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Individual differences in learning predict the return of fear
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Abstract Using a laboratory analogue of learned fear
(Pavlovian fear conditioning), we show that there is substan-
tial heterogeneity across individuals in spontaneous recovery
of fear following extinction training. We propose that this
heterogeneity might stem from qualitative individual differ-
ences in the nature of extinction learning. Whereas some in-
dividuals tend to form a new memory during extinction, leav-
ing their fear memory intact, others update the original threat
association with new safety information, effectively
unlearning the fear memory. We formalize this account in a
computational model of fear learning and show that individ-
uals who, according to the model, are more likely to form new
extinction memories tend to show greater spontaneous recov-
ery compared to individuals who appear to only update a
single memory. This qualitative variation in fear and extinc-
tion learning may have important implications for understand-
ing vulnerability and resilience to fear-related psychiatric
disorders.
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Millions of adults suffer from anxiety disorders, experiencing
intense and persistent fear in their daily lives (Kessler, Chiu,
Demler, & Walters, 2005). Anxiety disorders are commonly
treated using therapies based on the principles of extinction
learning (Hofmann, 2008). However, even after treatment,
spontaneous recovery of fear often occurs (Rachman, 1989).
The success or failure of treatment may hinge on individual
differences in underlying learning mechanisms, but these dif-
ferences remain poorly understood. Why do some people
show spontaneous recovery of fear following treatment, while
others do not?

We pursued an answer to this question using a laboratory
procedure for the study of learned fear (Pavlovian fear condi-
tioning) in humans. In this experimental paradigm (see
Fig. 1a), a neutral conditioned stimulus (CSa) is paired with
an unpleasant electric shock (the unconditional stimulus, or
US). Anticipatory fear is measured by the difference in the
skin conductance response (SCR) to CSa and a second stim-
ulus that is never paired with shock (CSb). After the fear
acquisition phase, presentation of CSa is no longer paired with
the shock, typically leading to a gradual decrease in the fear
response that is referred to as extinction. Spontaneous recov-
ery is measured the next day by the increase in the anticipatory
fear response relative to the end of extinction.

We will show that there is significant heterogeneity across
individuals in the amount of spontaneous recovery, which we
hypothesize might stem from qualitative differences in the
nature of the learning that occurs during conditioning.
Whereas some individuals may tend to form a new safety
memory during extinction, leaving their fear memory intact,
others may update the original threat association, effectively
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Fig. 1 (a) Experimental design. (b) Histogram of spontaneous recovery
across participants. Spontaneous recovery was defined as the differential
SCR on the first block of extinction recall minus the differential SCR on
the last block of extinction

unlearning the fear memory. We formalize this account using a
computational model of learning (Gershman, Blei, & Niv,
2010; Gershman & Niv, 2012), and show that individual dif-
ferences in spontaneous recovery can be predicted from the
SCR dynamics during acquisition and extinction.

The computational model posits that learners attempt to
segment their experience into “states” or “latent causes”
(see also Courville, Daw, & Touretzky, 2006; Gallistel,
2012; Redish, Jensen, Johnson, & Kurth-Nelson, 2007) such
that each state captures a particular regularity in the configu-
ration of observable stimuli (CS and US). A large mismatch
between the inferred prototypical stimulus configuration of a
state and the current stimulus configuration (akin to the pre-
diction error in reinforcement learning models) provides evi-
dence that a new state may be active, increasing the likelihood
that it will be created (for supporting evidence, see Gershman,
Jones, Norman, Monfils, & Niv,2013; Gershman, Radulescu,
Norman, & Niv, 2014). This segmentation process depends on
a parameter that determines the likelihood that incongruent
observations will be represented as new states. This parameter
can be conceived of as modulating the amount of evidence an
individual requires in order to decide that the current statistics
of the environment are different from the previous state, or
equivalently a threshold on the prediction error necessary to
segment the recent observations into a new state. When this
parameter is high, differences in CS-US stimulus configura-
tions observed across trials will result in these trials being
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assigned to distinct clusters. Intuitively, CSa trials in the ac-
quisition phase (in which the CS is paired with the US) might
be clustered together into one state, associated with a high
probability of US occurrence, whereas the unreinforced CSa
trials in the extinction phase might be clustered into a separate
state in which expectations of the US are low. The stimulus
configuration associated with each state is stored in a distinct
memory, providing a computational formalization of the idea
that extinction does not result in the unlearning of the “fear”
memory but rather the formation of a competing “no-fear”
memory (Bouton, 2004; Pavlov, 1927). According to this log-
ic, attenuation of fear during extinction occurs because the no-
fear memory temporarily inhibits the fear memory; once the
inhibition wanes, spontaneous recovery can occur.

In our experiment, CSa was partially reinforced, with only
one third of CSa presentations during the acquisition phase
being paired with shock; thus, two thirds of CSa trials during
acquisition were operationally identical to extinction trials.
From the point of view of the latent cause model, this relative-
ly high degree of similarity between acquisition and extinction
trials suggests another plausible clustering in which CSa trials
during both acquisition and extinction were generated by a
single state. The estimated probability of US occurrence in
this single state would decrease over the course of extinction,
representing an alteration of the original fear memory. The
latent cause model predicts the SCR on each trial as a function
of the predicted probability that a US will occur, given the
current inferred state. In the model, whether an individual
infers a one-state or two-state clustering depends on a single
parameter that specifies the individual’s a priori beliefs about
the structural complexity of the current environment (i.e., how
many states exist). By fitting the value of this parameter that
best explains the dynamics of each individual’s anticipatory
SCR responses, we can determine whether that person appears
to have segmented reinforced and unreinforced CSa observa-
tions into distinct states or merged them into a single state in
which threat subsides during the course of extinction.

The latent cause model provides insight into why some
people might show spontaneous recovery while others do
not. In essence, subjects who showed spontaneous recovery
learned to store the acquisition trials in a separate memory
from the extinction trials, allowing the fear memory to be
retrieved later. In contrast, subjects who showed no spontane-
ous recovery leamned to store all trials in the same memory,
thereby effectively unlearning the fear memory during extinc-
tion. Given our presently incomplete understanding of how
fear and extinction memories are stored in the brain (see
Pape & Pare, 2010, for a review), this interpretation is neces-
sarily speculative and comes with a number of caveats (e.g.,
other assays of fear memory, such as renewal or reinstatement,
might have revealed the presence of an intact fear memory).
Nonetheless, our results cannot be explained solely in terms of
the longstanding assumption that extinction represents new
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learning (Bouton, 2004; Pavlov, 1927). In moving beyond the
behavior of the group and examining individual variation in
learning, our results are consistent with the idea that for a large
proportion of individuals, extinction might reflect unlearning.

Materials and methods

The experimental data set we analyzed was previously pub-
lished by Hartley et al. (2012), and we refer readers to that
paper for detailed experimental methods. Note that because
this is a reanalysis of existing data, the sample size was deter-
mined independently of the analyses we present below.
Below, we summarize the experimental methods and then
provide a brief description of the probabilistic model. More
details about the probabilistic model can be found in the sup-
plemental information (SI) text and in Gershman and Niv
(2012).

Participants One hundred forty-one volunteers, ages 18-35
(M =21.1, SD = 3.5, 87 female) were recruited at New York
University. All participants gave informed consent and were
paid for participation. Participants were not taking any psy-
chiatric medication. Twelve participants were excluded be-
cause of experimental error, data corruption, or a failure to
display a variable skin conductance signal. Another 23 partic-
ipants were excluded because of failure to exhibit a discrimi-
native conditioned response during the end of the acquisition
phase, leaving 106 participants whose data we analyzed in this

paper.

Procedure Participants underwent a 2-day fear conditioning
procedure. The first day consisted of two phases: an acquisi-
tion phase followed immediately by an extinction phase. On
each trial in the acquisition phase, one of two colored squares
was presented. One square (CSa) coterminated with a mild
electric wrist shock on 33 % of trials, whereas the other square
(CSb) was never paired with shock. Trials in the acquisition
phase were organized into four blocks (see Fig. 1a), each
consisting of two reinforced CSa trials, four unreinforced
CSa trials, and four CSb trials. Trials in the extinction phase
were organized into five blocks, each consisting of four unre-
inforced CSa trials and four CSb trials. On the second day
(extinction recall), participants returned for five additional
blocks of extinction.

The SCR was recorded through shielded Ag-AgCl elec-
trodes attached to the second and third fingers of the left hand.
SCR data were low-pass filtered and smoothed. The greatest
base to peak change in SCR in a 0.5- to 4.5-s window after
each CS onset was assessed for each trial. Only unreinforced
CSa trials are included in all our analyses, since the slow
timescale of the SCR makes it difficult to distinguish antici-
patory responses from reaction to the US. Our analyses focus

on the differential SCR, which is obtained for each block by
subtracting the mean response to CSb from the mean response
to CSa. The differential SCR thus reflects the degree to which
learned fear exceeds the baseline response to a stimulus unas-
sociated with shock. Our measure of spontaneous recovery
was the increase in this differential SCR response from the
final block of day-1 extinction to the initial block of extinction
recall: (Extinction Recall, Block 1: Mean CSa — Mean CSb) -
(Extinction, Block 5: Mean CSa — Mean CSb).

Computational model We fit the computational model de-
scribed in Gershman and Niv (2012) to each participant’s data
separately. We used the raw SCR response as input to the
model fitting, although for statistical analysis and visualiza-
tion we report the differential SCR. The model was fit to the
acquisition blocks and the first four blocks of extinction; it is
therefore unbiased by the level of spontaneous recovery.

Here we present the model informally; see the SI text for
more technical details. The model assumes that on each trial,
participants compute, using Bayes’ rule, the posterior proba-
bility that state s generated the observed stimuli:

P(state =3 ’ stimuli) «P(stimuli ) state = s) P(state =5) (1)

Each state is associated with a predicted stimulus configu-
ration—roughly, the average stimulus configuration of all tri-
als assigned to a particular state. The likelihood P(stimuli|state
=s) expresses the consistency between the current stimuli and
the predicted configuration associated with hypothetical state
s. The prior P(state = s) expresses a learner’s preference for
“simpler” clusterings (i.c., with a small number of states).
Specifically, the prior biases the model to assign new trials
to a given state in proportion to the number of previous trials
assigned to the state; with probability proportional to o (the
only parameter governing the prior), a trial will be assigned to
a new state. Smaller values of « thus induce a stronger ten-
dency to form simple clusterings (i.e., clusterings that assign
observations to a small number of states). As « grows, the
preference for simplicity diminishes, and the clustering even-
tually assigns each trial a unique state.

While Bayes’ rule stipulates the optimal probabilistic com-
putation, this computation is not in general tractable, because
to normalize the probability distribution requires summing
over all possible clusterings (which grows exponentially with
the number of trials). For this reason, a practical implementa-
tion of the model requires approximating Bayesian inference.
We do not wish to make any strong claims about the precise
approximation that animals may be using because this is
underconstrained by the data, but we describe two tractable
and psychologically plausible approximations in the SI text.
Both of these approximations rely on summing over a small
number of high probability clusterings. It has been suggested
that this kind of “sampling” approximation can explain why
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individual learning curves sometimes appear abrupt and un-
stable (Daw & Courville, 2008).

The model generates a prediction of the SCR on each trial
as a linear function of the predicted probability that a US will
occur:

SCR = ﬁZP(US ‘ state = s)P(state =y ‘ stimuli) +e (2)

where 3 1is a scaling parameter that maps US probability to SCR
and € is a noise parameter drawn from a normal distribution
with mean = 0 and variance = 1. Larger values of 3 mean that
the SCR is more sensitive to changes in US probability.

Details of how « and 3 were fit to participants’ data can be
found in the SI text. Briefly, we used nonlinear optimization to
find the values of the parameters that maximized the likeli-
hood of the SCR data.

Results

Spontaneous recovery of fear is heterogeneous We mea-
sured the spontaneous recovery of fear in 106 participants
(see Materials and Methods) by calculating the increase in
differential SCR from the final block of extinction on day 1
to the first block of extinction recall on day 2: (Extinction
Recall, Block 1: Mean CSa — Mean CSb) - (Extinction, Block
5: Mean CSa—Mean CSb). We found that there was substantial
heterogeneity across the group (see Fig. 1b), with 43 partici-
pants showing negative spontaneous recovery (i.c., the differ-
ential SCR to CSa vs. CSb during the first block of recall was
smaller than during the last block of extinction). Overall, the
95 % confidence interval was +/- 0.16 around a mean sponta-
neous recovery of 0.14. We could not reject the null hypothesis
that the mean was equal to 0 (p = .09, one-sample ¢ test).

A computational model reveals two groups of
participants Although Fig. 1b suggests a unimodal distribu-
tion centered near 0, this analysis conceals hidden structure in
our data. We obtained a finer-grained characterization of re-
sponses during the acquisition and extinction phases by fitting
a computational model of learning (the latent cause model;
Gershman et al., 2010; Gershman & Niv 2012) to each par-
ticipant’s data. Importantly, we fit the model to data from the
acquisition phase and the first four blocks of extinction, thus
ensuring that it was unbiased by spontaneous recovery
performance.

According to the latent cause model, participants assign each
trial to a latent cause or state; the collection of assignments
constitutes a clustering of trials (see Materials and Methods
and SI text for more details). We found that participants fell
into two groups: a “one-state” group (n = 88) that assigned all
trials to the same state and a “two-state” group (n = 18) that
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assigned trials primarily to either of two states (in some cases
more than two states were invoked, but these additional states
had low probability). The division of participants into the two
groups can be seen clearly in Fig. 2a, which shows the mar-
ginal probability of each state across participants. The margin-
al probability of a third state is never greater than .15, with a
median probability of .03.

The two groups exhibited strikingly different learning dy-
namics (Fig. 2b), with the one-state group acquiring fear more
slowly than the two-state group. The latent cause model posits
that participants in the one-state group learn more slowly be-
cause they tend to cluster CSa and CSa trials together, whereas
the two-state group tends to separate them into different
clusters.

Despite the fact that the two groups showed no difference
in fear on the last block of extinction (p = .56, two-sample ¢
test), participants in the two-state group showed significantly
higher recovery of fear on the first block of recall compared to
participants in the one-state group, #(104) = 3.53, p < .001,
two-sample ¢ test; see Fig. 2. We can quantify the change in fear
from extinction to recall using a spontaneous recovery score (see
Fig. 3a), measured as the difference in SCR between the first
block of recall and the last block of extinction. The spontaneous
recovery score for participants in the one-state group was not
significantly different from 0 (p = .79, one-sample ¢ test), in
contrast to participants in the two-state group, who showed
spontaneous recovery significantly greater than 0, #17) = 4.43
p <.0001, one-sample ¢ test. Furthermore, the two groups were
significantly different from each other, #104) = 3.36, p <.005,
two-sample ¢ test. The same result was obtained when only
looking at the SCR to CSa, #(104) = 3.99, p < .001, two-
sample ¢ test; see S for separate plots of CSa and CSa responses.

Rather than doing a hard split of participants, we can also
look at a continuous measure of each participant’s tendency to
cluster their experience into one or two states. This tendency is
captured by the parameter o, which expresses an individual’s a
priori preference for a “simpler” clustering with a small number
of states. We fit this parameter to each participant separately.
Our fitting method (see SI text) furnishes us with the log prob-
ability that o > 0, which we refer to as the log Bayes factor (log
BF) since it represents a Bayesian metric for comparing models
with @ > 0 and a = 0. The log BF captures a participant’s
preference for clusterings with more than one state. Figure 3b
plots each participant’s spontaneous recovery against the par-
ticipant’s log BF, showing that the two measures are positively
correlated (r = .40, p <.0001). Thus, participants who exhibit a
stronger preference for clusterings with more than one state
tend to show greater spontaneous recovery.

Spontaneous recovery is well explained by the model,
but not by other individual differences We next inves-
tigated how well the grouping of participants derived from our
model explains spontaneous recovery when controlling for
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Fig. 2 (a) Marginal probability of each state being active, averaged across participants. (b) Differential SCR over the course of acquisition, extinction,
and extinction recall, shown separately for the one-state and two-state groups. Error bars show standard error of the mean

various other individual differences. We ran a multiple linear
regression with spontaneous recovery as the response variable
and six standardized covariates: state and trait anxiety on the
State-Trait Anxiety Inventory, age, number of serotonin trans-
porter polyadenylation polymorphism (STPP/rs3813034) G

alleles, sex, and the log BF. A greater number of STPP G
alleles was previously shown to be weakly predictive of spon-
taneous recovery in this data set (Hartley et al., 2012).
Figure 3¢ shows the estimated regression coefficient for each
covariate. Only the log BF had a coefficient that was
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Fig. 3 (a) Spontaneous recovery for the one-state and two-state groups.
(b) Each participant’s spontaneous recovery plotted against the log prob-
ability that o > 0 (log Bayes factor). (¢) Regression coefficients for

standardized covariates: state anxiety (STAIS), trait anxiety (STAIT),
age, number of STPP G alleles (G-count), sex, and log Bayes factor. Error
bars show standard error of the mean. ** = p <.01, Bonferroni corrected
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significantly greater than 0 (p < .01, one-sample ¢ test,
Bonferroni corrected). We conclude that among the covariates
we considered, only the model-derived group assignment was
a robust predictor of spontaneous recovery.

We also examined other individual differences within the
learning and extinction data. The asymptotic level of learning
(i.e., the differential SCR on the final block of conditioning)
did not predict spontaneous recovery (» = .01, p = .89;
Supplementary Figure 2). The learning rate, which we esti-
mated in a model-free manner by fitting an exponential curve
to the learning data, also did not predict spontaneous recovery
(r=.002, p =.99). The degree of freezing on the eighth block
of extinction did significantly predict spontaneous recovery
(r = -.48, p <.0001). However, we explicitly controlled for
this factor in our model-based clustering by separating partic-
ipants into two groups using a cluster chosen to minimize the
difference between the average differential SCR for the two
groups on the eighth block of extinction (see supplemental
information). Accordingly, the one-state and two-state groups
did not differ significantly in differential SCR on the eighth
block of extinction (p = .99, two-sample ¢ test). Controlling for
the degree of freezing on the eighth block of extinction, there
was still a significant partial correlation between log BF and
spontaneous recovery (r = .29, p < .005). Thus, there is a
significant amount of variation in our spontaneous recovery
data that is not explained by simple summary statistics of the
learning and extinction data.

If the model is not using these individual statistics to dis-
criminate between the two groups, what is it using? Each of
these statistics captures differences in learning about the
changing configurations of CS and US stimulus presentations
over time. The model is in fact using a combination of these
statistics, combining them in a computationally principled
way to estimate differences in how individuals have clustered
stimulus observations into states. The learning and extinction
rates, as well as their asymptotes, all provide individually
weak signals, but the model integrates these weak signals to
identify a reliable distinction between sub-groups of
participants.

More specifically, the model discriminates between the two
groups by jointly detecting the following learning characteris-
tics. First, the one-state group learns more slowly because the
reinforced CSa and the unreinforced CSb are both assigned to
the same state, thereby reducing the effective reinforcement
accruing to the single state. In contrast, the two state group
assigns CSa and CSb to different states and hence can acquire
a conditioned response to CSa more quickly. Second, the two-
state group extinguishes its response to CSa more quickly (see
Supplementary Figure 1) because it infers that a new state is
active in the extinction phase, whereas the one-state group
explains both phases with a single state. This is essentially a
version of the partial reinforcement extinction effect (see
Gershman & Niv, 2012, for more discussion).

@ Springer

Looking inside the model One reason to use a model is that
we can look at its internal variables to better understand the
cognitive processes giving rise to behavior. Figure 4 shows the
evolution of a simulated participant’s probability distribution
over states for unreinforced CSa trials, given three different
values of the o parameter. We can see that the posterior prob-
ability of a new state increases over the course of acquisition,
with a more gradual increase for smaller values of «. This
increase occurs because the partial reinforcement schedule
provides evidence that reinforced and unreinforced CSa trials
are generated by different states, opposing the model’s a priori
preference for a one-state clustering, and hence the model
becomes increasingly ambivalent between the one- and two-
state clustering. During extinction, the lack of reinforcement
tips the balance in favor of a two-state clustering, but only for
participants with a sufficiently large value of «; for partici-
pants with a small value of «, the probability of a new state
always remains small.

If we equate states with memories, then the foregoing ex-
planation resonates strongly with the popular view that extinc-
tion involves the formation of a new memory (Bouton, 2004;
Pavlov, 1927). The latent cause model goes further, explaining
individual differences in probabilistic terms: a stronger pref-
erence for simpler clusterings leads to a higher likelihood of
encoding both acquisition and extinction into a single
memory.

Comparison with the rescorla—Wagner model Can other
computational models explain individual differences in spon-
taneous recovery? We addressed this question by fitting the
renowned Rescorla—Wagner model (Rescorla & Wagner,
1972) to the acquisition and extinction data. This model,
which has the same number of free parameters as the latent
cause model (see Materials and Methods), exhibited a poorer
fit to the data, as measured by the log likelihood of the SCR:
Every participant was better fit by the latent cause model.
Breaking down the log likelihood ratio according to the
model-based group assignments, we found that the log likeli-
hood ratio was significantly smaller for the one-state group
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Fig. 4 Simulations of state inference using different values of the «
parameter. The y-axis shows the ratio p(new state)/p(old state). Values
above 1 (indicated by a dashed line) represent blocks on which the
probability of a new state exceeds the probability of an old state
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compared to the two-state group—#(104) = 8.79, p <.00001,
two-sample ¢ test—indicating stronger support for the latent
cause model in those participants who are best described by
multiple states (see Fig. 5). Thus, the Rescorla—Wagner model
can provide a reasonable fit for a subgroup of participants but
was unable to explain the larger pattern of individual differ-
ences, ostensibly because it makes no provision for the forma-
tion of new states.

Discussion

In a study of fear conditioning, we found substantial hetero-
geneity across participants in the degree of spontaneous re-
covery following extinction. At the group level, the spontane-
ous recovery of extinguished fear is a well-documented phe-
nomenon (Pavlov, 1927; Rescorla, 2004). However, in strik-
ing contrast to this average behavior, approximately 83 % of
our participants showed no evidence of spontaneous recovery.
A growing literature suggesting that the spontaneous recovery
of fear may confer heightened risk of anxiety underscores the
need to clarify the mechanisms underlying this marked het-
erogeneity in fear learning and extinction (Hartley & Casey,
2013; Milad & Quirk, 2012).

Consistent with our theoretical account, we found that par-
ticipants could be divided into two groups: one group that
preferred assigning all acquisition and extinction trials to a
single state, and one group that preferred assigning acquisition
trials to one state and extinction trials to another state.
Participants in the one-state group showed no evidence of
spontaneous recovery, while participants in the two-state
group showed significant spontaneous recovery. Strikingly,
this grouping was found to be the only reliable predictor of
spontaneous recovery among a variety of other individual
differences.

These qualitative differences in fear learning may reflect
distinct underlying neural processes in participants in the one-
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Fig. 5 Log likelihood ratio of the latent cause model relative to the
Rescorla-Wagner model, shown separately for the one-state and two-
state groups. Error bars show standard error of the mean

versus two-state groups. Research in animal models suggests
that distinct populations of neurons within the amygdala are
active during fear acquisition and extinction (Herry et al.,
2008), which compete for the context-dependent control of
behavior via dynamic interaction with regions of the medial
prefrontal cortex and the hippocampus (Farinelli, Deschaux,
Hugues, Thevenet, & Garcia, 2006; Maren, Phan, & Liberzon,
2013; Milad & Quirk, 2012). Two-state learners may exhibit
more sensitive pattern separation, a hippocampal-dependent
process through which regularities in CS-outcome observa-
tions might be distinguished (Marr, 1971), facilitating the for-
mation distinct fear and extinction memories. In contrast, one-
state learners may alter the original fear memory within the
amygdala, updating this representation with new safety infor-
mation acquired over the course of learning. These speculative
hypotheses might be tested in a future study examining the
neural correlates of these two forms of learning.

One concern with the approach pursued here is that our
theoretical interpretation rests upon rather complex Bayesian
machinery. While the model only has a single parameter (and
hence is “simple” from a statistical point of view), there are
several equations jointly governing the model, making it ap-
pear more “complex” compared to some existing models of
learning (e.g., Rescorla & Wagner, 1972). However, complex-
ity in this latter sense is inherently subjective; the Bayesian
formalism may be unfamiliar to many readers, but its compu-
tations are in fact tightly constrained by the rules of probability
theory and assumptions about the animal’s internal model of
the environment (which in some cases can be verified or esti-
mated; see, for example, Stocker & Simoncelli, 2006).

Another reason to tolerate complexity is that any reason-
ably comprehensive model of animal learning will necessarily
be complex given the multifaceted nature of learning, involv-
ing interacting processes such as attention, memory, motiva-
tion, and goals (Balleine & Dickinson, 1998; Kutlu &
Schmajuk, 2012; Wagner, 1981). In this vein, it is worth not-
ing that our model was not manufactured de novo to fit the
experimental data reported in this paper. It has been applied to
a wide range of animal learning phenomena (Gershman et al.,
2010; Gershman & Niv, 2012), and is derived from computa-
tional principles that appear to be common across cognitive
domains (Austerweil, Gershman, Tenenbaum, & Griffiths,
2015).

Individual variation in fear extinction is proposed to mod-
ulate vulnerability to anxiety disorders, as well as the efficacy
of treatment (see Milad & Quirk, 2012, for a review). The
marked heterogeneity in such clinical outcomes underscores
the importance of understanding deviation from the
“average.” For example, Holmes and Singewald (2013) point-
ed out that although as many as 75 % of U.S. adults may be
exposed to at least one severe trauma in their lifetime (Breslau
& Kessler, 2001), only 7 % of adults manifest posttraumatic
stress disorder (Kessler et al., 2005). Understanding such
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psychiatric vulnerability and resilience will require a more
complete mechanistic model of the cognitive and neural het-
erogeneity in fear learning and extinction. New insights from
structural brain imaging (Hartley, Fischl, & Phelps, 2011) and
selective breeding of rats for particular extinction-related phe-
notypes (Bush, Sotres-Bayon, & LeDoux, 2007) have begun
to articulate the neural and behavioral profiles of relevant in-
dividual differences. Our hope is that future computational
theories of extinction and recovery will integrate and attempt
to account for such individual differences in learning.
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