number of times reward was delivered after choosing arm i, we
can exploit the conditional independence assumptions of the model to express the poster-

ior over reward probabilities as:

Pðhjr; cÞ ¼
Z
b

Pðh; bjr; cÞdb

¼
Z
b

Pðbjr; cÞPðhjr; c; bÞdb

¼
Z
b

Pðbjr; cÞ
Y
i

Betaðhi;Ri þ qb;Ci � Ri þ qð1� bÞÞdb:

ð4Þ

where Betaðhi; �; �Þ is the probability density function of the Beta distribution evaluated at

hi. We have suppressed explicit dependence on q, q0 and b0 (which we earlier assumed

to be known by the agent) to keep the notation uncluttered. The conditional distribution

over b is given by:

Pðbjr; cÞ / Pðbjq0; b0Þ
Y
i

BðRi þ qb;Ci � Ri þ qð1� bÞÞ
Bðqb; qð1� bÞÞ ; ð5Þ

where Bð�; �Þ is the beta function. The posterior mean estimator for hi is thus given by

ĥi ¼ E½hijr; c� ¼
Z
b

Pðbjr; cÞ
Z
hi

hiPðhijri; ci; bÞdhidb

¼
Z
b

Pðbjr; cÞ Ri þ qb
Ci þ q

� �
db:

ð6Þ

This estimate represents the posterior belief that arm i will yield a reward, conditional

upon observing r and c. Although there is no closed-form solution to the integral in
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Eq. 6, it is bounded and one-dimensional, so we can easily approximate it numeri-

cally.

As an illustration of how the estimated reward probabilities are determined by

observed rewards, Fig. 2 shows examples of the joint posterior distribution for two arms

under different settings of R1. Notice that the estimate for h1 is regularized toward the

empirical mean of the other arm, R2=C2. Similarly, the estimate of h2 is regularized

toward the empirical mean of the first arm. The regularization occurs because the hierar-

chical model couples the reward probabilities across arms. Experience with one arm influ-

ences the estimate for the other arm by shifting the conditional distribution over the bias

parameter (Eq. 5), which is shared by both arms.

2.2. Relationship to temporal difference reinforcement learning

Although we are primarily interested in testing the validity of the Bayesian framework

to describe human behavior in relation to novelty, to relate this abstract statistical frame-

work to commonly used mechanistic models of learning in the brain, we now show how

a learner can estimate ĥi online using a variant of TD learning. First, we establish that,

for given b, TD learning with a time-varying learning rate directly calculates ĥi. We then

extend this to the case of unknown b. After choosing option ct, TD updates its estimate

of the expected reward (the value function, V) according to:

Vtþ1ðctÞ ¼ VtðctÞ þ gtdt; ð7Þ

where gt is a learning rate and dt ¼ rt � VtðctÞ is the prediction error.3 This delta-rule

update (cf. Widrow & Hoff, 1960) is identical to the influential Rescorla–Wagner model

used in animal learning theory (Rescorla & Wagner, 1972). The same model has been

θ2

θ 1

R1 = 2

0 0.5 1
0

0.5

1

θ2

θ 1

R1 = 6

0 0.5 1
0

0.5

1

Fig. 2. Posterior distribution over reward probabilities. Heatmap displays P(h|r,c) for a two-armed bandit

under different settings of R1 (lighter colors denote higher probability). The axes represent different hypothet-

ical settings of the reward probabilities (h1 and h2). The cross denotes the empirical proportions Ri=Ci, with

R2 ¼ 5 and C1 ¼ C2 ¼ 10. The “x” denotes the posterior mean.
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applied by Gluck and Bower (1988b) to human category learning (see also Gluck &

Bower, 1988a).

We now establish that Eq. 7 directly computes the posterior mean ĥi. We proceed by

setting the learning rate gt such that VtðiÞ represents the posterior mean estimate of hi
after observations 1 to t � 1. Let us define the auxiliary variables s ¼ Ci þ q and

a ¼ Ri þ qb, where the counts reflect observations 1,. . .,t � 1. For known b, we can re-

express Eq. 6 in the following “delta rule” form:

aþ rt
sþ 1

¼ a

s
þ gt rt � a

s

� �
: ð8Þ

Note that the integral in Eq. 6 has disappeared here because we are conditioning on b.
The left-hand side of Eq. 8 is the posterior mean ĥi after observations 1,. . .,t, and a

s is the

posterior mean after observations 1,. . .,t � 1. After some algebraic manipulation, we can

solve for gt:

gt ¼
srt � a

sðsþ 1Þ
s

srt � a

¼ 1

sþ 1

¼ 1

Ci þ qþ 1
:

ð9Þ

Notice that when t = 1 (i.e., before any observations, when Ri ¼ Ci ¼ 0), a
s ¼ b. In

other words, the above equations imply that the initial value for all options is equal to

the prior mean, b. This means that TD learning using gt ¼ 1
Ci þ qþ 1

and initializing all the

values to b yields a correct posterior estimation scheme, conditional on b.
There is a close connection between this posterior estimation scheme and the shaping

bonus considered by Kakade and Dayan (2002a) in their model of dopamine responses.

Recall that a shaping bonus corresponds simply to setting the initial value to a positive

constant in order to encourage exploration. This can be contrasted with a “na€ıve” TD

model in which the initial value is set to 0. The analysis described above demonstrates

that according to the hierarchical Bayesian interpretation of TD, the initial value should

be precisely the prior mean. Thus, our theory provides a normative motivation for shap-

ing bonuses grounded in inductive inference. Different initial values represent different

assumptions (inductive biases) about the data-generating process. Another interesting

aspect of this formulation is that larger values of the coupling parameter q lead to faster

learning rate decay. This happens because larger q implies more sharing between options,

and hence effectively more information about the value of each individual option.

When b is unknown, we must average over its possible values. This can be done

approximately by positing a collection of value functions f ~Vtði; b1Þ; . . .; ~Vtði; bNÞg, each
with a different initial value bn, such that they tile the [0,1] interval. These can be learned

in parallel, and their estimates can then be combined to form the marginalized hierarchi-

cal estimate:
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VtðiÞ �
XN
n¼1

wn
~Vtði; bnÞ; ð10Þ

where

wn ¼ Pðb ¼ bnjr; cÞPN
j¼1 Pðb ¼ bjjr; cÞ

: ð11Þ

The intuition here is that the distribution over b represents uncertainty about initial val-

ues (i.e., about the prior probability of reward); by averaging over b the agent effectively

smoothes the values to reflect this uncertainty.

To summarize, we have derived a formal relationship between hierarchical Bayesian

inference and TD learning, and used this to show how shaping bonuses can be interpreted

as beliefs about the prior probability of reward, a form of inductive bias. We have also

shown how this inductive bias can itself be learned. The basic prediction of our theory is

that preferences for novel options should increase monotonically with the value of other

options experienced in the same context. In the following, we describe two experiments

designed to test implications of this prediction.

3. Experiment 1: Manipulating inductive biases in a reward prediction task

The purpose of Experiment 1 was to show that inductive biases influence predictions

of reward for novel options. Our general approach was to create environments in which

options tend to have similar reward probabilities, leading participants to form the expecta-

tion that new options in the same environment will also yield similar rewards. Partici-

pants played an “interplanetary farmer” game in which they were asked to predict how

well crops would grow on different planets, obtaining reward if the crop indeed grew. In

this setting, crops represent options and planets represent environments. “Fertile” planets

tended to be rewarding across many crops, whereas “infertile” planets tended to be unre-

warding. The Bayesian RL model predicts that participants will learn to bias their predic-

tions for new crops based on a planet’s fertility. Specifically, participants should show

higher reward predictions for novel crops on planets in which other crops have been fre-

quently rewarded, compared to predictions for novel crops on planets in which other

crops have been infrequently rewarded. Thus, the model predicts both “neophilia" and

“neophobia" (in the generalized sense of a behavioral bias for or against novelty) depend-

ing on the participant’s previous experience in the task.

3.1. Methods

3.1.1. Participants
Fourteen Princeton University undergraduate students were compensated $10 for

45 min, in addition to a bonus based on performance. All participants gave informed

10 S. J. Gershman, Y. Niv / Topics in Cognitive Science (2015)



consent and the study was approved by the Princeton University Institutional Review

Board.

3.1.2. Materials and procedure
Fig. 3 shows a schematic of the task. Participants were told that they would play the

role of “interplanetary farmers” tasked with planting various types of crops on different

planets, with each crop’s properties specific to a planet (i.e., apples might grow on one

planet but not on another). Participants were informed each time they began farming a

new planet.4 On prediction trials (Fig. 3, top), participants were shown a single crop and

asked to rate their “gut feeling” that the crop will yield a profit (i.e., a binary reward).

Responses were registered using a mouse-controlled slider-bar. Crops were indicated by

color images of produce (fruits and vegetables). The experiment was presented using

Psychtoolbox (Brainard, 1997).

After making a response, the participant was presented with probabilistic reward feed-

back lasting 1,000 ms while the response remained on the screen. Reward feedback was

signalled by a dollar bill for rewarded outcomes and by a phase-scrambled dollar bill for

unrewarded outcomes. Rewards were generated according to the following process: For

each planet, a variable b was drawn from a Beta(1.5,1.5) distribution,5 and then a crop-

specific reward probability was drawn from a Beta(qb,q(1 � b)) distribution, with q = 5.

Participants were told that planets varied in their “fertility”: On some planets, many crops

would tend to be profitable (i.e., frequently yield rewards), whereas on other planets few

crops would tend to be profitable.

We used a prediction task (rather than a choice task) in order to disentangle inductive

bias from the value of gathering information (Howard, 1966). Because rewards in our

task do not depend on behavioral responses, participants cannot take actions to gain infor-

Action Feedback

What is your gut feeling?

Sure loss Sure win

What is your gut feeling?

Sure loss Sure win

Choice 
task

Prediction
task

Fig. 3. Task design. (Top row) A prediction trial, in which subjects rated their “gut feeling” (using a slider-

bar) that a crop will yield a reward. (Bottom row) A choice trial, in which subjects chose between two crops.

In both cases, participants received (probabilistic) reward feedback (right panels). Receipt of reward is repre-

sented by a dollar bill; no reward obtained is represented by a scrambled image of a dollar bill.
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mation. However, to confirm that participants were able to distinguish the reward proba-

bilities of different crops and were assessing each crop separately, we also included peri-

odic choice trials in which participants chose between two different crops. On these trials

(Fig. 3, bottom), participants were shown two crops from the current planet and were

asked to choose the crop they would prefer to plant. Feedback was then delivered accord-

ing to the same generative process used in the prediction trials. A cash bonus of $1–3
was awarded based on performance on the choice trials by calculating 10% of the partici-

pant’s earnings on these trials; thus, participants were encouraged to maximize the suc-

cess of their crops on these trials.

Each planet corresponded to 60 prediction trials (six planets total), with each crop

appearing 4–12 times. The crops were cycled, such that three crops were randomly inter-

leaved at each point in time, and every four trials one crop would be removed and

replaced by a new crop. Thus, except for the first and last two crops, each crop appeared

in three consecutive cycles. Choice trials were presented after every 10 prediction trials,

for a total of six choice trials per planet.

3.2. Results and discussion

To analyze the “gut feeling” prediction data, we fit several computational learning

models to participants’ predictions. These models formalize different assumptions about

inductive reward biases. In particular, we compared the Bayesian RL model to simple

variations on the basic TD algorithm. The “na€ıve” TD model initialized values to

V1 ¼ 0, and then updated them according to the TD rule (Eq. 7), with a stationary learn-

ing rate g that we treated as a free parameter. The “shaping” model incorporated shaping

bonuses by initializing V1 [ 0. For the shaping model, we treated V1 as a free parameter

(thus the na€ıve model is nested in the shaping model). The Bayesian RL model, as

described above, had two free parameters, q and b0.
We used participants’ responses on prediction trials in order to fit the free parameters

of the models. For this, it was necessary to specify a mapping from learned values to

behavioral responses. Letting x denote the set of parameters on which the value function

depends in each model, we assumed that the behavioral response on prediction trial t, yt,
is drawn from a Gaussian with mean Vtðct; xÞ and variance r2 (a free parameter fit to

data). Because there is only one crop on each prediction trial, ct refers to the presented

crop on trial t. Note also that Vt is implicitly dependent on the reward and choice history.

The free parameters of the models were fit for each participant separately, using Mar-

kov chain Monte Carlo (MCMC) methods (Robert & Casella, 2004). A detailed descrip-

tion of our procedure is provided in the Appendix. Briefly, we drew samples from the

posterior over parameters and used these to generate model predictions as well as the pre-

dictive probability of held-out data using a cross-validation procedure, where we held out

one planet while fitting all the others. Cross-validation evaluates the ability of the model

to generalize to new data and is able to identify “over-fitting” of the training data by

complex models. We reserved the choice trials for independent validation that participants
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were discriminating between the reward probabilities for different crops on a planet, and

we did not use them for model fitting.

Since we were primarily interested in behavior on trials in which a novel crop was pre-

sented, we first analyzed these separately. Fig. 4 (left) shows reward predictions for novel

crops as a function of average previous reward on a planet (across all crops). Participants

exhibited a monotonic increase in reward predictions for a novel crop as a function of

average reward, despite having no experience with the crop. This monotonic increase is

anticipated by the Bayesian RL model, but not by the shaping model. Participants also

appeared to display an a priori bias toward high initial reward predictions (i.e., optimism),

based on the fact that initial reward predictions were always greater than 0. The Bayesian

RL model was able to capture this bias with the higher level bias parameter, b0.
Fig. 4 (right) shows the cross-validation results for the three models, favoring the

Bayesian model. To statistically quantify these results, we computed relative cross-valida-

tion scores by subtracting, for each subject, the predictive log-likelihood of the held-out

prediction trials under the shaping and na€ıve models from the log-likelihood under the

Bayesian model. Thus, scores below 0 represent inferior predictive performance relative

to the Bayesian model. We performed paired-sample t-tests on the cross-validation scores
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Fig. 4. Human inductive biases in Experiment 1. (Left) Empirical and model-based reward predictions for

novel crops as a function of average past reward on a planet (across all crops). The average reward only

incorporates rewards prior to each response. The na€ıve RL predictions correspond to a straight line at 0. Pre-

dictions were averaged within four bins equally spaced across the average reward axis. Error bars denote

standard error. (Right) Cross-validated predictive log-likelihood of shaping and na€ıve models relative to the

Bayesian model. Points below the diagonal (higher log-likelihood) indicate a better fit of the Bayesian model.
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across participants. The scores for the Bayesian model were significantly higher compared

to the shaping model (t(13) = 3.42, p < .005) and the na€ıve model

(tð13Þ ¼ 6:87; p\ :00002). The score for the shaping model was also significantly higher

compared to the na€ıve model (t(13) = 4.44, p < .0007).

These results rule out another alternative model that we have not yet discussed. In this

model, participants represent the planet context as an additional feature of each trial,

which can itself accrue value. When presented with a novel crop, this contextual feature

(and its corresponding value) can then guide valuation according to the reinforcement his-

tory of other crops on the same planet. The simplest instantiation of such a model would

be to calculate the aggregate value of a crop as the sum of its context and crop-specific

values, such as in the Rescorla–Wagner model (Rescorla & Wagner, 1972). In fact, this

type of feature combination is well-established in the RL literature, where it is known as

a linear function approximation architecture (Sutton & Barto, 1998). However, the precise

quantitative predictions of such a model disagree with our findings. To correctly predict

the reward value, the feature-specific reward predictions should sum to 1. This means that

rewards are essentially divided among the features; consequently, when presented with a

novel crop, its value under this context-feature model will of necessity be less than or

equal to the average reward previously experienced on that planet, in contradiction to the

results shown in Fig. 4. It is also worth noting that these findings are consistent with the

observation in the animal learning literature that contexts do not acquire value in the

same way as do punctate cues (Bouton & King, 1983).

An important question concerns whether participants truly learned separate values for

each crop or simply collapsed together all the crops on a planet. To address this, we per-

formed a logistic regression analysis on the choice trials to see whether the difference in

average reward between two crops is predictive of choice behavior (an intercept term was

also included). The regression analysis was performed for each subject separately, and

then the regression coefficients were tested for significance using a one-sample t-test. This
test showed that the coefficients were significantly greater than zero (t(13) = 5.09,

p < .0005), indicating that participants were able to discriminate between crops on the

basis of their reward history. On average, participants chose the better crop 68% of the

time (significantly greater than chance according to a binomial test, p < .01).

In summary, this experiment provides evidence that humans and animals learn at mul-

tiple levels of abstraction, such that higher level knowledge (here: about a planet) is

informed by, and also constrains learning at lower levels (e.g., about crops).

4. Experiment 2: Manipulating inductive biases in a decision-making task

Our previous experiment used a reward prediction task as a way of directly querying

participants’ values. However, this design sacrifices the decision-making aspect of RL,

the source of rich computational issues such as the exploration-exploitation trade-off. It

also makes it difficult to distinguish our experiments from formally similar causal learn-

ing experiments; indeed, our computational formalism is closely related to Bayesian theo-
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ries of causal learning (Glymour, 2003; Kemp, Goodman, & Tenenbaum, 2010). Experi-

ment 2 was, therefore, designed to study inductive biases in a choice setting, where par-

ticipants are asked to choose crops to maximize their cumulative rewards.

One problem with translating our paradigm into the choice setting is that choices are

primarily driven by relative value, and hence when all the crops are of high or low value,

any inductive biases related to the context will be obscured by the relative value of the

crops. To address this issue, we asked participants to choose between a continually

changing crop and a reference crop that was presented on every trial and always deliv-

ered rewards with probability 1/2. Inductive biases can then be revealed by examining

the probability that a novel crop will be chosen over the reference crop.

4.1. Methods

4.1.1. Participants
Fifteen Princeton University undergraduate students were compensated $10 for 45 min,

in addition to a bonus based on performance. All participants gave informed consent and

the study was approved by the Princeton University Institutional Review Board.

4.1.2. Materials and procedure
The procedure in Experiment 2 was similar to the choice trials in Experiment 1. Partic-

ipants were shown two crops from the same planet and were asked to choose the crop

with the greater probability of reward. One of the two crops was a reference crop that

delivered reward with probability 1/2 across all planets (participants were told this reward

probability). Feedback was then delivered probabilistically as in Experiments 1 and 2,

according to the chosen crop. A cash bonus of $1–$3 was awarded based on performance

on the choice trials, by calculating 10 percent of the participant’s earnings.

Each planet involved 100 trials (12 planets total), with a new crop appearing every 9

to 19 trials (chosen from a uniform distribution). Unlike in the previous experiments, the

crops were not cycled; instead, a single crop would appear in consecutive trials until

replaced by a new one. This allowed us to examine learning curves for a single crop. On

each planet, participants were presented with a total of seven to eight unique crops (not

including the reference crop). Planets were divided into equal numbers of “fertile” planets

on which all crops delivered a reward with probability 0.75, and “infertile” planets on

which all crops delivered a reward with probability 0.25.

To model the transformation of values into choice probabilities, we used the softmax

equation (Sutton & Barto, 1998):

Pðct ¼ iÞ ¼ expfbVtðiÞgP
j expfbVtðjÞg ; ð12Þ

where b is an inverse temperature parameter that governs the stochasticity of choice

behavior and j indexes crops available on the current trial. In all other aspects, our fitting

and evaluation procedures were identical to those described for Experiment 1.
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4.2. Results and discussion

Fig. 5 summarizes the results of this experiment. The probability of choosing a novel

crop on its first presentation increased monotonically as a function of average reward

(Fig. 5, left), despite no prior experience with the crop, consistent with the Bayesian RL

model. As in Experiment 1, the shaping and na€ıve models were unable to capture this

pattern: The cross-validation results (Fig. 5, right) confirmed that the Bayesian RL model

was quantitatively better at predicting behavior than either alternative. The cross-valida-

tion scores for the Bayesian model were significantly higher compared to the shaping

model (tð14Þ ¼ 5:69; p\ :00005) and the na€ıve model (t(14) = 3.65, p < .005).

Consistent with the results of Experiment 1, we again found that participants had an a

priori bias toward novel crops superimposed on their inductive bias, as evidenced by the

fact that the novel crops were chosen over 40% of the time even when the previous crops

were rewarded only on 20 percent of the trials (compared to 50 percent for the reference

crop). This bias was captured by fitting the top-level bias parameter q0.
Our experimental design provided us with an opportunity to study how participants use

inductive biases to balance the exploration-exploitation trade-off. In particular, a stronger

inductive bias should lead to less exploration and more exploitation, since the participant

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average reward

N
ov

el
 c

ho
ic

e 
pr

ob
.

Empirical
Bayes
Shaping
Naive

−1200 −1000 −800 −600 −400 −200
−1200

−1100

−1000

−900

−800

−700

−600

−500

−400

−300

−200

Lo
g−

lik
el

ih
oo

d 
(s

ha
pi

ng
/n

ai
ve

)

Log−likelihood (Bayesian)

Shaping
Naive

Fig. 5. Human inductive biases in Experiment 2. (Left) Empirical and model-based probability of choosing

a novel crop as a function of average past reward on a planet (across all crops). Predictions were averaged

within four bins equally spaced across the average reward axis. Error-bars denote standard error. (Right)

Cross-validated predictive log likelihood of shaping and na€ıve models relative to the Bayesian model. Points

below the diagonal (higher log likelihood) indicate a better fit of the Bayesian model.
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is more confident in his/her reward predictions. According to the Bayesian RL model, the

inductive bias for novel crops will be stronger at the end of a planet than at the begin-

ning, since more evidence will have accumulated about the average value of crops on a

planet. Accordingly, we divided crops according to whether they appeared early in the

planet (within the first 25 trials) or late (after the first 25 trials).6 We further distinguished

between “good” crops (with reward probability 0.75) and “bad” crops (with reward prob-

ability 0.25). We then examined the learning curves for each of these categories of crops

(Fig. 6, left).

For bad crops, the Bayesian RL model predicts a stronger inductive bias late in the

block compared to early in the block (Fig. 6, right), a pattern that is exhibited by partici-

pants’ choice behavior (Fig. 6, left). Thus, participants appear to explore less as their

inductive biases become stronger. The main discrepancy between the model and data is

the slightly lower novel choice probability on the first repetition of a bad crop late in the

block. In addition, the model appears to predict an overall higher novel choice probability

for bad crops than observed empirically.

The Bayesian RL model also predicts a smaller difference in early/late performance

for bad crops compared to good crops. Due to the baseline optimistic novelty bias

described above, participants will (according to the model) initially over-sample a reward-

ing novel option and then decrease (or at least not increase) their choice of this option so
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as to calibrate their choice probability with the reward probability. This pattern is mani-

fested by the fitted Bayesian RL model (Fig. 6, right) for the good crops. Empirically,

however, this predicted decline was too small to detect (Fig. 6, left), probably because of

a ceiling effect.

5. General discussion

We hypothesized, on the basis of a hierarchical Bayesian RL model, that preferences

for novel options are affected by the value of other options experienced in the same con-

text. The results of two experiments provide support for this hypothesis, suggesting that

inductive biases play a role in human RL by influencing reward predictions for novel

options. Experiment 1 showed that these predictions corresponded well with those of a

Bayesian RL model that learned inductive biases from feedback. The essential idea

underlying this model is that reward predictions for different options within a single con-

text influence each other, such that the reward prediction for a new option in the same

context will reflect the central tendency of rewards for previously experienced options.

Experiment 2 replicated the results of Experiment 1 in a choice task, showing that

participants are more likely to choose novel options in a reward-rich (compared to a

reward-poor) context. In addition, Experiment 2 showed that participants’ inductive biases

influenced how they balanced the exploration-exploitation trade-off: Participants spent

less time exploring when they had stronger inductive biases, suggesting that inductive

biases accelerate the search for valuable options.

These findings contribute to a more complex picture of the brain’s RL faculty than pre-

viously portrayed (e.g., Houk et al., 1995; Montague et al., 1996; Schultz et al., 1997). In

this new picture, structured statistical knowledge shapes reward predictions and guides

option search (Acu~na & Schrater, 2010; Gershman & Niv, 2010). It has been proposed

that humans exploit structured knowledge to decompose their action space into a set of

sub-problems that can be solved in parallel (Botvinick, Niv, & Barto, 2009; Gershman,

Pesaran, & Daw, 2009; Ribas-Fernandes et al., 2011). The current work suggests that

humans will also use structured knowledge to couple together separate options and learn

about them jointly, a form of generalization. An important question for future research is

how this coupling is learned. One possibility is that humans adaptively partition their

action space; related ideas have been applied to clustering of states for RL (Gershman

et al., 2010; Redish, Jensen, Johnson, & Kurth-Nelson, 2007) and category learning

(Anderson, 1991; Love, Medinm, & Gureckis, 2004).

The animal learning literature is rich with examples of “generalization decrement,” the

observation that a change in conditioned stimulus properties results in reduced responding

(Domjan, 2003). Our results suggest that the effects of stimulus change on responding

may be more adaptive: If the animal has acquired a high-level belief that stimuli in an

environment tend to be rewarding (or punishing), one would expect stimulus change to

maintain a high level of responding. In other words, generalization (according to our

account) should depend crucially on the abstract knowledge acquired by the animal from
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its experience, resulting in either decrement or increment in responding. Urcelay and

Miller (2010) have reviewed a number of studies showing evidence of such abstraction in

rats.

A conceptually related set of ideas has been investigated in the causal learning litera-

ture. For example, Waldmann and Hagmayer (2006) showed that people will generalize

causal predictions from one set of exemplars to another if the exemplars belong to the

same category (see also Kemp et al., 2010; Lien & Cheng, 2000). In a similar vein, Gop-

nik and Sobel (2000) showed that young children use object categories to predict the cau-

sal powers of a novel object. Our work, in particular the choice task explored in

Experiment 2, distinguishes itself from studies of causal learning in that participants are

asked to make decisions that optimize rewards. The incentive structure of RL introduces

computational problems that are irrelevant to traditional studies of causal learning, such

as how to balance exploration and exploitation, as well as implicating different underly-

ing neural structures. Still, our results are consistent with what has been shown for causal

learning.

The causal and category learning literatures offer alternative models that may be able

to explain our results, such as exemplar models (Nosofsky, 1986) that are yet another

mechanism for carrying out Bayesian inference (Shi, Griffiths, Feldman, & Sanborn,

2010). Exemplar models require a similarity function between exemplars; with complete

freedom to choose this function, it can be specified to produce the same predictions as

the Bayesian model. The choice of similarity function can also be seen as implicitly

embodying assumptions about the generative process that we are trying to explicitly cap-

ture in our Bayesian analysis.

Both exemplar models and TD models are specified at the algorithmic level (Marr,

1982). The primary goal of this paper was to develop a computational-level theory of

novelty. As such, we are not committed to any particular mechanistic implementation of

the theory. The reason for introducing TD models was to show how a particular set of

mechanistic ideas could be connected explicitly to this computational-level theory. This

specific implementation was motivated by previous work on RL in humans and animals,

which supports an error-driven learning rule that incrementally estimates reward predic-

tions (Niv, 2009; Rescorla & Wagner, 1972; Schultz et al., 1997).

The category literature has also emphasized the question of how people generalize

properties to novel objects. Shepard (1987) famously proposed his “universal law of gen-

eralization,” according to which generalization gradients decay approximately exponen-

tially as a function of the psychological distance between novel and previously

experienced objects. Shepard derived his universal law from assumptions about the geo-

metric structure of natural kinds in psychological space (the consequential region) and

the probability distribution over consequential regions. Subsequently, Gluck (1991)

showed how, given an appropriate choice of stimulus representation, exponential-like gen-

eralization gradients could be derived from precisely the sort of associative model that

we have investigated in this paper.

Dopamine has long played a central role in the neurophysiology of novelty (Hughes,

2007). The “shaping bonus” theory of Kakade and Dayan (2002b), which posits that
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reward predictions are initialized optimistically, has proven useful in rationalizing the

relationship between dopamine and novelty in RL tasks (Wittmann et al., 2008). Our

model predicts aspects of novelty responses that go beyond shaping bonuses. In particu-

lar, the dopamine signal should be systematically enhanced for novel cues when other

cues in the same context are persistently rewarded, relative to a context in which cues are

persistently unrewarded. In essence, we explain how the shaping bonus should be dynam-

ically set.

In conclusion, we believe that novelty is not as simple as previously assumed. We

have proposed, from a statistical point of view, that responses to novelty are inductive in

nature, guiding how decision makers evaluate and search through the set of options. Our

modifications of a classic RL model allowed it to accommodate these statistical consider-

ations, providing a better fit to behavior. The inductive interpretation offers, we believe, a

new path toward unraveling the puzzle of novelty.

Acknowledgments

We thank Nathaniel Daw for many fruitful discussions and Quentin Huys for com-

ments on an earlier version of the manuscript. This work was funded by a Quantitative

Computational Neuroscience training grant to S. J. G. from the National Institute of Men-

tal Health and by a Sloan Research Fellowship to Y. N.

Notes

1. It is important to keep in mind that the generative model represents the agent’s

putative internal model of the environment, as distinct from our model of the

agent.

2. We have used a non-standard parameterization of the beta distribution because it

allows us to more clearly separate out mean and variance components.

3. We use a simplified version of TD learning that estimates rewards rather than

returns (cumulative future rewards), as is more common in RL theory (Sutton &

Barto, 1998). The latter would significantly complicate formal analysis, whereas

the former has the advantage of being appropriate for the bandit problems we

investigate. Furthermore, the simplified model has been used extensively to model

human choice behavior and brain activity in bandit tasks (e.g., Daw et al., 2006b;

Sch€onberg, Daw, Joel, & O’Doherty, 2007).

4. Although time and planetary context are confounded in this experiment (i.e., crops

experienced on a planet are also presented nearby in time), our model is neutral

with respect to what defines context. As long as the crops on a planet are grouped

together, this confound does not affect our model predictions.

5. We chose to use a Beta(1.5,1.5) distribution instead of a uniform distribution to

avoid near-deterministic reward probabilities.
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6. Qualitatively similar results were obtained with a symmetric (pre-50/post-50) split,

but we found that results with the asymmetric split were less noisy.
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Appendix: Model fitting and evaluation

Free parameters were fit to behavior, for each participant separately, using MCMC:
samples were drawn from a Markov chain whose stationary distribution corresponds to
the posterior distribution over model parameters conditional on the observed behavioral
data. In particular, we applied the Metropolis algorithm (see Robert & Casella, 2004, for
more information) using a Gaussian proposal distribution. Letting xm denote the parame-
ter vector at iteration m, the Metropolis algorithm proceeds by proposing a new parameter
x0 �N ðxm; 1

2
IÞ and accepting it with probability

Pðxmþ1 ¼ x0Þ ¼ min 1;
Pðyjx0; c; rÞPðx0Þ
Pðyjxm; c; rÞPðxmÞ

� �
: ð13Þ

If the proposal is rejected, xmþ1 is set to xm. We placed the following priors on the
parameters, with the goal of making relatively weak assumptions:
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r�Exponentialð0:1Þ ð14Þ

b�Exponentialð0:1Þ ð15Þ

q�Gammað3; 2Þ ð16Þ

q0�Gammað20; 1Þ ð17Þ

b0�Betað1; 1Þ ð18Þ

g�Betað1:2; 1:2Þ ð19Þ

V1 �Exponentialð10Þ: ð20Þ

Note that q, q0, and b0 are specific to the Bayesian RL model, g is specific to the
na€ıve and shaping models, and V1 is specific to the shaping model. All models have a
noise parameter r. For each model, to ensure that the Metropolis proposals were in the
correct range, we transformed the parameters to the real line (using exponential or logis-
tic transformations) during sampling, inverting these transformation when calculating the
likelihood and prior. Note that in producing behavioral predictions, the bias parameter b
was integrated out numerically.

After M iterations of the Metropolis algorithm, we had M samples approximately dis-
tributed according to the posterior P(x|y,r,c). We set M = 3,000 and discarded the first
500 as “burn-in” (Robert & Casella, 2004). For cross-validation, we repeated this proce-
dure for each cross-validation fold, holding out one planet while estimating parameters
for the remaining planets. Model-based reward predictions ŷt were obtained by averaging
the reward predictions under the posterior distribution:

ŷt ¼
Z
x

Vtðct; xÞPðxjy; r; cÞdx

� 1

M

XM
m¼1

Vtðct; xmÞ:
ð21Þ

As M?∞, this approximation approaches the exact posterior expectation.
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