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1 Overview

The supplemental text is divided into 3 parts. In Section 2, we provide a technical description
of the generative process underlying our computational model, which is a variation of the
model presented in [8]. The generative process is a specification of the learner’s internal
model of the environment; it is generative in the sense that it describes a recipe for generating
stimulus configurations from latent causes (or “states” as we will call them here for brevity).
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Learning is the process of assigning observed stimulus configurations to the states that
generated them. Since many possible states could have generated any given set of stimuli,
this problem is rationally answered by representing and updating a distribution over states.
Bayes’ rule prescribes how this updating should proceed [7]. However, in our case Bayes’ rule
is not computationally tractable, so we must resort to approximation methods; in Section
3, we describe two such approximations, both of which are used for model-fitting. Finally,
in Section 4, we provide details of how we fit the computational model to skin conductance
response (SCR) data.

2 The generative process

On trial t, a learner observes a stimulus configuration, represented by a D-dimensional
binary vector, ft ∈ {0, 1}D. Each dimension of the vector corresponds to a stimulus; for
ease of exposition, we will only consider here two stimuli, the CS and US. The occurrence of
stimulus d on trial t is denoted by ftd = 1. We will use F1:t to denote the history of stimulus
configurations from trial 1 to t. Likewise, we will use c1:t to denote the state sequence from
trial 1 to t.

We impute to the learner an internal model of the environment. This internal model specifies
a probabilistic “recipe” for generating stimulus configurations:

c ∼ CRP(α) (1)

φkd ∼ Beta(a, b) (2)

ftd ∼ Bernoulli(φctd) (3)

Here c is a vector specifying the state that generated each trial’s stimulus configuration.
The distribution over states, denoted CRP(α), is the Chinese restaurant process [1, 11]
with concentration parameter α. Its name comes from the following metaphor: Imagine a
Chinese restaurant with an unbounded number of tables (states). The first customer (trial)
enters and sits at the first table. Subsequent customers sit at an occupied table with a
probability proportional to how many people are already sitting there, and at a new table
with probability proportional to α. Once all the customers are seated, one has a clustering
of trials into states. Mathematically, this distribution is defined by:

P (ct = k|c1:t−1) =

{
Nk

t−1+α
if k ≤ K

α
t−1+α

if k = K + 1,
(4)

where K is the total number of states generated up to trial t, and Nk is the number of trials
already generated by state k (by default it is assumed that c1 = 1). Intuitively, larger values
of α lead to more states. In the limit α→∞, every trial is generated by a unique state. In
the limit α → 0, all trials are generated by the same state. If we were to sample T trials
from this distribution, we would obtain on average α log T states. Note, however, that the
posterior over states (see next section) will not generally obey this law.
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Each state k is associated with a “prototype” φk, which determines the distribution over
stimulus configurations when state k is active. The prototype describes the central tendency
of this distribution, namely E[ftd|ct = k] = φkd. Each state’s prototype is drawn from
a Beta(a,b) distribution. When a = b = 1, this is a uniform distribution over the [0, 1]
interval, and thus all prototypes are equally likely a priori.

3 Approximating Bayesian inference

The computational problem facing a learner is to infer the sequence of states that gave rise
to the observed stimulus configurations. On trial t, the posterior probability that state k
generated stimulus configuration ft is given by Bayes’ rule:

P (ct = k|F1:t) ∝ P (ft|ct = k,F1:t−1)P (ct = k|F1:t−1)

=
∑
c1:t−1

P (ft|ct = k,F1:t−1, c1:t−1)P (ct = k|c1:t−1)P (c1:t−1|F1:t−1). (5)

The first term in Eq. 5 is the likelihood, expressing the match between ft and the prototype
of state k. More precisely, because the learner has uncertainty about the prototype, the
likelihood is actually an average over all possible prototypes, weighted by their probability:

P (ft|ct = k,F1:t−1, c1:t−1) =

∫
φk

P (ftd = j|ct = k,F1:t−1, c1:t−1, φk)P (φk|F1:t−1, c1:t−1)dφk

=
Mkd + a

Nk + a+ b
, (6)

where Mkd =
∑t−1

τ=1 fτd is the number of times stimulus d co-occurred with state k prior to
trial t. The second term in Eq. 5 is the CRP prior (Eq. 4). The third term is the posterior
over the state sequences from trial 1 to t− 1.

Because the number of unique state sequences grows exponentially with t, the sum in Eq. 5
quickly becomes computationally intractable. Below we consider two expedient approxima-
tions.

3.1 The local MAP approximation

The simplest and least expensive approximation is to choose a single high probability state se-
quence ĉ1:t−1, rather than summing over all possible state sequences. While finding the high-
est probability (maximum a posteriori, or MAP) state sequence would still require searching
over all state sequences, we can iteratively construct a “local” MAP approximation:

ĉt = argmax
k

P (ft|ct = k,F1:t−1, ĉ1:t−1)P (ct = k|ĉ1:t−1). (7)
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This approximation will be reasonably accurate when there is not much ambiguity in the
state sequence—i.e., the stimulus configurations fall reliably into distinct clusters. This
approximation has been used in both the psychological literature [2, 4] and the statistical
literature [5, 12].

3.2 Particle filtering

A more accurate approximation can be obtained by summing over a set of L “particles”
(hypothetical state sequences) drawn from P (c1:t−1|F1:t−1) a technique known as particle
filtering [6]. By the Law of Large Numbers, this approximation will become increasingly
accurate with larger L.

Letting c
(1:L)
1:t denote the set of particles, the posterior over state sequences is approximated

by:

P (c1:t = c|F1:t) ≈
1

L

L∑
l=1

δ
[
c
(l)
1:t, c

]
, (8)

where δ[·, ·] is 1 when its arguments are equal and 0 otherwise. On each trial t, we stochas-
tically draw a set of state assignments:

P (c
(l)
t = k|F1:t−1, c

(1:L)
1:t−1) ∝ P (ft|c(l)t = k,F1:t−1, c1:t−1)P (c

(l)
t = k|c1:t−1). (9)

To normalize this distribution, we need only sum over the L particles, rather than all possible
state sequences.

4 Model-fitting

In order to map the model output to SCR, we assume that the SCR on trial t, denoted by
yt, is a linear function of the model’s predicted probability of the US, vt:

yt = βvt + ε, (10)

where β is a scaling parameter and ε ∼ N (0, σ2) is a random noise term. We fix σ2 = 1
for our analyses. Assuming that the first stimulus dimension corresponds to the US and the
second dimension corresponds to the CS, the probability of a US given a CS is calculated
according to:

vt = P (ft1 = 1|ft2,F1:t−1)

≈ 1

L

L∑
l=1

∑
k

P (ft1 = 1|c(l)t = k,F1:t−1, c
(l)
1:t−1)P (c

(l)
t = k|ft2,F1:t−1, c

(l)
1:t−1). (11)
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The expression using the local MAP approximation is analogous, but with only a single
particle (L = 1).

Using this model of the SCR, the log-likelihood of the data given parameters (α, β) is given
by:

L(α, β) = −T
2

log(2πσ2)− 1

2σ2

T∑
t=1

(yt − βvt)2, (12)

where T is the total number of trials and vt is implicitly a function of α. This equation is
derived from the logarithm of the Gaussian distribution. To compare with a model in which
α is fixed to 0, we approximated the log Bayes factor [7] using:

log BF ≈ log

∫
α

exp{L(α, β̂)}dα− L(0, β̂), (13)

where β̂ is the maximum likelihood estimate of β conditional on α.

For reasons of computational efficiency, we first found the maximum-likelihood parameter
estimates using the local MAP approximation. To obtain predictions about the inferred
states, we then ran the full particle filtering model with L = 1000 and α set to the posterior
mean (for each participant separately). The model was fit to data from the acquisition phase
and the first 4 blocks of extinction.

To cluster participants into two groups based on their model fits, we chose a threshold
on the log BF that minimized the difference between the average differential SCR for the
two groups on the second-to-last block of extinction. This ensured that the two groups
extinguished to roughly the same level. The threshold minimizing this difference was 0.088,
although the results were not sensitive to this precise value. Participants falling below the
threshold tended to have a single state (the one-state group), while participants falling above
the threshold tended to have two states (the two-state group).

5 Description of individual differences measures

The State-Trait Anxiety Inventory (STAI) is a psychological inventory based on a 4-point
Likert scale and consists of 40 questions on a self-report basis. The STAI measures two
types of anxiety - state anxiety, or anxiety about an event, and trait anxiety, or anxiety level
as a personal characteristic. Higher scores reflect higher levels of anxiety. Candidate gene
studies have linked polymorphic variation within the serotonin transporter gene (SLC6A4)
to differences in fear and anxiety phenotypes. The 5-HTTLPR (serotonin- transporter-linked
promoter region) is a variable repeat length polymorphism within the promoter region of
SLC6A4. The 5-HTTLP has a short and a long allelic variant. The short allele has been
proposed to impair emotion regulation processes, giving rise to an anxious phenotype [3, 9].
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The serotonin transporter polyadenylation polymorphism (rs3813034/STPP) is a common
T/G single nucleotide polymorphism that alters the use of the polyadenylation signal in
which it occurs. The G allele of the STPP has been associated with decreased fear extinction
retention as well as increased trait anxiety [10].
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6 Supplementary figures
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Figure 1: Raw SCR to CSa and CSb. Error bars show standard error of the mean.
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Figure 2: Spontaneous recovery plotted against asymptotic level of responding
during the acquisition phase.
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