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ABSTRACT
Action selection requires a policy that maps states of the world to a distribution over 
actions. The amount of memory needed to specify the policy (the policy complexity) 
increases with the state-dependence of the policy. If there is a capacity limit for policy 
complexity, then there will also be a trade-off between reward and complexity, since 
some reward will need to be sacrificed in order to satisfy the capacity constraint. This 
paper empirically characterizes the trade-off between reward and complexity for 
both schizophrenia patients and healthy controls. Schizophrenia patients adopt lower 
complexity policies on average, and these policies are more strongly biased away from 
the optimal reward-complexity trade-off curve compared to healthy controls. However, 
healthy controls are also biased away from the optimal trade-off curve, and both groups 
appear to lie on the same empirical trade-off curve. We explain these findings using a 
cost-sensitive actor-critic model. Our empirical and theoretical results shed new light on 
cognitive effort abnormalities in schizophrenia.
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INTRODUCTION
People diagnosed with schizophrenia are typically less willing to exert cognitive and physical effort 
to obtain rewards (Culbreth et al., 2018). For example, Culbreth et al. (2016) gave subjects the 
opportunity to earn more reward by exerting greater effort (choosing higher working memory 
loads in the N-back Task). Compared to healthy controls, schizophrenia patients exhibited a 
greater preference for low effort/low reward tasks, and the strength of this preference correlated 
with negative symptom severity. Similar results have been reported using other assays of cognitive 
effort (Fortgang et al., 2020, Reddy et al., 2015, Wolf et al., 2014), although the literature is 
inconsistent (Gold et al., 2015; Horan et al., 2015).

One obstacle to a unified understanding of cognitive effort abnormalities in schizophrenia is 
the heterogeneity of the constructs.1 For example, the Deck Choice Effort Task used in Horan 
et al. (2015) operationalizes cognitive effort in terms of task switching (greater effort for more 
frequent switches). The Demand Selection Task (Kool et al., 2010) used by Gold et al. (2015) 
similarly manipulates cognitive effort by varying task switching frequency. Both studies failed to 
find changes in cognitive effort avoidance related to schizophrenia. A large-scale transdiagnostic 
assessment using the Demand Selection Task also found no relationship between sub-clinical 
schizotypy and cognitive effort avoidance (Patzelt et al., 2019). These results suggest that the 
representation of computational cost may be unaffected in schizophrenia.

The N-back task, in contrast, is effortful in the sense that it taxes representational resources 
needed for storing information in memory. In other words, it incurs an informational cost that 
can be formalized using information theory (Brady et al., 2009, Miller, 1956, Sims et al., 2012, 
Sims, 2016). We can think of the memory system as a communication channel that encodes a 
stream of stimuli into codewords, and then decodes the stimuli from these codewords at the time 
of retrieval. If the encoder is noisy, then the decoder will make errors. To reduce this error, the 
encoder can use longer codewords that store information redundantly (analogous to how you 
might repeat something multiple times to make sure another person heard you). If the encoder is 
capacity-limited (the code length cannot exceed some bound), then there is a limit to how much it 
can reduce its error (Shannon, 1948). This information-theoretic framework gives us a precise way 
of talking about the nature of cognitive effort in working memory tasks: increasing the code length 
for information storage is effortful. The evidence from the incentivized N-back Task (Culbreth et 
al., 2016) suggests that schizophrenia patients are less willing to pay informational effort costs.

We pursue this hypothesis further using a different task and a theoretical framework that makes 
the informational costs explicit. Collins and Frank (2012) introduced a reinforcement learning 
task in which subjects selected one of 3 actions on each trial and received reward feedback that 
depended on a trial-specific stimulus (Figure 1). The number of distinct stimuli (the set size) was 
manipulated across blocks. Performance decreased as a function of set size, which the authors 
interpreted in terms of a capacity-limited working memory contribution to reinforcement learning. 
Using this task, Collins and colleagues (Collins et al., 2017a, 2014) found that schizophrenia 
patients also exhibited a set size effect, but with overall lower performance, consistent with the 
hypothesis that the patients had lower working memory capacity for reinforcement learning. This 
finding agrees with an established literature on working memory impairments in schizophrenia 
(Lee and Park, 2005).

Gershman (2020) analyzed data from the Collins task through the lens of rate distortion theory 
(Berger, 1971), which addresses the interface between information theory and statistical decision 
theory. Following earlier work (Parush et al., 2011; Still and Precup, 2012; Tishby and Polani 2011), 
informational costs were defined in terms of policy complexity—the mutual information between 
states and actions (explained further below). Intuitively, policy complexity measures the amount 
of memory required to specify a policy mapping states to actions. If the policy is highly state-
dependent (e.g., a look-up table), then the memory required will be high, compared to a policy 

1 As pointed out by Culbreth et al. (2016), some of these inconsistencies may alternatively arise from the 
fact that earlier studies used binary choice tasks to assess cognitive demand avoidance, which may have been 
insufficiently sensitive to parametric variations in demand avoidance across subjects.

https://doi.org/10.5334/cpsy.71
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that is relatively state-independent (actions do not depend on states). If there is a bound on policy 
complexity, then there will be a trade-off between reward and complexity: some reward must 
be sacrificed in order to satisfy the complexity bound. This gives rise to a form of perseveration, 
the tendency to produce the same action policy across states regardless of the reward outcome. 
In this paper, we apply the same analyses used in Gershman (2020) to data from schizophrenia 
patients, in order to characterize their reward-complexity trade-off.

A key goal of this paper is to understand to what extent differences in cognitive effort between 
patients and controls, as well as differences between individuals within these groups, can be 
understood as a rational trade-off. Specifically, an individual may choose to avoid cognitive 
effort based on their subjective preference for reward relative to the effort cost. Observing that 
schizophrenia patients exert less effort does not allow us to say whether they perceive cognitive 
effort as more costly relative to reward, or whether they are failing to optimize the trade-off 
between reward and effort. In the latter case, schizophrenia patients may in fact be willing to 
exert more effort, but they fail to identify their subjectively optimal level of effort. Rate distortion 
theory provides us with the theoretical tools to address how close schizophrenia patients and 
healthy controls are to the optimal reward-complexity trade-off. If they adhere closely to the 
optimal trade-off curve, then we have a basis for claiming that any differences in policy complexity 
between the two groups reflects a rational trade-off.

METHODS AND MATERIALS
All code and data to reproduce the analyses in this paper can be obtained at: https://github.com/

lucylai96/reward-complexity-sz.

THEORETICAL FRAMEWORK

We model an agent that visits states (denoted by s) and takes actions (denoted by a). We assume 
that the agent learns a value function Q(s,a) that defines the expected reward in state s after 
taking action a. In the experiment analyzed here, the value function is deterministic, so in principle 
it can be learned in a few trials, or even a single trial. For simplicity, we treat the value function 
as known; even though this is not an accurate characterization of the learning process (see next 
section), we expect that it will adequately capture the average behavior of subjects, which is our 

Figure 1 Task schematic. On 
each trial, subjects selected 
one of three different 
actions conditional on a 
presented stimulus, and 
were then presented with 
deterministic reward feedback 
(correct/incorrect). The number 
of stimuli (the set size) varied 
across blocks.

https://github.com/lucylai96/reward-complexity-sz
https://github.com/lucylai96/reward-complexity-sz
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focus here. Each state is visited with probability P(s), and an action is chosen according to a policy 
π(a|s). The average number of bits (or rate) necessary to encode a policy with arbitrarily small error 
is equal to the mutual information between states and actions:

    

p p
p=å å ( | )

( ; ) ( ) ( | )log ,
( )

s a

a s
I S A P s a s

P a  (1)

where p=å( ) ( ) ( | )
s

P a P s a s  is the marginal probability of choosing action a (i.e., the policy averaged 
across states). Because the mutual information quantifies the degree of probabilistic dependency 
between states and actions, we will refer to it as the policy complexity. State-dependent policies 
are more complex than state-independent policies. Thus, policy complexity is minimized (mutual 
information is equal to 0) when the policy is the same in every state.

The agent’s goal is to earn as much reward as possible, subject to the constraint that the policy 
complexity cannot exceed a capacity limit. Formally, the resource-constrained optimization 
problem is defined as follows:
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is the average reward under policy π, and C is the channel capacity—the maximum achievable 
policy complexity. Two other necessary constraints (action probabilities must be non-negative and 
sum to 1) are left implicit. This constrained optimization problem can be equivalently expressed in 
a Lagrangian form:
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with Lagrange multipliers β and λ(s). The optimal policy π* has the following form (Parush et al., 
2011; Still and Precup, 2012, Tishby and Polani, 2011):

    p b* *é ùµ +ê úë û( | ) exp ( , ) log ( ) .a s Q s a P a  (6)

The optimal policy thus takes the form of a softmax function, with a frequency-dependent 
bias (perseveration) term. The Lagrange multiplier β plays the role of the “inverse temperature” 
parameter, which regulates the exploration-exploitation trade-off via the amount of stochasticity 
in the policy (Sutton and Barto, 2018). When β is close to 0, the policy will be near-uniform, and as 
β increases, the policy will become increasingly concentrated on the action with maximum value. 
The inverse of β is the partial derivative of the value with respect to the policy complexity:

     

p
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Geometrically, this is the slope of the optimal reward-complexity curve for a particular resource 
constraint (see below).

The perseveration term implicitly depends on the optimal policy:



42Gershman and Lai  
Computational Psychiatry  
DOI: 10.5334/cpsy.71    

p* *=å( ) ( ) ( | ).
s

P a P s a s  (8)

To find the optimal policy, we can use a variation of the Blahut-Arimoto algorithm (Arimoto 1972; 
Blahut, 1972), alternating between updating the policy according to Eq. 6 and updating the 
marginal action distribution according to Eq. 8. By performing this optimization for a range of β 
values, we can construct a reward-complexity curve that characterizes the optimal policy for a 
given resource constraint.

A PROCESS MODEL: COST-SENSITIVE ACTOR-CRITIC LEARNING

The previous section presented a computational-level account of policy optimization under an 
information-theoretic capacity limit. For convenience, we assumed direct access to the reward 
function, and computed the optimal policy using the Blahut-Arimoto algorithm. However, these 
idealizations are not plausible as process models. Real agents need to learn the reward function 
from experience, and the Blahut-Arimoto algorithm may be computationally intractable when the 
state space is large (because it requires marginalization over all states according to Eq. 8).

To derive a more cognitively plausible process model, we start from the observation that the 
Lagrangian optimization problem in Eq. 5 can be expressed in terms of an expectation over states:
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This formulation allows us to construct an “actor-critic” learning rule using the stochastic policy 
gradient algorithm (Sutton and Barto, 2018), which directly optimizes Eq. 9 by taking the gradient 
of the average reward with respect to the policy parameters. First, we define a parametrized policy 
(the “actor”):

   
[ ]qp bqµ +( | ) exp log ( ) ,saa s P a  (10)

where θ denotes the policy parameters. Note that this parametrization mirrors the optimal 
parametrization in Eq. 6. The inverse temperature β implicitly reflects the channel capacity: β is 
monotonically related to policy complexity, which peaks at the channel capacity. However, a 
critical distinction between β and channel capacity is that channel capacity is a fixed property of 
an information channel, and thus we expect it to be relatively constant for an individual, whereas 
β depends on the reward rate, and hence can vary within an individual. Specifically, an optimal 
channel will select the value of β corresponding to the point at which the channel capacity 
intersects the optimal trade-off curve. We will address this issue in the next section.

Given an observed reward r after taking action a in state s, the policy parameters are updated 
according to:

    
q

q
a
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 (11)

where αθ is the actor learning rate, N is the set size, and

    

p
d b= - -
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a s

r V s
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is the prediction error of the “critic” ˆ( )V s , an estimator of the expected cost-sensitive reward, 
updated according to:

    a dD =ˆ( ) VV s  (13)
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with critic learning rate αV. We scaled the actor learning rate (but not the critic learning rate) by 
1/t for two reasons. This ensures that the the policy eventually converges to the optimal policy 
by satisfying the Robbins-Munro conditions for stochastic approximation algorithms (Robbins and 
Monro, 1951), and by ensuring that the actor learning rate will generally be slower than the critic 
learning rate (Konda and Tsitsiklis, 2000). To complete the model, we estimate the marginal action 
probabilities with an exponential moving average:

    a pD = -( ) [ ( | ) ( )]PP a a s P a  (14)

with learning rate αP.

We fit four free parameters (β, αθ, αV, αP) to each individual’s choice behavior using maximum 
likelihood estimation. To assess the match to the data, we then simulated the fitted model for 
each participant, using the same stimuli presented to the human subjects. We validated our 
modeling procedure in two ways. First, we assessed parameter recovery by refitting the data 
simulated and comparing the resulting parameter estimates to their ground truth. All of the 
parameters exhibited reasonable parameter recoverability, with correlations between 0.43 and 
0.89 (all statistically significant, p < 0.0001). Second, we assessed model recovery by also fitting 
the two model variants (described below) to the simulated data and computing the protected 
exceedance probability using Bayesian model comparison (Rigoux et al., 2014). We found that 
the protected exceedance probability was close to 1 for the true model, demonstrating that our 
modeling procedure was able to accurately identify the data-generating model.

MODEL VARIANTS

If individuals can be characterized by a fixed channel capacity C, then theoretically the inverse 
temperature β should decrease for larger set sizes in order to operate at the channel capacity. 
We therefore developed an “adaptive” model in which β is updated so as to minimize the squared 
deviation of the policy complexity from C. Taking the derivative of the squared deviation with 
respect to β, we obtain the following update rule:

   
bb a q q p¢

¢

¢D = - -å( )[ ( | )],sa sa
a

C R a s  (15)

where αβ is a learning rate and R is a running estimate of the policy complexity. For simplicity, we 
set R equal to the last value of the complexity cost, 

p( | )
( )log a s

P a , which is equal in expectation to the 
policy complexity. In this model, β is no longer a free parameter; instead, we fit C, αβ, and an initial 
value of β, which we denote β0.

We also examined a reduced-form variant of the adaptive model in which we fix αP = 0, thus 
removing one free parameter. This variant was motivated by the empirical observation that 
the parameter estimate was close to 0 for most subjects, indicating that the marginal action 
distribution tended to stay close to the uniform distribution (its initial value).

We will refer to the three model variants as the fixed model (with free parameters β, αθ, αV, αP), the 
adaptive model (with free parameters C, β0, αθ, αV, αP), and the reduced adaptive model (with free 
parameters C, β0, αθ, αV).

DATA SET

We applied the theory to a data set originally reported in Collins et al. (2014). Subjects performed 
a reinforcement learning task in which the set size (the number of distinct stimuli, corresponding 
to states) varied across blocks (Figure 1). On each trial, subjects saw a single stimulus, chose an 
action and received deterministic reward feedback. Each stimulus was associated with a single 
rewarded action. Each subject completed 13 blocks, with set sizes ranging from 2 to 6. Each 
stimulus appeared 9–15 times in a block, based on a performance criterion of at least 4 correct 
responses of the last 5 presentations of each stimulus. No stimulus was repeated across blocks.
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Two groups of subjects (schizophrenia patients and healthy controls) completed the experiment. 
The schizophrenia group (henceforth denoted SZ) consisted of 49 people (35 males and 14 
females) with a DSM-IV diagnosis of schizophrenia (N = 44) or schizoaffective disorder (N = 5). 
The healthy control group (henceforth denoted HC) consisted of 36 people (25 males and 11 
females), matched to the patient group in terms of demographic variables, including age, gender, 
race/ethnicity, and parental education.

ESTIMATING EMPIRICAL REWARD-COMPLEXITY CURVES

To construct the empirical reward-complexity curve, we computed for each subject the average 
reward and the mutual information between states and actions. From the collection of points 
in this two-dimensional space, we could estimate an empirical reward-complexity curve. While 
there are many ways to do this, we found 2nd-order polynomial regression to yield a good fit. 
To estimate mutual information, we used the technique introduced by Hutter (2002), which 
computes the posterior expected value of the mutual information under a Dirichlet prior. Following 
Gershman (2020), we chose a symmetric Dirichlet prior with a concentration parameter α = 0.1, 
which exhibits reasonably good performance when the joint distribution is sparse (Archer et al., 
2013). The sparsity assumption is likely to hold true in the data set analyzed here because there is 
a single rewarded action in each state.

RESULTS
COMPARING OPTIMAL AND EMPIRICAL REWARD-COMPLEXITY CURVES

How close are subjects to the optimal reward-complexity trade-off curve? Figure 2A–E compares 
the optimal and empirical curves, broken down by set size and subject group. We can glean several 
insights from these plots. First, despite a gap between the optimal and empirical trade-off curves 
(explored further below), there was a strong correlation between the curves for both groups 
(r = 0.94 for HC, r = 0.92 for SZ, both p < 0.00001).2 This finding affirms earlier work (Gershman, 
2020) showing that people approach the optimal reward-complexity trade-off, particularly for 
those exhibiting high policy complexity. Second, recapitulating findings from earlier work using 
variants of this task (Collins, 2018, Collins et al., 2017b, Collins and Frank, 2012, 2018), subjects 
earn less reward with larger set sizes, indicating a resource constraint on reinforcement learning. 
Specifically, if policy complexity is approximately fixed across set sizes, then this fixed resource 
must be distributed across more states, resulting in lower precision per state.3 Third, average policy 
complexity did not vary monotonically across set sizes for either group (Figure 2F), indicating a 
roughly constant resource constraint. This finding is consistent with the hypothesis that set size 
effects reflect reallocation of a fixed resource across multiple items (Ma et al., 2014). Fourth, 
policy complexity was significantly lower for the SZ group [mixed-effects ANOVA: F(1,415) = 11.51, 
p < 0.001], and did not interact with set size (p = 0.14), indicating that the subjects in the SZ group 
were tapping fewer cognitive resources in this task.

Figure 2 displays a systematic discrepancy between the optimal and empirical trade-off functions, 
which we quantify in terms of the bias (the difference between the two functions sampled at 
the empirical trade-off points). The average bias, broken down by set size and group, is shown in 
Figure 3A. A mixed-effects ANOVA found main effects of set size [F (4,415) = 6.99, p < 0.001] and 
group [F(1,415) = 5.76, p < 0.05], as well as an interaction [F(4,415) = 4.07, p < 0.005]. Average bias 
was larger for higher set sizes and for the SZ group; the difference between the groups grew as 
a function of set size. Thus, subjects appear to deviate from optimality to a greater degree when 
cognitive demands are larger, and this deviation is exacerbated for SZ patients.

2 For this analysis, we made weak assumptions about the form of the empirical trade-off curve by using linear 
interpolation. Later, we adopt stronger parametric assumptions.

3 Holding set size constant, average reward for an individual subject is also higher on blocks in which a subject 
has higher policy complexity (average Spearman’s ρ = 0.61 for HC, ρ = 0.64 for SZ), indicating that policy complexity 
explains variation in reward rates over and above variations in set size.
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Another aspect of bias, captured in Figure 3B, is that it declines with policy complexity for 
both groups (Pearson correlation: r = –0.62 for HC, r = –0.61 for SZ, both p < 0.0001; Spearman 
correlation: ρ = –0.60 for HC, ρ = –0.57 for SZ, both p < 0.0001). In other words, subjects who 
have more cognitive resources available are closer to the optimal trade-off curve. Importantly, 
the Pearson correlation between bias and policy complexity did not differ significantly between 
the two groups (95% confidence interval for the correlation coefficient was [–0.70, –0.52] for HC 
and [–0.68,–0.53] for SZ). This indicates that the two groups, while differing in average bias, do not 
differ in their bias functions, an observation that dovetails with the analysis of empirical trade-off 
curves reported next.

We now turn to the critical question raised in the Introduction: do subjects in the two groups 
occupy different points along the same trade-off curve, or do they occupy different trade-off 
curves? To answer this question, we fit a parametric model (2nd-order polynomial regression) to 
the reward-complexity values, separately for the two groups and for each set size. This modeling 
demonstrated that the two groups have essentially the same trade-off curves. We show this in 
two ways. First, none of the parameter estimates differ significantly between groups for any of 
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the set sizes (Figure 4A–E). Second, we compared the “independent” polynomial regression model, 
in which parameters are allowed to vary between the groups, to a “joint” model in which the 
parameters are forced to be the same (but still allowed to vary across set sizes). We compared 
models using the Bayesian information criterion (BIC), which applies a complexity penalty to the 
additional free parameters in the independent model. Across set sizes, the model comparison 
consistently favored the joint model (Figure 4F).4

MODELING

As a first step towards understanding why the empirical and optimal trade-off curves diverge, we 
simulated a process model of policy optimization (see Materials and Methods). This model is a 
cost-sensitive version of the actor-critic model that has been studied extensively in neuroscience 
and computer science. The key idea is that the agent is penalized for policies that deviate from 
the marginal distribution over actions (i.e., the probability of taking a particular action, averaging 
over states). This favors less complex policies, because the penalty will be higher to the extent that 
the agent’s policy varies across states. Mechanistically, the model works like a typical actor-critic 
model, with the difference that the policy complexity penalty is subtracted from the reward signal.

We fit the fixed actor-critic model to the choice data using maximum likelihood estimation, and 
then simulated the fitted model on the task. Applying the same analyses to these simulations 
(Figures 5 and 6) verified that this model achieved a reasonably good match with the experimental 
data (compare to Figures 2 and 3), with the exception that it didn’t capture the empirically observed 
increase of bias with set size.5 We then asked to what extent different parameters contributed to 
the bias effect (i.e., the deviation between empirical and optimal trade-off curves). Entering the 
parameters for each subject into a linear regression with average bias as the dependent variable, 
we found significant positive coefficients for the actor learning rate (αθ, t = 2.49, p < 0.05; Figure 7B) 
and the marginal action probability learning rate (αP, t = 2.47, p < 0.05; Figure 7C).

4 We chose to use the BIC rather than the Akaike Information Criterion (AIC) to score models because we found 
that AIC performed worse at model recovery, exhibiting a bias towards the independent model even when simulated 
data were generated by the joint model.

5 The apparent drop in bias at set size 6 is likely a statistical fluke, because rerunning the simulation with different 
random seeds frequently eliminates the drop.
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Figure 4 Polynomial regression 
modeling of empirical reward-
complexity curves. (A–E) 
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We found a significant difference between groups for two parameters. First, the inverse temperature 
(β), which also plays the role of the capacity parameter, was higher for the healthy controls [t(83) 
= 2.29, p < 0.05; Figure 7A]. Second, the actor learning rate (αθ) was lower for the healthy controls 
[t(83) = 2.67, p < 0.01; Figure 7B]. There were no significant differences between groups for the critic 
learning rate (αV) or the marginal action probability learning rate (αP).

Putting these various observations together, we conclude that the deviation from the optimal 
trade-off curve exhibited by subjects (particularly those with low policy complexity) can be 
explained as a consequence of suboptimal learning. This suboptimality is more pronounced in the 
schizophrenic group, which had higher actor learning rates that in turn produced greater bias. This 
fits with the theoretical observation that convergence of actor-critic algorithms depends on the 
actor learning much more slowly than the critic (Konda and Tsitsiklis, 2000); thus, an actor that 
learns too fast can produce suboptimal behavior. Note that this account does not address the 
inverse temperature difference between groups because (unlike the actor learning rate) it did not 
show an association with bias, and hence does not provide leverage for understanding the origin 
of suboptimal behavior.

0 0.5
Policy complexity

0.4

0.6

0.8

1
A

ve
ra

ge
 re

w
ar

d
A)   Set size: 2

Theory
HC
SZ

0 0.5
Policy complexity

0.4

0.6

0.8

1

A
ve

ra
ge

 re
w

ar
d

B)   Set size: 3

0 0.5
Policy complexity

0.4

0.6

0.8

1

A
ve

ra
ge

 re
w

ar
d

C)   Set size: 4

0 0.5
Policy complexity

0.4

0.6

0.8

1

A
ve

ra
ge

 re
w

ar
d

D)   Set size: 5

0 0.5
Policy complexity

0.4

0.6

0.8

1

A
ve

ra
ge

 re
w

ar
d

E)   Set size: 6

2 3 4 5 6
Set size

0.3

0.35

0.4

0.45

0.5

P
ol

ic
y 

co
m

pl
ex

ity

F) Figure 5 The reward-
complexity trade-off for 
simulated cost-sensitive 
agents. (A–E) Each panel 
shows the optimal reward-
complexity curve (solid line) for 
a given set size, along with the 
simulated reward-complexity 
values (circles) for each subject 
(HC = healthy controls; SZ = 
schizophrenia patients). (F) 
Policy complexity as a function 
of set size. Error bars show 95% 
confidence intervals.

2 3 4 5 6
Set size

0.12

0.14

0.16

0.18

0.2

0.22

B
ia

s

A)
HC
SZ

0 0.2 0.4 0.6 0.8
Policy complexity

0

0.1

0.2

0.3

0.4

0.5

B
ia

s

B)
Figure 6 Bias differs between 
simulated healthy control and 
schizophrenia patients. (A) 
Bias is larger for the simulated 
schizophrenia group than for 
the healthy control group. Error 
bars show 95% confidence 
intervals. (B) Bias is negatively 
correlated with policy 
complexity. The correlation 
coefficient does not differ 
significantly between subject 
groups.



48Gershman and Lai  
Computational Psychiatry  
DOI: 10.5334/cpsy.71

Since we are making claims about learning, it is important to validate that our model captures 
the key patterns in the empirical learning curves. Figure 8 compares the learning curves for the 
human data and model simulations. The model qualitatively captures two key patterns: (i) 
learning converges more slowly for larger set sizes; and (ii) learning converges more slowly for 
the SZ group. However, the model underestimates the speed and asymptote of learning for both 
groups, particularly at small set sizes. Thus, a gap remains between theory and data.
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Next, we address the assumption that β is fixed across set sizes. Theoretically, β should decrease 
for larger set sizes in order for the policy complexity to operate at the capacity limit C. Indeed, 
when we fit the adaptive model, which optimizes β to meet a fixed capacity, the learned β values 
were significantly smaller in set size 6 compared to set size 2 [t(84) = 2.25, p < 0.05]. The average 
policy complexity values shown in Figure 2F also suggest that policy complexity is fixed across set 
sizes. However, Bayesian model comparison (Rigoux et al., 2014) found that the fixed β model 
was decisively preferred to the adaptive model, with a protected exceedance probability close to 
1. It was also preferred to the reduced adaptive model, where the marginal policy learning rate αP 
was set to 0. This raises a puzzle: how is it possible that subjects could maintain an approximately 
fixed policy complexity without adapting β? We can discern an answer by inspecting the optimal 
values of β for different policy complexities (Figure 9). For the empirical levels of policy complexity 
achieved by the subjects, the optimal β parameters are nearly indistinguishable across set sizes. 
Accordingly, the optimal β values learned by the adaptive model differ numerically only by a very 
small margin (0.04). This indicates that the experimental design is not ideal for discriminating 
between fixed and adaptive models.

Finally, we address whether the cost term in the prediction error (Eq. 12) is necessary to 
quantitatively model the data: is value updating sensitive to policy complexity? To answer this 
question, we fit a variant of the model without the cost term. Bayesian model comparison strongly 
disfavored this model (PXP close to 0). Thus, value updating does indeed seem to be sensitive to 
policy complexity, such that high complexity policies diminish the learned value.

DISCUSSION
In this paper, we analyzed data from a deterministic reinforcement learning task in which 
the number of stimuli (the set size) varied across blocks. Both schizophrenia patients and 
healthy controls achieved reward-complexity trade-offs that were strongly correlated with the 
optimal trade-off curve, but nonetheless deviated from the optimal curve for subjects with low 
complexity policies. In general, schizophrenia patients had lower complexity policies and hence 
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were more biased away from the optimal curve. However, both groups of subjects appeared to lie 
on the same empirical reward-complexity curve. In other words, even though the schizophrenia 
patients were more biased than healthy controls, they did not exhibit excess bias relative to the 
empirical curve.

One implication of this conclusion is that insensitivity to reward in schizophrenia might reflect a 
quasi-rational trade-off rather than a cognitive impairment per se. This distinction is important 
because it has consequences for welfare analysis and clinical interventions. If a schizophrenia 
patient is relatively insensitive to reward, that does not necessarily indicate that they are 
dysfunctional—it could alternatively reflect their preference, in which case we would not want 
to intervene on their decision-making processes specifically to increase reward sensitivity. On 
the other hand, the deviation from optimality exhibited by both healthy controls and (especially) 
schizophrenia patients suggests an opportunity for interventions that could improve welfare, 
since many individuals appear to be choosing a policy that does not maximize reward for a given 
resource constraint. For example, as suggested by Gershman (2020), it may be the case that 
individuals with lower cognitive resources may be less effective at optimization over the space of 
policies. Aiding this optimization process may nudge people closer to the optimal trade-off curve.

How exactly does the brain solve the optimization problem? The problem is intractable for large 
state spaces, necessitating approximate algorithms. In particular, we formalized an actor-critic 
model that optimizes the cost-sensitive objective function based on trial-by-trial feedback. This 
model builds on earlier actor-critic models of reinforcement learning in the basal ganglia (Joel et al., 
2002), and is closely related to recent cost-sensitive learning algorithms in the artificial intelligence 
literature (Fox et al., 2016, Grau-Moya et al., 2018, Haarnoja et al., 2018, Malloy et al., 2020). We 
showed that this model could account for the major features of our data. An examination of the 
parameter estimates revealed that the deviation from optimality could be accounted for largely by 
variation in the learning rate for the actor component, with larger learning rates associated with 
greater bias. Subjects in the schizophrenia group had both larger actor learning rates and lower 
inverse temperatures. This suggests that the two groups differ both in the degree of suboptimality 
(due to variation in the actor learning rate) and their reward-complexity trade-off (due to variation 
in the inverse temperature, which implicitly specifies the capacity constraint).

The finding that learning rates are elevated in schizophrenia is unusual, given that past 
reinforcement learning studies have not reported such a finding (Collins et al., 2014, Hernaus et 
al., 2018). If anything, past studies have shown lower learning rates in schizophrenia (Dowd et al., 
2016, Weickert et al., 2010), and antipsychotics appear to increase learning rates in schizophrenia 
(Insel et al., 2014). This divergence may reflect the fact that past studies did not use a cost-
sensitive actor-critic model. Nonetheless, more research will be necessary to confirm claims about 
elevated learning rates.

While our model was able to capture several key aspects of the experimental data, it failed to 
completely capture other aspects. In particular, we found that (1) the model did not learn as 
quickly as human subjects, and (2) the model did not capture the growth of bias with set size. These 
mismatches suggest that other modeling assumptions may be necessary to fully characterize 
performance in this task.

Unlike earlier models of memory-based reinforcement learning applied to the same data (Collins 
et al., 2014), the cost-sensitive actor-critic model conceptualizes memory capacity as a flexible 
resource rather than as a set of slots, analogous to models that have been proposed in the 
working memory literature (see Ma et al., 2014, for a review).6 Indeed, the modeling framework 
presented here is directly inspired by models of working memory based on rate-distortion theory 
and lossy compression (Bates and Jacobs, 2020, Sims et al., 2012, Sims, 2016), which formalize 
the trade-off between the costs and benefits of memory precision. Over the course of learning, 
the model adaptively compresses the policy so that it achieves the highest reward rate subject to 
a constraint on the average number of bits used to specify the policy. The implications of adaptive 

6 Although Collins and colleagues implement a slot model, they are not explicitly committed to a slot 
assumption.
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policy compression are wide-reaching: in addition to explaining quantitative aspects of choice 
perseveration (Gershman, 2020), it may also provide a normative explanation for different forms 
of action and state chunking observed experimentally (e.g., Dezfouli and Balleine, 2012, Tomov 
et al., 2020). Finally, the cost-sensitive actor-critic model suggests a computational rationale for 
the massive compression factor in the mapping from cortex to striatum (Bar-Gad et al., 2003). 
An important task for future work will be to assess whether these diverse phenomena can be 
encompassed within a single unifying framework.

As discussed in the Introduction, policy complexity is one of several forms of cognitive effort that 
have been studied in schizophrenia patients. Some earlier work operationalized cognitive effort in 
terms of task difficulty (Gold et al., 2015, Horan et al., 2015). While it is difficult to know exactly 
what this means in a computational sense, it is likely correlated with the duration or number of 
cognitive operations (what computer scientists would call computational complexity) rather than 
the number of bits needed to store information in memory (what computer scientists would call 
space complexity). The cost of optimization is another example of a time complexity cost. Thus, if 
the suboptimality of the empirical reward-complexity curves derives from the cost of optimization, 
then this would imply a relationship between computational and space complexity. We would 
then expect correlations between these distinct forms of cognitive effort—a hypothesis that 
should be pursued in future investigations.
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