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Policy Complexity Suppresses Dopamine Responses
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Limits on information processing capacity impose limits on task performance. We show that male and female mice achieve performance
on a perceptual decision task that is near-optimal given their capacity limits, as measured by policy complexity (the mutual information
between states and actions). This behavioral profile could be achieved by reinforcement learning with a penalty on high complexity
policies, realized through modulation of dopaminergic learning signals. In support of this hypothesis, we find that policy complexity
suppresses midbrain dopamine responses to reward outcomes. Furthermore, neural and behavioral reward sensitivity were
positively correlated across sessions. Our results suggest that policy compression shapes basic mechanisms of reinforcement learning
in the brain.
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Significance Statement

Decision-making relies on memory to store information about which actions to produce in which situations. This memory has
limited capacity, which means that some information will be lost. The signatures of this information loss can be found in
patterns of behavioral bias and randomness. However, relatively little is known about the neural mechanisms which ensure
that actions achieve the highest possible reward given the limited capacity of decision memory. In this paper, we show that the
neuromodulator dopamine is sensitive to the costs of memory, as predicted by a computational model of capacity-limited
learning.

Introduction
Task performance is bounded by sensory and memory bottle-
necks that limit the flow of information from task states to
actions (Tishby and Polani, 2010; Gershman, 2020; Lai and
Gershman, 2021). This implies that there is not a single perfor-
mance optimum, but rather a spectrum of optima indexed by
information capacity. This idea can be formalized by viewing
an agent’s policy (the probabilistic mapping from states to
actions) as a communication channel characterized by the
mutual information between states and actions, also known as
policy complexity (Fig. 1). The channel’s capacity is an upper
bound on policy complexity, which in turn determines an upper
bound on achievable task performance.

Agents should compress their policies to stay within the capacity
limit. Optimally compressed policies have several signatures: they

are stochastic, biased towards high frequency actions, and sensitive
to the distribution/number of states. These signatures have been
documented experimentally in humans (Lai and Gershman,
2024), and have been argued to account for a wide range of well-
established behavioral phenomena, such as perseveration
(Gershman, 2020) and undermatching (Bari and Gershman, 2023).

Despite the abundance of behavioral evidence for policy
compression, we still do not understand how it is implemented
neurally. One possibility, motivated by reinforcement learning
models of policy compression (Lai and Gershman, 2021, 2024),
is that the reward prediction error signals used for policy updat-
ing register a policy complexity penalty, thereby driving policies
towards a balance between rewardmaximization and policy com-
pression. Specifically, the error δ should take the following form:

d = r − V − log
P(a | s)
P(a)

, (1)

where r is the reward outcome, V is expected reward, and the last
term is the policy cost (the probability of choosing action a in
state s relative to the marginal probability of choosing a across
all states), whose expectation is equal to policy complexity, I(s; a).
Note that since policy complexity is the mutual information
between two variables, it is always non-negative, though on individ-
ual trials the policy cost can be negative.
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Since phasic dopamine signals classically conform to a reward
prediction error signal (Schultz et al., 1997; Eshel et al., 2015;
Gershman et al., 2024), we hypothesize that they will be sup-
pressed by policy complexity. We tested this hypothesis using
dopamine neuron recordings from mice during a perceptual
decision task (Lak et al., 2020). The different stimuli in the task
can be treated as distinct states (9 in total), allowing us to exam-
ine whether mice exhibit behavioral and neural signatures of
policy compression.

Materials and Methods
Experimental procedure. The data analyzed in this paper were

originally reported in Lak et al. (2020). We briefly summarize the data
collection methods, referring readers to that paper for further details.
The data came from 5 mice of either sex (55 sessions total) performing
a perceptual decision task (Fig. 2) while the activity of dopamine neurons
in the ventral tegmental area were monitored using fiber photometry of
GCaMP signals. The fiber photometry used multiple excitation wave-
lengths (465 and 405 nm) modulated at different carrier frequencies
(214 and 530Hz) to allow for ratiometric measurements.

On each trial, mice were presented with a sinusoidal grating on either
the left or right side of the monitor, and had to report the side using a
wheel following an auditory Go cue (Fig. 2A,B). Task difficulty was con-
trolled by the contrast of the grating. In addition, the reward magnitude
for correct actions was asymmetric across blocks of trials (Fig. 2C).

Neural data analysis. Light collection, filtering, and demodulation
were performed as previously described (Lerner et al., 2015) using the

Doric photometry setup and Doric Neuroscience Studio Software (Doric
Lenses Inc.). For each behavioral session, least-squares linear fit was applied
to the 405 nm control signal, and theΔF/F time series was then calculated as
((465 nm signal–fitted 405 nm signal)/fitted 405 nm signal).

Our analysis focused on the dopamine response at the time of reward
feedback. Due to the relatively slow dynamics of the calcium signal, we
averaged the signal between 300 and 800ms following the outcome deliv-
ery, which encompasses the peak response. We normalized the response
by subtracting the calcium signal averaged over a 200ms window cen-
tered on the beginning of the trial. To aggregate across animals and ses-
sions, we z-scored the responses within each session. We then fit a linear
regression model to the responses with 4 regressors: an intercept, policy
cost, action value (the average reward for the chosen action conditional
on the current stimulus), and the outcome (water amount). The regres-
sion model aggregated data across all animals (i.e., used a fixed-effects
structure), due to the small sample size; similar results were obtained
using a linear mixed-effects model with random slopes and intercepts
grouped by animal.

For visualization of the policy cost effect, we calculated partial resid-
uals (Larsen and McCleary, 1972), the differences between observed and
predicted responses with the policy cost term removed; plotting this
against policy cost isolates the cost regressor’s contribution after adjust-
ing for the other regressors.

Policy compression model. Policy cost is defined as log P(a | s)/P(a),
where P(a | s) is the conditional probability of action a given state s
(here taken to be the stimulus), and P(a) is the marginal probability
of action a. The probability distributions were estimated separately
for each session. Policy complexity is defined as the average policy cost
within a session. An animal’s capacity is an upper bound on policy

Figure 1. Policy compression framework. A, State s is sampled from the state distribution and then compressed by an encoder into codeword c. At the time of action selection, the codeword is
probabilistically decoded into an action a. The complete mapping from states to actions is the policy, π(a | s). B, The blue curve shows the optimal average reward achievable for each level of
policy complexity (the mutual information between states and actions). A hypothetical capacity limit for an agent is shown as the dashed line; its intersection with the blue curve represents that
agent’s maximum achievable average reward. All points above the blue line are unachievable, and all points below it are suboptimal. C, Two example policies, distinguished by their complexity.
The high complexity policy has a capacity of 3 bits and yields a low entropy distribution over actions. In contrast, the low complexity policy has a capacity of 1 bit and yields a high entropy
distribution over actions.
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complexity. The optimal capacity-limited policy is given by
P(a | s)/ exp [bQ(s, a)+ log P(a)], where Q(s, a) is the average reward
for taking action a in state s. The inverse temperature β is implicitly
set based on the capacity limit and the task structure (see Lai and
Gershman, 2021, for more details). We treated β as a free parameter,
which we fit to the behavioral data using maximum likelihood estima-
tion. To capture a small amount of state uncertainty, we smoothed the
values across neighboring contrast levels.

Results
We first checked for behavioral signatures of policy compression.
We used the Blahut-Arimoto algorithm to calculate the optimal
reward-complexity frontier (Fig. 3A). This algorithm alternates
between computing the optimal conditional distribution
P(a | s) and the optimal marginal distribution P(a) until
convergence. Each point on the frontier represents the maximum
achievable average reward for a particular capacity limit. Points
above the curve are unachievable, and points below the curve
are suboptimal. We found that mouse behavior on this task
was close to the optimal frontier, with a median deviation
of 3.1%.

To gain an intuition for what different levels of policy com-
plexity mean behaviorally, we can focus on two aspects of beha-
vior: perseveration and stochasticity. Animals with low policy
complexity are perseverative, choosing actions with high
marginal probability. In other words, animals will tend to con-
tinue choosing an action that may no longer be relevant on the
current trial. Animals with low policy complexity are also more
stochastic in their action choices. Together, perseveration and
stochasticity reduce the average reward for low-complexity
policies.

We next tested whether the functional form of the optimal
policy (see Materials and Methods) fit the choice data well. The
optimal policy has only a single free parameter (the inverse tem-
perature) which controls the balance between reward maximiza-
tion and policy compression. When this parameter is small, the
psychometric function should be shifted in the direction of
high frequency actions, which we estimated using the session-
specific bias (Fig. 3B). The optimal policy fit the data well, exhib-
iting a pronounced shift in the psychometric function depending
on the session-specific bias, as measured by the average probabil-
ity of choosing left or right within a session (Fig. 3C). Removing
the bias term from the policy increased the Bayesian Information
Criterion (ΔBIC = 378), thus supporting its inclusion.

Having established the behavioral plausibility of policy com-
pression, we turned to an analysis of dopamine responses at the

time of outcome. Linear regression with outcome, value, and
policy cost regressors (see Materials and Methods) revealed
significant effects for all three (Fig. 4A). Consistent with a reward
prediction error, the outcome effect was positive (t= 62.838, p <
0.0001), and the value effect was negative (t=−15.723, p <
0.0001). Critically, the cost effect was negative (t=−15.476, p <
0.0001; Fig. 4B), consistent with the hypothesis that dopamine
signals drive reinforcement learning away from high complexity
policies. For comparison, a regression model predicting dopa-
mine responses at the time of stimulus onset showed
positive effects for both value (t= 19.71, p < 0.0001) and policy
cost (t= 6.29, p < 0.0001), consistent with a cost-sensitive reward
prediction error signal.

Removing the cost term from the outcome response model
increased the Bayesian Information Criterion (ΔBIC = 228).
Note that cost and outcome are correlated (r= 0.53), so themodel
comparison result is important for supporting our claim that the
cost term is explaining substantial additional variance beyond its
shared variance with the outcomes.

We conducted several other model comparisons to supplement
this analysis. First, we confirmed that removing the outcome term
(ΔBIC=3503) and the action value term (ΔBIC=235) produced
inferiormodels, supporting the complete set of 3 terms we included
in the original model specification. Second, we compared this
model to one with a surprisal cost, − log P(a). The expectation
of the surprisal cost is the action entropy. This model captures
the proposal (e.g., Botvinick, 2007; Dreisbach and Fischer,
2012; Cavanagh et al., 2014) that high action entropy—a measure
of response conflict—is costly (but see Rens et al., 2023), and
this cost could be registered in the dopamine signal. We found
that a model with surprisal instead of policy cost was disfavored
(ΔBIC = 72), but that a model with both surprisal and policy cost
was slightly favored (ΔBIC =−38). This suggests that response
conflict may factor into dopamine responses beyond what is
accounted for by policy cost. Finally, we compared the model
against one with “stay” (action repetition) and “win-stay”
(interaction between action repetition and last outcome) terms,
based on the previous observation that dopamine responses
show a win-stay effect (Lak et al., 2020). This model was also
disfavored (ΔBIC = 237).

Finally, we tested whether the neural and behavioral results
align with each other. According to some models (Lai and
Gershman, 2021, 2024), the inverse temperature controls both
the reward-compression tradeoff and the degree of reward
sensitivity in the reward prediction error. This implies that the
outcome coefficient in the neural regression should correlate

Figure 2. Task schematic. A, Experimental interface. Mice reported the location (left or right) of a variable-contrast sinusoidal grating by turning a wheel. B, Sequence of events on a single
trial. Mice were required to await an auditory Go cue before responding, after which they received water reward for a correct action. C, Reward structure. On different blocks, the correct action for
one stimulus delivered twice as much reward as the correct action for the other stimulus (indicated by number of drops). The more-rewarded side switched in blocks of 50–350 trials. Unshaded
drops indicate reward omission. Note that one and two unshaded drops both indicate reward omission; the number of unshaded drops indicates hypothetical expected reward.
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with the inverse temperature fit to behavior, consistent with the
experimental data (r = 0.33, p < 0.02; Fig. 4C ).

All of the neural analyses reported above were applied to
baseline-corrected photometry signals, where the stimulus-
evoked response was subtracted from the signal around the
beginning of the trial (see Materials and Methods). This was
done to mitigate lingering effects of transients at trial onset.
Nonetheless, our results are robust to this baselining procedure,
as shown in Figure 5, where we have not applied any baseline
correction.

Discussion
Our study provides behavioral and neural evidence for policy
compression in mice performing a perceptual decision task.
Behaviorally, mice approximate the optimal reward-compression
frontier, producing patterns of bias quantitatively consistent with
the capacity-limited optimal policy. Neurally, dopamine responses
to reward outcomes were suppressed by policy complexity,
consistent with reinforcement learning models of policy com-
pression (Lai and Gershman, 2021, 2024), and in contrast to
models that locate capacity limits outside of the brain’s error-
driven reinforcement learning system (Collins et al., 2017). We
note, however, that several studies have shown contributions of

a capacity-limited working memory system to the reward expec-
tations used for error-drive reinforcement learning (Collins,
2018; Collins and Frank, 2018), and hence the error signals them-
selves reflect the capacity limit. While such models are conceptu-
ally different from the one proposed here, they share the general
idea that prediction error signals are shaped by capacity limits.

The idea that an information bottleneck constrains dopamine
is buttressed by prior work. Schütt et al. (2024) showed that the
population of dopamine neurons forms an efficient code for
reward, with tuning curves that maximize information rate
subject to a constraint on firing rate. At slower timescales, dopa-
minemay also itself control bottlenecks bymodulating sensitivity
to sensory and reward signals (FitzGerald et al., 2015; Mikhael
et al., 2021; Bari and Gershman, 2023), and by calibrating cogni-
tive effort (Westbrook and Braver, 2016). In this study, we only
examined the fast timescale component (phasic responses to
reward).

We still lack a biologically plausible circuit model that synthe-
sizes all of these observations. Our data suggest that any such
circuit model should include projections from policy-sensitive
regions to midbrain dopamine neurons. Searching for such pro-
jections will need to start with the identification of regions com-
puting policy cost.

Figure 3. Behavioral results. A, Task performance was close to the optimal reward-complexity frontier. Each cross represents a single session. Note that a few points are above the curve due to
noise in estimation of policy complexity. B, Histogram of bias (marginal probability of choosing “right”) across sessions. C, Probability of choosing “right” conditional on stimulus contrast and the
session-specific bias. For visualization purposes, session-specific bias was dichotomized based on whether the P(right) in a session was less than 0.5 (a “Left bias” session) or greater than 0.5
(a “Right bias” session). Negative contrast values represent stimuli presented on the left; positive contrast values represent stimuli presented on the right. Solid lines show the model fit. All error
bars show standard errors of the mean.

Figure 4. Neural results. A, Regression coefficients for a linear model predicting the dopamine response at the time of reward feedback. B, Partial residual plot for the policy cost regressor.
C, Behaviorally estimated inverse temperature plotted against the coefficient for the outcome regressor. Each cross represents a single session. All error bars show standard errors of the mean.
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It has been proposed that the prefrontal cortex is organized
into a hierarchy of cognitive control signals which guide action
selection (Koechlin and Summerfield, 2007). Each of these
control signals is derived from an information-theoretical
analysis of the policy. In particular, Koechlin and
Summerfield propose that premotor cortex tracks the action
entropy H[a] = E[− logP(a)], while lateral prefrontal cortex
tracks the conditional entropy H[a | s] = E[− logP(a | s)],
with the state incorporating increasingly more information
about stimuli, context, and past events along the anterior-
posterior axis of lateral prefrontal cortex. The difference between
the entropy and conditional entropy yields the policy complexity:
H[a]−H[a | s] = I(s; a). Thus, the policy cost (whose expectation
is the policy complexity) could conceivably be computed based
on differences in activity between lateral prefrontal and premotor
areas.

Several lines of evidence indicate that prefrontal areas provide
input to prediction error computation by dopamine neurons.
Starkweather et al. (2018) showed that chemogenetic inactivation
of medial prefrontal cortex eliminates the sensitivity of dopamine
neuron activity to state uncertainty. Using the same perceptual
decision task studied here, Lak et al. (2020) showed that medial
prefrontal cortex encodes confidence-dependent action value;
optogenetically suppressing this area altered learning putatively
by increasing the prediction error. If the value signals conveyed
by medial prefrontal cortex reflect a policy cost, then their trans-
mission to dopamine neurons would enable the cost-sensitive
error computation hypothesized here. One possibility is that
medial prefrontal cortex integrates the control signals from the
lateral prefrontal and premotor areas to compute cost-sensitive
action values—a speculation broadly consistent with the role of
medial prefrontal areas, particularly the anterior cingulate, in
the integration of action costs and benefits (Walton et al., 2002;
Rudebeck et al., 2006; Holroyd and McClure, 2015).

The data we analyzed in this paper came from a task that was
not designed to specifically test the predictions of the policy com-
pression framework. Recently, such tasks have been designed for
studies of human decision making (Lai and Gershman, 2024).
For example, Lai and Gershman (2024) studied how policy com-
plexity varied with state and action probabilities, reward struc-
ture, and response deadlines. A promising direction for future
research will be to develop these tasks for animal studies in con-
junction with neural measurements of the underlying computa-
tional variables.

Code and Data Availability
All code and data for reproducing the analyses reported in this
paper are available at https://github.com/sjgershm/dopamine-
complexity.
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