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Learning latent structure: carving nature at its joints
Samuel J Gershman and Yael Niv

Reinforcement learning (RL) algorithms provide powerful

explanations for simple learning and decision-making behaviors

and the functions of their underlying neural substrates.

Unfortunately, in real-world situations that involve many stimuli

and actions, these algorithms learn pitifully slowly, exposing their

inferiority in comparison to animal and human learning. Here

we suggest that one reason for this discrepancy is that humans

and animals take advantage of structure that is inherent in

real-world tasks to simplify the learning problem. We survey

an emerging literature on ‘structure learning’ — using experience

to infer the structure of a task — and how this can be of service to

RL, with an emphasis on structure in perception and action.
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Introduction
A major breakthrough in understanding how animals and
humans learn to choose actions in order to obtain rewards
and avoid punishments has been the recent framing of trial
and error learning (conditioning) in the computational
terms of reinforcement learning (RL [1]). RL is a powerful
framework that has been instrumental in describing how
the basal ganglia learn to evaluate different situations
(states) in terms of their future expected rewards, and in
suggesting that dopaminergic activity conveys errors in the
prediction of reward which are crucial for optimal learning
[2,3]. However, in their most basic form, RL algorithms are
extremely limited when applied to real-world situations:
when confronted with more than a handful of states and
possible actions, learning becomes pitifully slow, necessi-
tating thousands of trials to learn what animals can learn in a
mere tens or hundreds.

One reason that animals and humans can rapidly learn
new problems is perhaps because they take advantage of

the high degree of structure of natural tasks [4!!]. This
starts with perception: although our brains are confronted
with undifferentiated sensory input, our conscious per-
ception is highly structured. As Ernst Mach remarked,
‘We do not see optical images in an optical space, but we
perceive the bodies round about us in their many and
sensuous qualities’ [5]. Helmholtz referred to the percep-
tion of such qualities as ‘unconscious inference’ [6],
emphasizing the inductive nature of the process. The
brain must go beyond the available sensory data to make
inferences about the hidden structure of the world. Iden-
tifying structure in sensory data allows animals and
humans to focus their attention on those objects and
events that are key in obtaining reinforcement, and learn
only about these while ignoring other irrelevant stimuli.
Further structure lies in the way actions affect the environ-
ment. This can be utilized to ‘divide and conquer,’ and to
decompose tasks to smaller (and more manageable) com-
ponents.

To solve the problem of inferring structure from obser-
vations, one must determine which of a (possibly large)
number of possible structures is most likely to capture
correctly the causal structure of the environment. Each
structure represents a hypothesis about the set of latent
causes that generate observed data (in the case of RL: the
latent causes of reinforcement; Box 1). For a given
structure, one must also estimate the parameters relating
the different variables in the structure, that is, the model
of how it gives rise to observations. The problem of how,
given an assumed structure, the brain can infer the
particular latent cause that generated observations has
been extensively studied in cognitive neuroscience and
psychology (e.g. [7–9]). However, the problem of how the
relevant causal structure is identified, which we refer to as
structure learning, remains mysterious. The difficulty of
the structure learning problem is highlighted by the fact
that in many domains the number of possible structures is
essentially limitless.

Here we review recent experimental and theoretical
research that has begun to elucidate how the brain solves
the structure learning problem, and how RL mechanisms
can take advantage of such structure to facilitate learning.
We first outline a normative computational approach to this
problem, and then describe research that tests some of
these ideas. We focus on latent structures in two different
components of RL problems: perception and action.

A normative framework
The canonical description of a decision-making problem
in RL has four components: firstly, a set of states of the
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environment, each comprised of different stimuli; sec-
ondly, a set of actions that can be taken at these states;
thirdly, a transition function denoting how actions cause
the world to transition from one state to another; and
fourthly, a reward function denoting the immediate reward
that is available at each state. The goal of the agent is to
learn a policy of actions at each state, that will maximize
overall rewards. Model-based RL algorithms concentrate
on finding an optimal policy when the transition function
and the reward function are known (such as when playing
chess). Model-free RL algorithms do not assume such
knowledge, but rather assign values to different actions at
different states through learning (such as when learning to
navigate a maze) [10]. These values represent the sum of
future rewards that can be expected if a particular action is
taken at a particular state. Given such values, decision-
making is easy: of the available actions in the current
state, one should take the action with the highest value.

Importantly, both model-based and model-free RL
assume that the set of states and the set of actions are

provided to the learning agent. Unfortunately, in real-
world tasks this is often not the case. Rather, the relevant
set of states and actions must also be inferred or learned
from observations, as the space of all possible states and
actions is too large to be of practical use. As an example,
when learning to escape predators one must learn the
values of running left, right, straight ahead, hiding in the
bushes, etc. Clearly, assigning values to scratching one’s
nose or wiggling one’s toes are irrelevant, although these
are perfectly valid actions in this situation. How do
animals and humans reduce the space of states and
actions to a manageable (and learnable) subset?

One approach is grounded in Bayesian probability theory,
which specifies how to update probabilistic beliefs about
causal structures in light of new data. Through Bayesian
inference one can use observed data to update an esti-
mate of the probability that each of several possible
structures accurately describes the environment (see
Box 1). For example, in a typical classical conditioning
experiment, an animal receives a series of tones and
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Box 1 Latent structures as a state space for reinforcement learning

Graphical models provide a useful framework for describing causal
structures. These depict the statistical relations between latent and
observed variables. For instance, Figure 1 shows three possible
relations between tones, shocks, and latent variables in a classical
conditioning experiment. In RL, the emphasis is on the possible causes
of reinforcement — the goal of the animal is to infer whether
reinforcement will or will not occur, based on the currently observed
variables and past experience. Through Bayesian inference one can
use the co-occurrence of observable events to infer which structure is
the most plausible, as well as what are the current settings of different
latent variables. Let us suppose that before observing any data, your
belief about the hidden structure S of your environment is encoded by a
prior distribution over possible structures, PðSÞ (for instance an equal
probability p ¼ 1=3 over the three structures in Figure 1). This
expresses how likely you think it is that each structure accurately
describes the environment a priori. After observing some sensory data
D, the statistically correct way to update this belief is given by Bayes’
rule:

PðSjDÞ ¼ PðDjSÞPðSÞP
S0 PðDjS

0ÞPðS0Þ
: (1)

PðDjSÞ is known as the likelihood and expresses how likely it is that
sensory data D was generated by structure S. The end result, PðSjDÞ, is
the posterior distribution over structures given the observed data. This is
the best estimate of the probability that each structure accurately
describes the environment a posteriori. In our case, observing both trials
in which tones and shocks co-occur and trials in which tones occur
without shocks mitigates against structure I. Parsimony and the ‘auto-
matic Occam’s razor’ inherent in Bayesian inference [52] further tilts the
balance towards structure II which assumes fewer latent variables.

In the context of reinforcement learning, an inferred structure (for
instance, the one with the highest probability) can then be used to
define a state space — the set of variables that have a causal
relationship to reinforcement, and thus must be learned about and
evaluated. These can include observed sensory variables, as well as
unobserved (but inferred) variables. In this way, RL algorithms can
operate over a small subset of variables that are causally related to
reinforcement, and are specified by the inferred structure. In many
cases, this should substantially improve adaptive behavior, since

rewards and punishments are rarely caused by all observable variables
and only by these.

Figure 1

The graphical models of three possible causal relationships between
variables in a classical conditioning experiment. By convention,
observed variables are represented by shaded nodes and unshaded
nodes represent unobserved (latent) variables. Arrows represent
probabilistic dependencies. The parameters of a model, for instance,
structure II, define the probability of each of the nodes taking on a value
(e.g. absence or presence of shock) given each setting of its parent
nodes (e.g. when y ¼ acquisition or when y ¼ extinction).
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shocks. Rather than (erroneously) assuming that either
tones cause shocks or shocks cause tones, we suggest that
animals attempt to learn about the latent causes that
generate both tones and shocks (structures II and III in
Box 1). Intuitively, in this case the true latent cause is the
stage of the experiment, as defined by the experimenter
(e.g. acquisition and extinction). If the animal knew what
stage of the experiment it was in, it could perfectly
predict whether it will be shocked or not following a
tone. Moreover, learning about relationships between
shocks and tones should be restricted such that experi-
ence is only averaged over trials that can be attributed to
the same latent cause. Thus after 20 acquisition trials in
which tones were followed by shocks, and 20 extinction
trials in which tones were not followed by shock, the rat
should not predict a shock with 50% probability, but
rather predict a shock with (near) certainty if it infers
that the current trial is a training trial, or predict the
absence of a shock if the current trial is an extinction trial.

This perspective represents a significant departure from
classical learning theory [11], which imputes to the animal
the assumption that sensory variables are directly pre-
dictive of reinforcement. In contrast, we suggest that the
animal use a different internal model in which sensory
variables and reinforcements are both generated by latent
variables. Under this assumption, the task of predicting
future reinforcement requires a system for performing
inference over these latent variables [12–15]. We will
return in later sections to the question of what brain areas
might be responsible for this inference process.

Although the Bayesian framework provides the optimal
solution to the structure learning problem, in most cases
computing this solution is intractable. However, the
solution can be approximated, for example by represent-
ing the posterior probability over structures with a set of
samples [16!–19]. Another possible approximation is to
use policy search methods [20], that is, to avoid repre-
senting the posterior distribution altogether, and instead
try to find a good behavioral policy without knowledge of
the environment’s latent structure. As we describe in the
next section, it is possible to interpret an influential family
of neural RL models as a form of policy search over not
only an action space, but also a state space.

Structure in perception
In this section, we focus on two types of perceptual
structure that can play a role in RL. The first arises in
situations where multiple sensory inputs are coupled by a
common latent cause, as was described above in the case
of classical conditioning, and will be elaborated further
below. Recent work has demonstrated that in (instru-
mental) bandit tasks in which a latent variable couples
rewards, human behavior is consistent with Bayesian
inference over the underlying coupling structure [21!!].
The second type of structure arises in situations where

only a subset of sensory inputs are causally related to
reinforcement, such as in tasks that require selective
attention to particular stimulus dimensions [23,24] or to
particular stimuli in a sequence [25,26].

Continuing our example from the previous section, one
perplexing observation (from the perspective of classical
learning theory) is that extinction training (i.e. presenting
a tone without the previously associated shock) does not
result in unlearning the original association between tone
and shock. Many studies have shown that returning the
animal to the original acquisition context (aka ‘renewal’)
[27,28], presenting an unpaired shock (reinstatement)
[29,30], or simply waiting 48 hours before testing the
animal again (spontaneous recovery) [31,32] are all suffi-
cient to return the animal’s original fear response to the
tone to nearly pre-extinction levels, suggesting that the
presentation of the tone still causes the animal to predict
an imminent shock. This observation is rendered less
perplexing if one considers the animal’s conditioned
response as reflecting its inferences about the latent
structure of the environment at each stage of the exper-
iment. Specifically, if the animal assumes that the pattern
of tones, shocks, and contextual cues during acquisition
trials were generated by one latent cause, and the distinct
pattern of tones and contextual cues during extinction
trials were generated by a different latent cause, then
returning the animal to the acquisition context will natu-
rally lead it to infer that the ‘acquisition’ cause is once
again active, and hence to predict shocks (and exhibit
fear). Similarly, Bouton has argued that time itself is
treated by animals as a contextual cue [33], providing
one explanation for spontaneous recovery of fear as a
result of the mere passage of time.

Recently, Redish et al. [34!!] presented a novel compu-
tational theory of these renewal effects, synthesizing
ideas from RL and neural network models. They postu-
lated a state-splitting mechanism that creates new states
when the perceptual statistics alter radically. In their
model, the affinity for state-splitting is modulated by
dopamine, such that tonically negative prediction errors
result in a higher probability of creating a new state. This
modulatory process was motivated by the idea that new
states should be created when the current set of states
proves inadequate for adaptive behavior. The new set of
states is then used as input to a standard RL algorithm.
We have elaborated upon this proposal, showing how it
can be interpreted in terms of the normative structure
learning framework proposed in the previous section [12].
In addition, we suggest that the hippocampus may play a
particularly important role in learning about the structure
of these tasks. Pre-training lesions of the hippocampus
eliminate renewal [35], an effect we explain in terms of
the animal’s impaired ability to infer the existence of new
latent causes. In essence, according to our theory, hippo-
campal lesions compel the animal to attribute all its
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observations to a single latent cause. Intriguingly, young
rats appear to display the same lack of renewal as hippo-
campal-lesioned adult rats [36!], suggesting that structure
learning is a late-developing process, possibly requiring
hippocampal maturity.

So far we have been dealing with static structure con-
tained in the mosaic of sensory inputs; however, certain
tasks require inferring dynamic structure from a sequence
of sensory inputs. For example, in a sequential alternation
task, an animal must alternate its response to the same
sensory cues on each trial. To perform this task correctly,
the animal must base its decision not just on its immedi-
ate sensory observations, but also on information stored in
its memory [37!]. More complex tasks may require storing
different pieces of information from arbitrarily far into the
past. We interpret this as a structure learning problem:
among the past sensory inputs, which of them is predic-
tive of reward?

The ‘gating framework’ [38–40!,26] is one computational
solution to this problem, proposing that dopaminergic
prediction error signals control the contents of working
memory in prefrontal cortex. Because the dopamine
signal to the basal ganglia and the prefrontal cortex
encodes the discrepancy between predicted and observed
rewards [2,3], the prefrontal gating mechanism will tend
to add the current sensory input to working memory when
it coincides with unexpected rewards, and remove the
contents of working memory that are unpredictive of
reward. This model is consistent with the finding that
prefrontal dopamine dysfunction appears to be respon-
sible for aberrant attentional control in schizophrenia
[38,41–43].

Recently, Todd et al. [44] showed how the gating frame-
work can be interpreted as a policy search algorithm [45].
The state space for this policy has two components: the
current sensory inputs and an internal memory register.
The policy maps states onto two different kinds of
actions: motor actions that directly affect the external
world, and gating actions that update the contents of the
memory register. RL is then used to find the policy that
maximizes reward. One appealing property of this pro-
posal is that it allows the animal to learn about reward
structure without representing an explicit internal model
of the world, or a posterior distribution over possible
causal structures. Other recent variants of the gating
framework have explored how it can support performance
in a variety of complex tasks [37!,46], but direct exper-
imental evidence supporting its central claims remains
scant.

Structure in actions
Just as animals are provided with a surfeit of perceptual
inputs, they must also contend with an overwhelming
bounty of motor effectors. Although such high degree of

motor control is in principle useful, it presents a formid-
able learning problem, known in machine learning and
engineering as the curse of dimensionality [47]: the number
of possible effector combinations grows exponentially
with the number of effectors, and therefore an unrealistic
amount of experience would be needed to accurately
estimate and compare the value of each of these combi-
nations. The curse of dimensionality can be alleviated if
one is willing to make certain assumptions about the
structure of the environment or the structure of correct
motor strategies [48!,49!!]. In particular, assuming that
the value of an effector combination decomposes into a
sum of effector-specific components drastically reduces
the amount of experience required for accurate value
estimates. Structure learning thus takes center stage in
making action evaluation tractable.

Two recent functional magnetic resonance imaging stu-
dies have begun to examine how the human brain takes
advantage of structure in the space of actions. Gershman
et al. [50] designed a RL task in which subjects were asked
to make two choices simultaneously, one with each hand,
after which probabilistic reward feedback was presented.
They showed behaviorally that when the rewards decom-
posed into hand-specific components, subjects exploited
this structure to guide learning. Furthermore, prediction
error signals in the ventral striatum (the main afferent of
midbrain dopamine) displayed a corresponding fraction-
ation, with the prediction error component for each hand
correlating preferentially with the contralateral hemi-
sphere. Value signals in the intraparietal sulcus also dis-
played hemispheric fractionation. In a related decision-
making experiment, Palminteri et al. [51] cued subjects to
make choices either with the left or with the right hand.
They showed that hand-specific values were preferen-
tially correlated with the contralateral ventral prefrontal
cortex, consistent with the idea that the brain’s RL
system exploits structure in the space of actions rather
than learning a single value function over the space of
effector combinations.

Conclusions
Although computational models of RL have greatly
enriched our understanding of learning and decision-
making in the brain, they have often rested upon naive
assumptions about the representations over which learn-
ing operates. In particular, many studies have assumed
that states are represented by simple perceptual primi-
tives, and actions are represented by monolithic motor
responses. If we have learned anything from machine
learning, it is that these assumptions will not ‘scale up’ to
real-world problems, and the very fact that humans and
animals are able to learn effectively in highly complex
environments suggests that these assumptions are not
psychologically plausible. We have reviewed several lines
of research that begin to paint a portrait of a more
sophisticated learning system, based on interactions
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between the basal ganglia, prefrontal cortex and hippo-
campus, that can deal with the challenges of a complex
world by inferring its latent structure.
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