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Theoretical models of unsupervised category learning postulate that humans “invent”
categories to accommodate new patterns, but tend to group stimuli into a small number
of categories. This “Occam’s razor” principle is motivated by normative rules of statistical
inference. If categories influence perception, then one should find effects of category
invention on simple perceptual estimation. In a series of experiments, we tested this
prediction by asking participants to estimate the number of colored circles on a computer
screen, with the number of circles drawn from a color-specific distribution. When the
distributions associated with each color overlapped substantially, participants’ estimates
were biased toward values intermediate between the two means, indicating that subjects
ignored the color of the circles and grouped different-colored stimuli into one perceptual
category. These data suggest that humans favor simpler explanations of sensory inputs. In
contrast, when the distributions associated with each color overlapped minimally, the bias
was reduced (i.e., the estimates for each color were closer to the true means), indicating
that sensory evidence for more complex explanations can override the simplicity bias. We
present a rational analysis of our task, showing how these qualitative patterns can arise
from Bayesian computations.
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INTRODUCTION
The fourteenth century English friar and theologian William of
Occam advised philosophers “not to multiply entities beyond
necessity” (Boehner, 1957). The contemporary interpretation
of Occam’s razor is that, all other things being equal, simpler
explanations of data should be preferred to more complex expla-
nations. This heuristic notion has found mathematical expression
in Bayesian statistics (Jaynes, 2003) and algorithmic informa-
tion theory (Li and Vitányi, 2008). It has since been applied to
cognitive psychology as the “simplicity principle” (Chater and
Vitányi, 2003; Feldman, 2003): the idea that humans seek sim-
ple explanations of their sensory input. Our focus in this paper is
on unsupervised category learning, where evidence suggests that
humans assign stimuli to a small set of categories, only invent-
ing new categories when the stimulus statistics change radically
(Anderson, 1991; Clapper and Bower, 1994; Pothos and Chater,
2002; Love et al., 2004; Sanborn et al., 2010).

If the categories people invent dictate how they “carve nature
at its joints” (i.e., divide the environment into meaningful enti-
ties; see Gershman and Niv, 2010), then effects of Occam’s razor
should be discernible in perceptual estimation. Substantial evi-
dence exists that categories shape perception (Huttenlocher et al.,
1991, 2000; Goldstone, 1995; Hemmer and Steyvers, 2009). For
example, Goldstone (1995) had participants judge the color of
numbers and letters that varied in color along a red-violet gra-
dient, and showed that stimuli belonging to the letter category
(with typically red objects) were judged to be more red than iden-
tically colored stimuli belonging to the other category. As another
example, syllables belonging to different phonetic categories are

more easily discriminated than syllables with the same physi-
cal difference but belonging to the same category—the so-called
perceptual magnet effect (Liberman et al., 1957). However, these
studies assume a pre-defined category structure, whereas many
real-world learning situations (particularly during development)
require one to discover the underlying category structure from
undifferentiated sensory data. In these situations, we expect that
Occam’s razor will influence the number of perceptual categories
inferred from sensory data, and in turn govern participants’ esti-
mates of stimulus properties. The experiments reported in this
paper were designed to test this hypothesis.

The stimuli in our experiments consisted of randomly scat-
tered colored circles displayed on a computer screen (Figure 1),
similar to stimuli used in studies of number perception (Izard
and Dehaene, 2008). Each trial was characterized by one of two
colors, and all circles were displayed in this color. The number of
circles on each trial was drawn from a color-specific Gaussian dis-
tribution. The distributions differed in their means (Experiments
1 and 3) or variances (Experiment 2). Participants were asked to
judge how many circles there were on the screen, but did not have
enough time to count them explicitly.

If the distributions corresponding to the two colors over-
lap sufficiently, Occam’s razor dictates that the stimuli should
all be assigned to one category despite their obviously different
colors, a prediction formalized in several models of categoriza-
tion (Anderson, 1991; Sanborn et al., 2010). The consequence of
merging the two perceptual categories is that estimates will be
“regularized” toward the average of the two distributions. In con-
trast, reducing overlap between the distributions is expected to
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FIGURE 1 | Example trial. On each trial, participants were presented with
a random scattering of circles and asked to estimate the number of circles.
The circles on each trial were all of the same color, and the number of
circles was drawn from a color-specific Gaussian distribution.

diminish this regularization, as it supports separate categories for
each color. Each of the experiments reported below included a
high overlap condition in which merging (and hence more regu-
larization) was expected to occur, and a low overlap condition in
which splitting (and less regularization) was expected to occur.

To make our theoretical account explicit and quantitative, we
present a computational model of human performance in our
task. In the spirit of the probabilistic motivation for Occam’s
razor described above, we derive our model from hypothesized
probabilistic assumptions about the environment and suggest
that participants perform approximately optimal inference. In
other words, we undertake a “rational analysis” (Anderson, 1990).
Our aim is to elucidate the computational constraints, rather
than particular processing or implementational mechanisms, that
govern perceptual estimation in our task. We compare the ratio-
nal model to an exemplar model (Medin and Schaffer, 1978;
Nosofsky, 1986, 1988; Kruschke, 1992) which represents each data
point as a unique perceptual category, and thus lacks a simplicity
bias. Through quantitative model comparison, we show that the
rational model is able to better account for our data.

EXPERIMENT 1
In our first experiment, we manipulated categorical overlap by
varying (within subject) the distance between the means of the
two distributions in blocks. Each block included one distribu-
tion (mean 65, standard deviation 10) which was designated the
“baseline,” and a second, “alternative” distribution that either had
low overlap (mean 35, standard deviation 10) or high overlap
(mean 55, standard deviation 10) with the baseline distribution
(Figure 2, left). We refer to these conditions as Low mean alterna-
tive and High mean alternative, respectively. In each block each of
the distributions (alternative and baseline) was associated with a
unique color, and circles appeared in that color on those trials in
which the number of circles was drawn from that distribution.

Our instructions to participants made no mention of color.
However, we expected participants to use color as a cue for cat-
egorization. More precisely, we expected use of the color cue to
depend on a combination of sensory evidence (i.e., the number

FIGURE 2 | Experiment 1 design and results. Left: Distributions for each
category. Right: Average estimates for the baseline category in each
condition. Error bars represent standard error of the mean.

of circles) and a simplicity bias toward fewer categories. On High
alternative mean blocks in which all trials had relatively similar
numbers of circles, we expected participants to treat all trials as
if they were one category, and effectively ignore color as a cate-
gorization cue. As a result, in these blocks we expected estimates
about the number of circles to be affected by the statistics of both
colors. In contrast, in Low alternative mean blocks in which there
was less overlap between the number of circles in trials of one
color as compared to the other color, we expected participants
to treat each color as a separate category. If participants indeed
learned separate estimates for each color, their estimates would
be closer to the true mean of each of the distributions. As such,
across blocks we predicted that estimates on the baseline trials
would be lower on average in the High mean alternative condition
than in the Low mean alternative condition, due to the regulariza-
tion induced by merging the color categories together in the High
mean but not in the Low mean alternative condition. Note that
if participants ignored color and grouped all trials together on all
blocks, we would expect the opposite: baseline estimates in the
High mean alternative condition should be systematically higher
than in the Low mean alternative condition. Alternatively, if par-
ticipants always used color as a categorization cue, there should
be no difference between estimates of baseline trials in the two
conditions, since the baseline distribution is the same in both
cases.

MATERIALS AND METHODS
Participants
Fourteen students participated in the experiment for course credit
or monetary compensation ($10). All subjects gave informed con-
sent and the study was approved by the Princeton University
Institutional Review Board.

Procedure
Stimuli consisted of colored circles displayed in a random spatial
configuration within a bounded section of the computer screen.
On each trial, the participant was presented with a pattern of
randomly scattered (occasionally overlapping) circles (Figure 1),
where the number of circles was drawn from a Gaussian with a
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category-specific mean and variance. There were two trial types:
“baseline” trials in which the number of circles was drawn from a
Gaussian with mean 65 and standard deviation 10), and “alterna-
tive” trials. In the “High mean alternative” block the latter trials
were drawn from a Gaussian with mean 55 and standard devia-
tion 10. In the “Low mean alternative” block, the alternative trials
were drawn from a Gaussian with mean 35 and standard devia-
tion 10. In all cases, the number of circles was truncated between
10 and 100, and rounded to the nearest integer. The two cat-
egories in each block were associated with a different color of
circles (randomly chosen).

The participant was given 5 s to enter a two-digit estimate of
the number of circles on the screen using the keyboard; if no
response was entered within this time limit, a message indicated
that the response was too slow and the trial was subsequently
not used in data analysis. The circles remained on the screen
during the 5 s response interval. After entering a response, the
participant received feedback indicating the correct number of
circles. Each subject performed eight blocks of the High mean
alternative condition and eight blocks of the Low mean alterna-
tive condition (randomly interleaved), with 20 trials in each block
(10 baseline and 10 alternative, randomly interleaved). All experi-
ments were implemented in Matlab (Version 7.9.0.529) using the
Psychophysics toolbox (Brainard, 1997).

We used paired-sample, two-sided t-tests to compare condi-
tions. Effect sizes were measured using Cohen’s d. We excluded
subjects whose average errors (in terms of distance from the true
mean) on alternative trials were greater than two standard devi-
ations from the mean across all three experiments. No subjects
were excluded from Experiment 1.

RESULTS AND DISCUSSION
The average responses on baseline trials in each condition are
shown in Figure 2 (right). Estimates of the number of circles on
baseline trials in the High mean alternative condition (mean =
62.25) were significantly lower than in the Low mean alterna-
tive condition (mean = 63.86) [t(13) = 2.41, p < 0.05, d = 0.64].
Moreover, the estimates were significantly lower than the true
average in the High mean condition [t(13) = 3.19, p < 0.05,
d = 0.85] but not in the Low mean condition (p = 0.30). These
results are consistent with the hypothesis that participants are
more likely to assign the alternative and baseline distributions to
the same category in the High mean alternative condition than
in the Low mean alternative condition, due to greater overlap
between the distributions in the former but not in the latter.

We also examined the estimates on alternative trials. The aver-
age number of circles reported by participants closely tracked the
true average: 55.44 for the High mean alternative condition and
36.47 for the Low mean alternative condition. T-tests confirmed
that average participant estimates were not significantly different
from the true average (p = 0.51 for the High mean alternative
condition and p = 0.07 for the Low mean alternative condition).

If participants indeed merged the baseline and alternative cat-
egories in the High mean alternative condition, one might argue
that we should also have seen regularization effects on the alterna-
tive trials. While we saw no evidence for such regularization in the
trial-averaged data, it may be the case that regularization effects

operate over timescales that are shorter than a whole block. To
test this hypothesis, we calculated the correlation between esti-
mates on each baseline trial and the preceding alternative trial
(note that, due to the randomized trial order, the preceding alter-
native trial might have been several trials back). We reasoned that
if estimates are influenced by recently experienced trials, then the
correlation dependent measure should be positive. Importantly,
this should only occur if both trials were assigned to the same
merged category. Figure 3 (left) shows the results of this anal-
ysis: Fisher z-transformed correlations were significantly greater
than 0 in the High mean alternative condition [t(13) = 3.14, p <

0.01, d = 0.84] but not in the Low mean alternative condition
(p = 0.86). We also examined the influence of baseline trials on
subsequent alternative trials (Figure 3, right): Again, Fisher z-
transformed correlations were significantly greater than 0 in the
High mean alternative condition [t(13) = 4.47, p < 0.001, d =
1.19] but not in the Low mean alternative condition (p = 0.50).
These results are consistent with the hypothesis that the High
mean alternative condition promotes category merging while the
Low mean alternative condition does not.

The correlation analyses reported above also rule out an alter-
native explanation of our findings in terms of contrast effects.
According to this explanation (see Holland and Lockhead, 1968),
contrast between the baseline and alternative categories is accen-
tuated in the Low mean alternative condition, causing partici-
pants to produce higher estimates for baseline trials compared
to estimates in the High mean alternative condition. Such a con-
trast explanation would predict negative correlations between
estimates in the baseline and alternative trial types; yet we found
no evidence for negative correlations.

EXPERIMENT 2
Our second experiment was identical to Experiment 1 in all
respects except that we manipulated the variances of the distri-
butions rather than their means, as illustrated in Figure 4 (left).
This manipulation was again expected to affect the likelihood of
splitting or merging perceptual categories. Specifically, the High

FIGURE 3 | Trial-wise correlations in Experiment 1. Left: Fisher
z-transformed correlations between estimates on baseline trials and on the
preceding alternative trials. Right: Correlations between alternative trials
and the preceding baseline trials.
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FIGURE 4 | Experiment 2 design and results. Left: Distributions for each
category. Right: Average estimates for the baseline category in each
condition. Error bars represent standard error of the mean.

variance condition resulted in greater overlap between the alter-
native and baseline distributions as compared to the Low variance
condition, leading to the prediction that estimates of baseline
trials in the High variance condition would be regularized down-
ward more than in the Low variance condition.

MATERIALS AND METHODS
Participants
Fourteen students participated in the experiment for course credit
or monetary compensation ($10). All subjects gave informed con-
sent and the study was approved by the Princeton University
Institutional Review Board. No subjects were excluded from
Experiment 2.

Procedure
The procedure was identical to Experiment 1, except that the
alternative trials differed in their standard deviations. Both High
and Low variance alternative trials had a mean of 35; High vari-
ance trials had a standard deviation of 20, while Low variance
trials had a standard deviation of 10. Baseline trials (same for both
conditions) had a mean of 65 and a standard deviation of 20.

RESULTS AND DISCUSSION
The average responses on baseline trials in each condition are
shown in Figure 4 (right). Judgments of the number of cir-
cles on baseline trials in the High variance condition (mean =
59.75) were significantly lower than in the Low variance condition
[mean = 61.82, t(13) = 2.72, p < 0.05, d = 0.60]. This result is
consistent with the hypothesis that participants were more likely
to merge the alternative and baseline distributions together in
the High variance condition than in the Low variance condi-
tion. While we observed differential regularization across condi-
tions, these estimates individually were both significantly differ-
ent from the true average [High variance: t(13) = 4.49, p < 0.001,
d = 1.20; Low variance: t(13) = 3.30, p < 0.01, d = 0.88].

We also examined the judgments on alternative trials. In this
case, the effect of regularization was symmetric and the average
number of circles reported by participants deviated significantly
from the true average in the direction of the baseline average:

39.64 for the High variance condition [t(13) = 6.07, p < 0.001,
d = 1.62] and 37.45 for the Low variance condition [t(13) = 3.39,
p < 0.01, d = 0.91]. Furthermore, the deviation was greater for
the High variance condition than for the Low variance condition
[t(13) = 2.63, p < 0.05, d = 0.70], consistent with our hypothesis
that category merging (and hence more regularization) is more
likely to occur in the High variance condition. From a theoreti-
cal perspective, the difference between these results and those of
Experiment 1 can be explained by the idea that with a larger stan-
dard deviation category merging is more likely for both High and
Low alternative blocks.

We next performed the sequential correlation analysis
described in Experiment 1, calculating the correlation between
estimates on each baseline trial and the preceding alternative trial.
Recall that if estimates are influenced by recently experienced tri-
als, then the correlation should be positive, but only if both trials
are assigned to the same merged category. Fisher z-transformed
correlations were significantly greater than 0 in the High variance
condition [t(13) = 2.30, p < 0.05, d = 0.62] but not in the Low
variance alternative condition (p = 0.42). We also examined the
influence of baseline trials on subsequent alternative trials: Fisher
z-transformed correlations were significantly greater than 0 in the
High variance condition [t(13) = 2.64, p < 0.05, d = 0.71] but
not in the Low variance condition (p = 0.89). Consistent with the
results of Experiment 1, these results support the hypothesis that
the High variance condition promoted category merging while
the Low variance condition did not.

EXPERIMENT 3
In both Experiments 1 and 2, the alternative means were lower
than the baseline mean. In Experiment 3, we used the same
manipulation as in Experiment 1 to examine whether the same
effects would be found when the alternative means were higher
than the baseline mean. Here we predicted that participants
would be more likely to merge the baseline and alternative cat-
egories in the Low mean alternative condition in which the two
distributions are more similar, than in the High mean alterna-
tive condition; accordingly, baseline estimates should be regu-
larized upward to a greater extent in the Low mean alternative
condition.

MATERIALS AND METHODS
Participants
Twenty-three students participated in the experiment for mone-
tary compensation ($10). All subjects gave informed consent and
the study was approved by the Princeton University Institutional
Review Board. Two subjects were excluded from analyses due to
their large estimation errors (greater than two standard deviations
from the mean across all three experiments).

Procedure
The procedure in this experiment was identical to the procedure
used in Experiment 1, with only the category means changed.
Specifically, we used the following category means: 50 for the
baseline trials, 60 for alternative trials in the Low mean alter-
native condition, and 80 for alternative trials in the High mean
alternative condition (see Figure 5, left).
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FIGURE 5 | Experiment 3 design and results. Left: Distributions for each
category. Right: Average estimates for the baseline category in each
condition. Error bars represent standard error of the mean.

RESULTS AND DISCUSSION
The average responses on baseline trials in each condition are
shown in Figure 5 (right). Estimates of the number of circles on
baseline trials in the High mean alternative condition (mean =
51.08) were significantly lower than in the Low mean alterna-
tive condition [mean = 52.37; t(20) = 2.67, p < 0.05, d = 1.19].
The baseline estimates differed significantly from the true average
in the Low mean condition [t(20) = 3.87, p < 0.001, d = 1.73],
but not in the High mean condition (p = 0.13). These results are
consistent with the hypothesis that participants were more likely
to merge the alternative and baseline distributions together in
the Low mean alternative condition (due to greater distributional
overlap) than in the High mean alternative condition.

We next examined the estimates on alternative trials. In the
High mean condition, the average estimate was 74.23, signifi-
cantly lower than the true average 80 [t(20) = 8.62, p < 0.0001,
d = 3.85]. In the Low mean condition, the average estimate was
58.76, also significantly lower than the true average 60 [t(20) =
2.14, p < 0.05, d = 0.96]. Thus, as in Experiment 2, we found
evidence for regularization effects in the alternative estimates, but
contrary to our predictions, the effect in the Low mean condition
was significantly smaller than the effect in the High mean con-
dition [t(20) = 7.28, p < 0.0001, d = 3.26]. One consideration in
interpreting this pattern of results is Weber’s law: Discriminability
of two numbers decreases with their magnitude, a phenomenon
known as the numerical size effect (Moyer and Landauer, 1967;
Restle, 1970). This might occur, for example, if observers use
a logarithmic representation of magnitude. Weberian compres-
sion makes it difficult to interpret regularization effects on the
alternative trials purely in terms of Occam’s razor. In particular,
Weberian compression predicts stronger regularization for larger
numerical magnitudes, as observed in our experiment. Since the
baseline trials are smaller magnitude, they are less affected by
Weberian compression, thus licensing our interpretation of the
baseline effects in terms of Occam’s razor.

Finally, we performed the sequential correlation analysis
described in Experiment 1, calculating the correlation between
estimates on each baseline trial and the preceding alternative trial.
Here Fisher z-transformed correlations were not significantly

greater than 0 in the High mean condition (p = 0.20) or
the Low mean condition (p = 0.32). We also examined the
influence of baseline trials on subsequent alternative trials. In
this case, Fisher z-transformed correlations were significantly
greater than 0 in both the High mean condition [t(20) =
4.60, p < 0.001, d = 2.06] and in the Low mean condition
[t(20) = 4.36, p < 0.001, d = 1.95]. In contrast with the results
of Experiment 1, these results do not support the hypothesis that
regularization effects operate on a timescale shorter than an entire
block. It may be the case that there is a trade-off between regu-
larization effects that occur on different timescales; the regular-
ization effects on the alternative trials in the current experiment
may interact with the trial-by-trial correlations. The idea is that if
subjects show stronger “local” (trial-by-trial) regularization, they
will show weaker “global” (block-wise) regularization effects, and
vice versa. However, our experiment was not designed to test this
hypothesis directly.

A RATIONAL ANALYSIS
In this section, we frame our experimental results in terms of
a Bayesian computational model of the estimation task. This
model constitutes a “rational analysis” (Anderson, 1990)—a spec-
ification of how an ideal observer would perform in our task.
Although we do not necessarily believe that humans are pre-
cisely implementing Bayesian inference, 1 this analysis allows us
to explore rather subtle hypotheses about cognitive processes, as
we describe below.

According to the Bayesian framework (described formally in
the next section), the computational problem facing a participant
is to infer the posterior distribution over the number of circles xt

on trial t, given noisy sensory input yt , the circle color ct , and the
history of past trials. For a complete mathematical specification,
we make several assumptions about the data-generating process.
In particular, both the circle color and number are assumed to
be governed by a latent perceptual category zt drawn from some
unknown number of categories. Thus, according to our ratio-
nal analysis, the participant must implicitly average over her
uncertainty about the latent categories in making her estimates.
Importantly, we do not impute to the participant a fixed set of
categories; rather, both the number and properties of the cate-
gories are inferred by the participant from her observational data.
The simplicity principle enters into this model via the prior over
categories: All else being equal, the model has a preference for a
small number of categories.

GENERATIVE PROCESS
The starting point of our rational analysis is the specification
of a joint distribution over all the variables (both latent and
observed) involved in the experimental task. This joint distribu-
tion is sometimes known as a generative model, since it represents
the participant’s (putative) assumptions about the process by
which the observations were generated. The generative model we
assume is a mixture model, where the number of circles xt is drawn

1Nor do we necessarily believe that there is a unique ideal observer, since
different priors lead to different inferences, all of which are rational from a
statistical point of view.
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from a Gaussian distribution associated with the perceptual cat-
egory zt = k active on trial t (we will use zt and k interchange-
ably below to indicate categories, with the former used when
categories on different trials need to be distinguished). The dis-
tribution over xt is parameterized by a category-specific mean
μk and standard deviation σk. The observed number of circles
yt (the noisy sensory signal) is drawn from a Gaussian distribu-
tion with mean xt and standard deviation σy. Finally, the circle
color ct ∈ {1, . . . , C} is drawn from a category-specific multino-
mial distribution specified by parameters θk. In our experiments,
C = 3.

We assume that participants begin each block with a prior
belief about the parameters of the task μk, σk and θk (we assume
that the sensory noise σy is fixed). Specifically, we assume a
normal-inverse-gamma prior on (μk, σ

2
k):

P
(
μk, σ

2
k

) = N (
μk;μ0, σ

2/η0
)
IG

(
σ2

k; a0, b0
)
, (1)

where IG(·; a0, b0) is the probability density function of the
inverse gamma distribution (see Gelman et al., 2004), and a
symmetric Dirichlet distribution prior with parameter λ for the
multinomial parameters for the color feature.

To complete the generative model, we need to specify
a prior distribution on the set of category assignments,
z1:t = {z1, . . . , zt}, which can be understood as a partition of
the observations into latent categories. We want to impute to
the participant a prior that is flexible enough to entertain an
unbounded number of possible categories, but nevertheless
prefers to categorize trials into as few categories as possible. For
this purpose, we choose the Chinese restaurant process (Aldous,
1985; Pitman, 2002), a prior over an unbounded number of par-
titions (see Gershman and Blei, 2012, for a tutorial introduction).
The name of this prior comes from the following metaphor:
Imagine a Chinese restaurant with an unbounded number of
tables (categories). The first customer (trial) enters and sits at
the first table. Subsequent customers sit at an occupied table
with probability proportional to how many people are already
sitting there, and at a new table with probability proportional
to α ≥ 0 (termed the “concentration” parameter). Once all
the customers are seated, one has a partition of trials into cate-
gories.2 Formally, the Chinese restaurant process prior is given by:

P(zt = k|z1:t − 1) =
{

Mk
t−1+α

if k is an old category
α

t−1+α
if k is a new category

(2)

where Mk is the number of trials generated by category k up to
trial t (the first trial, at t = 1, is by default generated by the first
category k = 1). The value of α controls the prior belief about
the number of categories. As α → 0, all trials will tend to be
assigned to the same category; in contrast, as α → ∞, each trial
will be assigned to a unique category (the latter limiting case is

2Note that although the Chinese restaurant process is described in terms of
a sequential process, the partitions generated by it are in fact exchangeable,
meaning that the distribution over partitions is unchanged by permutations
of the trial order (Aldous, 1985).

closely related to exemplar models, as will be described below).
The Chinese restaurant process prior was independently discov-
ered by Anderson (1991) in the development of his rational model
of categorization, and since then has been used in a wide variety
of psychological models (e.g., Gershman et al., 2010; Kemp et al.,
2010; Sanborn et al., 2010).

POSTERIOR INFERENCE
Two computational problems face the observer. The first is to
infer the posterior distribution over latent perceptual categories
given a set of observations. This is done by inverting the genera-
tive model using Bayes’ rule. The second is to use this distribution
to estimate the “true” number of circles on the current trial (xt)
given noisy sensory input (yt). Note that in our experiments all
uncertainty about yt disappears after feedback (i.e., when xt is
observed). The posterior computations below reflect probabilis-
tic beliefs after feedback is observed. In the Appendix, we describe
how predictions are computed before feedback, which we use to
predict participants’ behavior.

The posterior over categories is stipulated by Bayes’ rule:

P(zt |c1:t, x1:t) ∝
∑

z1:t − 1

P(ct |z1:t, c1:t − 1)P(xt |z1:t, x1:t − 1)

P(zt |z1:t − 1)P(z1:t − 1). (3)

Using the shorthand k = zt and c = ct , the conditional distribu-
tions are given by:

P(ct |z1:t, c1:t − 1) =
∫

θ

P(ct |θ, z1:t, c1:t − 1)dθ

= λ + Nck

Cλ + Mk
(4)

P(xt |z1:t, x1:t − 1) =
∫

μ

∫
σ2

P
(
xt |μ, σ2, z1:t, x1:t − 1

)
dμ dσ2

= T2ak

(
xt − μ̂k

βk

)
(5)

where T2ak(x) denotes the student t-distribution with 2ak degrees
of freedom, and

μ̂k = η0μ0 + Mkx̄k

ηk
, (6)

ηk = Mk + η0, (7)

ak = Mk + a0

2
, (8)

bk = b0 + 1

2

t − 1∑
i = 1

δ [zi, k] (xi − x̄k)
2 + Mkη0(μ0 − x̄k)

2

2ηk
, (9)

βk = bk(1 + ηk)

akηk
. (10)

Here δ[·, ·] = 1 if its arguments are equal, and 0 otherwise. Nck is
the number of times category k was presented in conjunction with
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color c and x̄k is the average number of circles observed for cat-
egory k. These equations were derived from standard properties
of the conjugate-exponential family of probability distributions
(Gelman et al., 2004).

Intuitively, Equation 4 keeps track of counts: The posterior
P(ct |z1:t, c1:t − 1) will tend to concentrate around the color that
was observed most often in conjunction with zt (conditional on
a particular instantiation of z1:t). The parameter λ regularizes the
posterior toward the uniform distribution, taking into account
the observer’s prior uncertainty about the relationship between
categories and colors. Similarly, Equation 5 keeps track of cate-
gory averages: The posterior P(xt |zt, z1:t − 1, x1:t − 1) will tend to
concentrate around the average number of circles observed in
conjunction with zt .

The Bayes-optimal estimator of the number of circles xt given
noisy sensory input yt is the posterior mean:

E
[
xt |yt, x1:t − 1, c1:t

] =
∑
z1:t

∫
x

xP
(
xt = x, z1:t |yt, x1:t − 1, c1:t

)
dx.

(11)

The estimated number of circles follows a mixture of Gaussians,
where the mean of each mixture component is a weighted combi-
nation of the category mean and the sensory input.

Because the sum in Equation 3 is intractable to compute
exactly, we resort to approximation methods. In the Appendix,
we describe a particle filter algorithm (Doucet et al., 2001) for
approximating the posterior with a set of samples. While this
algorithm can be understood as a provisional hypothesis about
how humans might approximate Bayes’ rule in this task, it should
be emphasized that our data do not directly discriminate between
this hypothesis and other types of approximations.

MODEL-FITTING AND COMPARISON TO DATA
We cannot know what sensory input (yt) a participant is receiv-
ing on each trial, so we made the expedient choice (following
Huttenlocher et al., 1991, 2000) of setting yt = xt , which should
be true on average, assuming participants are not systematically
biased. We reenter the data by subtracting the empirical mean
(true number of circles on average) from all the perceptual esti-
mates, and therefore use μ0 = 0. We set λ = 1 and b0 = 10
(which sets the scale of σ2

k), fitting the remaining parameters
(α, a0, η0, σy) using a hill-climbing algorithm. Each participant’s
data were fit with an independent set of parameters. Our objec-
tive function was the mean-squared error between the particle
filter predictions (Equation A2 in the appendix) and participants’
estimates. This is equivalent to the assumption that behavioral
responses are normally-distributed around the model predic-
tions; the parameter values minimizing the objective function are
thus maximum likelihood estimates.

Figure 6 shows the fitted model predictions for the baseline
color in Experiments 1–3 (bars) as compared to participants’
empirically measured guesses (circles). While not in perfect quan-
titative agreement with the behavioral data, the model reproduces
the observed qualitative pattern. These effects arise in the rational
model due to the fact that greater overlap between the baseline

FIGURE 6 | Model predictions. Estimates are derived from the fitted
rational model for Experiment 1 (Left), Experiment 2 (Middle), and
Experiment 3 (Right). Blue circles show the average guess across trials and
participants (error bars represent standard error of the mean). Dashed red
lines indicate the true average number of circles.

and alternative distributions increases the probability that trials
with different-colored circles will be attributed to the same cate-
gory, thereby pushing estimates toward the aggregate mean of the
two distributions.

Note that the rational model does not (by construction)
account for trial-by-trial correlations, since it assumes that tri-
als are exchangeable, that is, that their order is inconsequential.
One could, in principle, extend the model to capture dependen-
cies between trials, but we aimed to keep the model as simple as
possible so long as it captured the main results pertaining to the
overall accuracy of guesses on baseline trials.

COMPARISON TO ALTERNATIVE MODELS
The rational model we presented can be contrasted with a con-
tinuum of models that have been considered for perceptual
estimation tasks. At one pole of the continuum is the model of
Huttenlocher et al. (1991), which, in the context of our experi-
ments, endows each color with its own category prototype. The
perceptual estimate on a given trial is assumed to be regular-
ized toward the mean associated with the color on that trial (see
also Huttenlocher et al., 2000; Hemmer and Steyvers, 2009). This
model cannot explain our findings, since it predicts that reg-
ularization will always be in the direction of the color-specific
mean, disallowing perceptual categories that collapse across color
(see Sailor and Antoine, 2005). In other words, the model of
Huttenlocher et al. (1991) does not accommodate the possibility
of adaptive category merging.

At the other pole is the family of exemplar models, which have
proven successful in accounting for human categorization, iden-
tification and recognition memory (Medin and Schaffer, 1978;
Nosofsky, 1986, 1988; Kruschke, 1992). The essential idea under-
lying these models is that estimates are formed by comparing the
current stimulus to a stored set of memory traces (exemplars).
Anderson’s rational model of categorization (Anderson, 1991)
strikes a middle ground between prototype and exemplar models
by assigning observations to a small number of clusters.
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FIGURE 7 | Model fits. Log Bayes factor for the rational model relative to
the exemplar model. Positive values favor the rational model. Error bars
represent standard error of the mean.

As was recognized by Nosofsky (1991) in his discussion of
Anderson’s rational model of categorization, the rational model
becomes equivalent to the exemplar model in the limit α → ∞.
In this limit, the number of clusters inferred by the model is equal
to the number of observations; hence, each cluster corresponds
to an episodic memory trace, and Bayesian estimates correspond
to averages of these traces in the same fashion as the exemplar
model.3 In a sense, the exemplar model postulates the least par-
simonious representation of the subject’s perceptual inputs, since
commonalities between observations are not explicitly abstracted.

It is difficult to rule out an exemplar explanation of our find-
ings through examination of means in each condition. Instead,
we undertook a quantitative model comparison to compare our
model to the exemplar extreme. First, we compared the evidence
for each model on a subject-by-subject basis. Model evidence was
quantified by the Bayesian information criterion approximation
to the Bayes Factor (Kass and Raftery, 1995), which balances fit to
data against model complexity. Note that the rational model has
one more parameter (α) than the exemplar model, and is there-
fore more complex. Model comparison strongly supported the
rational model over the exemplar model (Figure 7). A Wilcoxon
signed rank test confirmed that the log Bayes factor favored the
rational model across all three experiments (p < 0.001).

We then used the model fits to investigate the underlying rep-
resentations posited by the two models. The exemplar model
predicts that there should be 20 latent categories (i.e., each obser-
vation corresponds to a single latent category). In contrast, the
fitted model preferred fewer categories (median = 6), demon-
strating that the empirical data are indeed better explained by
assuming the simplicity principle.

GENERAL DISCUSSION
The experiments reported in this paper bring together two lines of
research in cognitive psychology: the “simplicity principle” (a.k.a.

3Technically, for this to be true, α must equal 0 when computing predictions
with Equation 11.

“Occam’s razor”; Chater and Vitányi, 2003) and the influence of
categories on perception (Goldstone, 1995). We show a manifes-
tation in simple perceptual estimates of a simplicity bias toward
merging perceptual categories when their statistics are similar:
Participants tended to regularize estimates of trials of one color
toward those of trials of another color if the stimulus distribu-
tions for the two colors had similar means (Experiments 1 and 3)
or overlapping tails (Experiment 2).

These findings are consistent with computational models that
flexibly infer the number of categories from sensory inputs
(Anderson, 1991; Love et al., 2004; Gershman et al., 2010;
Sanborn et al., 2010). These models predict that new categories
will only be postulated when stimulus statistics differ signifi-
cantly; otherwise, the stimuli will be merged into a single cate-
gory. This merging leads to regularization of perceptual estimates,
such that perception of a new stimulus will be biased toward
the mean of the merged distributions. We presented a rational
adaptive categorization model that predicted the qualitative pat-
tern of results and outperformed an exemplar model in terms
of explaining the behavioral data. One advantage of using a
Bayesian model over simpler models is that it provides a direct
link between behavioral phenomena and statistical properties of
the environment. As our experiments demonstrated, manipulat-
ing these properties leads to systematic changes in behavior that
accord with the predictions of the Bayesian model. While mech-
anistic models (like the exemplar model) can to some extent
also fit our data, they do not provide a framework for connect-
ing the effects to environmental properties. This is important,
because Bayesian models give us a framework for asking and
answering questions at the computational level: What computa-
tional problem are humans solving in this task? What statistical
assumptions are they making about the problem? How are prior
knowledge and sensory evidence being combined? Nonetheless,
we have not yet fully mapped out the boundary conditions of
the simplicity bias in our task, and so these data should be
understood as initial explorations of our model’s predictions
rather than general statements about Occam’s razor in perceptual
estimation.

Our results are consistent with other evidence that percep-
tion is influenced by unsupervised category learning. Gureckis
and Goldstone (2008) asked participants to discriminate between
pairs of stimuli that varied along two dimensions, and then in a
second phase, trained participants to classify these stimuli into
two categories with the classification boundary determined by
a single (attended) dimension. The stimuli were designed so
that within each category, stimuli fell into two sub-clusters on
the basis of the second (unattended) dimension. Despite these
sub-clusters being irrelevant for classification, participants were
better able to discriminate between stimuli in the same cate-
gory when they belonged to different sub-clusters. Thus, the
underlying cluster structure of the stimuli systematically biased
perception.

Although our study used numerical estimation as a paradigm
for investigating perceptual biases, we were not interested in
estimation per se: Only the relative estimation bias between con-
ditions was relevant to our hypothesis. The speeded response
requirement made it essentially impossible for participants to
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explicitly count the number of circles on the screen, thus mak-
ing past history (in particular, feedback from previous trials) a
more influential factor in determining responses compared to the
veridical number of circles. Moreover, our study lacked the typical
controls used in numerosity experiments (e.g., circle density, area
of the region occupied by the circles). Nonetheless, our study may
have implications for the study of number perception (Feigenson
et al., 2004). In particular, our results suggest that numerical
estimation is sensitive not only to the veridical numerosity, but
can also be influenced by the distribution of numbers in recent
experience. This points toward the existence of a more sophis-
ticated number perception system that incorporates top–down
knowledge about numerosity statistics.

We have interpreted our results in terms of Occam’s razor,
but alternative interpretations may also be possible. For exam-
ple, an exemplar model (e.g., Nosofsky, 1986; Kruschke, 1992)
that interpolates based on similarity between stimuli could also
account for our results; however, we showed both quantitatively
and qualitatively that the rational model is a better explanation
for the empirical data. Another viable alternative is a model in
which the stimulus is assumed to have been drawn from one of
two distributions (e.g., a mixture of Gaussians). In other words,
the participant always assumes two distributions, but has uncer-
tainty about which one generated the data. A potential problem
with this account is that it assumes that participants already
know the two distributions, whereas we are proposing that they
infer them.

A number of questions remain. For example, what are the
sequential dynamics of category formation over the course of
the experiment? Several previous studies have suggested that
sequencing of exemplars plays an important role in unsupervised
learning (Anderson, 1991; Clapper and Bower, 1994; Zeithamova
and Maddox, 2009), and this factor may also come into play in
our task. Although our experiments were not designed to examine
this factor directly, we reported significant sequential correlations
in Experiments 1 and 2, suggesting that the regularization effects
we observed may operate over short timescales. Another question
is whether the simplicity bias is itself subject to modulation by
task factors. One possibility is that being repeatedly exposed to
highly complex environments will lead to a greater tolerance for
more complex category structures.

Finally, an important lingering question pertains to the algo-
rithmic implementation of our model. We derived a particle filter
algorithm for computing model predictions, and this algorithm
has a number of psychologically appealing properties: It is online
(processes one data point at a time), it is stochastic (and hence
can capture response variability), and it is resource limited (allow-
ing it to emulate cognitive resource limitations). These properties
have been discussed at length elsewhere (Brown and Steyvers,
2009; Frank et al., 2010; Gershman et al., 2010; Sanborn et al.,
2010). Our experiments were not designed to directly assess these
properties or compare the particle filter to other kinds of algo-
rithms, a task we leave to future work. For example, one could
ask subjects to perform a secondary task, and examine whether
reducing the number of particles can capture the resulting degra-
dation of performance. It is also possible that subjects employ
a heuristic algorithm that looks nothing like a particle filter or
other formal approximation to Bayesian reasoning (Gigerenzer
and Goldstein, 1996). However, we are not aware of heuristic
algorithms that could actually perform the task that we gave
subjects.

Regardless of the algorithmic implementation, our results
demonstrate the importance of Occam’s razor in human percep-
tual estimation. This falls naturally out of a Bayesian analysis of
the estimation problem, but such an analysis is really only a start-
ing point for future investigations of the algorithmic and neural
computations underlying perception.
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APPENDIX
PARTICLE FILTERING ALGORITHM
The particle filter is an algorithm that approximates optimal
Bayesian inference by updating an approximation to the poste-
rior distribution over the assignment of trials to categories as
each observation arrives. This sequential online nature makes it
suitable for modeling the dynamics of human learning in our
experiments. Similar process models have previously been applied
to animal (Daw and Courville, 2008; Gershman et al., 2010) and
human (Brown and Steyvers, 2009; Frank et al., 2010; Sanborn
et al., 2010) learning, although the generative assumptions of
those models differ from our own.4

The particle filtering algorithm maintains a set of L sam-

ples z(1:L)
t − 1 distributed approximately according to the posterior,

P(zt − 1|c1:t − 1, x1:t − 1). These samples are updated after observ-

ing xt and ct by drawing z(l)
t for l = 1, . . . , L from P(z(l)

t = k) =
wk∑
k wk

, where

wk =
L∑

l = 1

P
(

ct |zt = k, z(l)
1:t − 1, c1:t − 1

)
P
(

xt |zt = k, z(l)
1:t − 1, x1:t − 1

)

× P
(

zt = k|z(l)
1:t − 1

)
. (A1)

Drawing samples in this way produces a Monte Carlo
approximation to the posterior (Doucet et al., 2001).

4While the particle filter provides a plausible mechanism by which partici-
pants might perform approximate Bayesian inference, it is by no means the
only one. We present it merely as an example of how the approximation might
be accomplished, without committing to any particular process-level account.

As L → ∞, this approximation will converge to the true
posterior.

The particle filter can also be used to estimate the number of
circles xt given noisy sensory input yt (before feedback):

E
[
xt |yt, x1:t − 1, c1:t

] =
∑
z1:t

∫
x

xP
(
xt = x, z1:t |yt, x1:t − 1, c1:t

)
dx

≈ 1

L

L∑
l = 1

∑
k q(l)

k m(l)
k∑

k q(l)
k

, (A2)

where

q(l)
k = P

(
ct |zt = k, z(l)

1:t − 1, c1:t − 1

)
P
(

zt = k|z(l)
1:t − 1

)
(A3)

is the posterior weight assigned to category k and

m(l)
k =

∫
x

xP
(

xt = x|yt, zt = k, z(l)
1:t − 1, x1:t − 1

)
dx

=
∫

x
x

P(yt |xt = x)P
(

xt = x|zt = k, z(l)
1:t − 1, x1:t − 1

)
P
(

yt, zt = k, z(l)
1:t − 1, x1:t − 1

) dx

(A4)

is the prediction of xt for category k. We know of no closed-form

expression for m(l)
k , but we can obtain a very accurate numerical

approximation. In our implementation, we set L = 100, but the
results are not sensitive to this choice.

www.frontiersin.org September 2013 | Volume 4 | Article 623 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Cognition/archive

	Perceptual estimation obeys Occam's razor
	Introduction
	Experiment 1
	Materials and Methods
	Participants
	Procedure

	Results and Discussion

	Experiment 2
	Materials and Methods
	Participants
	Procedure

	Results and Discussion

	Experiment 3
	Materials and Methods
	Participants
	Procedure

	Results and Discussion

	A Rational Analysis
	Generative Process
	Posterior Inference
	Model-Fitting and Comparison to Data
	Comparison to Alternative Models

	General Discussion
	Acknowledgments
	Funding
	References
	Appendix
	Particle Filtering Algorithm



