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SUMMARY

Classical models of memory in psychology and neuroscience rely on similarity-based retrieval of stored pat-
terns, where similarity is a function of retrieval cues and the stored patterns. Although parsimonious, these
models do not allow distinct representations for storage and retrieval, despite their distinct computational
demands. Key-value memory systems, in contrast, distinguish representations used for storage (values)
and those used for retrieval (keys). This allows key-value memory systems to optimize simultaneously for
fidelity in storage and discriminability in retrieval. We review the computational foundations of key-value
memory, its role in modern machine-learning systems, related ideas from psychology and neuroscience, ap-
plications to a number of empirical puzzles, and possible biological implementations.

INTRODUCTION

Despite the apparent fragility of memory, there is no decisive ev-
idence that information, once stored, is ever permanently lost.
The storage capacity of the brain must, of course, be finite but
that does not seem to be the principal limiting factor on memory
performance. Rather, it is the retrieval process that fundamen-
tally limits performance: the relevant information may be there
but cannot always be found.1–4 Some of the evidence supporting
this view will be summarized below.
A retrieval-oriented view of memory performance places the

primary explanatory burden on how memories are addressed
(i.e., how the retrieval system keeps track of storage locations)
and how they are queried (i.e., how the retrieval system maps
sensory cues to addresses). There is a long history of theorizing
about these concepts in cognitive psychology and neurosci-
ence.5,6 Recently, the field of machine learning has developed
its own analysis of these concepts, which form the basis of
high-performing systems like transformers and fast weight pro-
grammers.7,8 There is increasing recognition that a significant
aspect of intelligence (in both natural and artificial systems) is
effective information retrieval.9–13

Our goal is to connect the dots between conceptualizations
of memory retrieval in psychology, neuroscience, and machine
learning. Central to this effort is the concept of key-value mem-
ory, which we formalize below. The basic idea is that inputs
(memoranda) are transformed into two distinct representa-
tions—keys and values—which are both stored in memory.
The keys represent memory addresses, whereas the values
store memory content. Memories are accessed by first match-

ing a query to each key and then retrieving a combination of
values weighted by their corresponding matches. Importantly,
the mappings from inputs into keys and values can be opti-
mized separately, allowing the system to distinguish between
information useful for finding memories (stored in the keys)
and information useful for answering the query (stored in the
values). This distinction is familiar in human-designed informa-
tion retrieval systems. For example, books often have alphabet-
ically organized indices, which are helpful for finding particular
subjects. The indices do not contain any information about the
meaning of the subjects themselves; this information is stored
in the book’s text, retrieved by going to the page number asso-
ciated with the index.
We will argue that memory in the brain follows similar princi-

ples. In particular, we posit a division of labor between a key stor-
age system in the medial temporal lobe and a value storage sys-
tem in the neocortex. As reviewed below, closely related ideas
have already been proposed in psychology and neuroscience.
By connecting these ideas to key-value memories, we can begin
to understand what makes memory in the brain computationally
powerful. To illustrate these points, we present simulations that
recapitulate a number of empirical phenomena. Implications
for the convergence of natural and artificial intelligence are dis-
cussed in the concluding section.

Computational foundations of key-value memory
In this section, we introduce the technical ideas underlying key-
value memory, exposing the multitude of ways in which this idea
has been conceptualized. We place key-value memory within a
modern machine-learning framework by discussing how the
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key and value representations can be learned, comparing an
end-to-end learning approachwith fixed (or partially fixed) ‘‘scaf-
folds’’ for key representations.
From correlations to kernels
One of the earliest formalizations of a key-valuememory was Ko-
honen’s correlation matrix memory model,14 which was subse-
quently used by Pike15 to explain a range of humanmemory phe-
nomena. Here, we slightly change the notation and terminology
to bring this model into correspondence with more recent for-
malizations (Figure 1, left). Each input, indexed by n, consists
of a key vector kn and a value vector vn (which we take to be
row vectors). Intuitively, the keys encode information about
memory addresses (hence we will refer to the set of possible
keys as the address space), whereas the values encode informa-
tion about memory content. These two representations are
linked inmemory by an ‘‘associator’’ matrixM, which is initialized
at 0 and incremented by the outer product of the key and value
vectors after each input is presented:

DMfku
n vn: (Equation 1)

It is easy to see that this is just simple Hebbian learning be-
tween key and value units encoding the vector elements. In
neurobiology, the standard interpretation is that Mij is encoded
by the synaptic strength between neurons representing value
element j and key element i. The synaptic strength is increased
when the two neurons fire coincidentally.16 Needless to say,
learning in the brain is more complicated than this, but, for pre-
sent purposes, we will take for granted the biological plausibility
of Equation 1 (see also Lambacher and Legenstein17 for a
related, but more complex, learning rule).

The correlation matrix memory is heteroassociative because
M stores information about the relationship between two
different kinds of objects or object properties (see also Stein-
buch and Piske18 for one of the earliest such models). If we
impose the constraint that keys and values are the same, we
get an autoassociative memory.19–22 This idea is now most
closely associated with the work of Hopfield,23 and such models
(when the inputs are binary) are typically referred to as Hopfield
networks.

The correlation matrix memory is queried by taking the inner
product between the associator matrix and a query vector q
(with the same dimensionality as the key vectors):

bv = qM: (Equation 2)

In neural network terms, this is equivalent to activating pattern
q on the key units, which produces an activity pattern in down-
stream value units based on the learned synaptic strengths
ðMÞ. The retrieved value vector bv combines stored values asso-
ciated with keys that are similar to the query vector. To see this, it
is helpful to rewrite Equation 2 in its ‘‘dual’’ form24,25:

bvf
XN

n = 1

anvn; (Equation 3)

where fang is a set of ‘‘attention weights’’ computed by
a = sðSðK;qÞÞ = qKu and K is the matrix consisting of all N
key vectors (i.e., its rows are kn). The function Sð$; $Þ is a sim-
ilarity kernel (linear in this case), expressing the match between
keys and queries, and sð $Þ is a separation operator (the identity
function in this case), pushing apart similar memories. The
retrieved value vector is thus a weighted combination of stored
values, where the attention weights correspond to the similarity
between the query and each key, mapped through a separation
operator.
The dual form is useful because it shows how the model can

be straightforwardly generalized by considering other similarity
kernels and separation operators. Any positive semidefinite
kernel can be expressed as the inner product in some vector
space,26 which means that alternative similarity functions can
be constructed by mapping the keys and queries through a
feature transform fð $Þ applied to each row:

SðK;qÞ = fðqÞfðKÞu (Equation 4)

It is also possible to construct kernels with infinite-dimensional
vector spaces by working directly with an explicitly defined sim-
ilarity kernel, such as the widely used radial basis function kernel,
which Tsai and colleagues27 found to produce the best results.

Figure 1. Two architectures for key-value
memory
Black symbols denote vectors and blue symbols

denote matrices. (Left) Input x is mapped to key

ðkÞ, query ðqÞ, and value ðvÞ vectors. During

memory writing, the weight matrix M is updated

using Hebbian learning between the key and value

vectors. During reading, the query is projected

ontoM to produce a retrieved value bv. (Right) The
input vector is mapped to a hidden layer a, which

is then mapped to an output layer bv. The input-to-

hidden weights correspond to the stored keys; the

hidden-to-output weights correspond to the

stored values.
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The generalized correlation matrix memory can implement the
celebrated self-attention mechanism in transformers7:

SðK;qÞ =
qKu

ffiffiffiffi
D

p (Equation 5)

sð~aÞ =
expð~aÞP
n expð~anÞ

(Equation 6)

where D is the dimensionality of the key/value vectors and the
softmax function is used as the separation operator. Here, we
have used ~a to denote the attention weights prior to the applica-
tion of the separation operator. When sð $Þ is set to the identity
function, we recover linearized attention,25 which can be ex-
pressed as a special form of recurrent neural network known
as a fast weight programmer.8,28 Linearized attention has a po-
tential computational advantage over softmax attention because
its recurrent form allows for linear-complexity sequence pro-
cessing, while giving up the parallel computation property of
the attention form (whose complexity, however, is quadratic in
the number of sequence elements). Several studies29,30 have
shown how to rigorously approximate softmax attention using
random features.
As shown by Millidge and colleagues,31 a variety of classical

memory models can also be derived by different choices of sim-
ilarity kernel and separation function. For example, sparse
distributed memory32 can be obtained by setting sð $Þ to a
threshold function, and dense associative memory33 can be ob-
tained by setting sð $Þ to a rectified polynomial.
In the noiseless setting, the ideal separation function is themax

operator because this will always return the stored value associ-
ated with the matching key.31 However, this separation function
is not robust to noise—small perturbations can cause large
retrieval errors. Thus, the design of a memory system needs to
balance separability and robustness. In addition, the memory
may be used for generalization to new inputs,7,34,35 in which
case perfect matching is not the goal. For example, key-value
memories have been used extensively for question-answering
tasks,36,37 where q represents a question and v represents an
answer. The system stores a set of question-answer pairs and
tries to use this knowledge base to answer novel questions.
Representational structure
So far, our setup has assumed a memory system provided with
keys, values, and queries—where do these representations
come from? In modern machine learning, they are derived as
mappings from input vectors, fxng. A typical assumption in
transformers and fast weight programming is to parametrize
the mappings with a set of linear functions:

kn = xnWk (Equation 7)

vn = xnWv (Equation 8)

qn = xnWq (Equation 9)

where fWk ;Wv;Wqg are learnedweight matrices. The input vec-
tors may themselves be learned embeddings of raw input data,

harnessing the power of deep learning systems trained end-
to-end.
In some systems, the key and query mappings are assumed to

be fixed, either randomly or based on some regular structure. In
these systems, the address space is conceived as a kind of
‘‘scaffold’’ for the indexing of information content. In the sparse
distributed memory model,32 the scaffold is random so that
similar keys do not systematically index similar values. This
mimics (approximately) the organization of random-access
memory in digital computers. A familiar example of a structured
scaffold is the alphabetical index found at the end of books. In
the Hopfield network23 and related autoassociative memory
models, the scaffold is identical to the value space. This property
endows the models with content addressability38: memory ad-
dresses are accessed by matching values directly to queries.
Most psychological and neural models of memory share this
property, though they implement it in different ways.
Some models assume that the scaffold is randomly con-

structed in such a way that it carries a structural imprint. For
example, if inputs are assigned to random addresses, but these
addresses change slowly over time, then inputs experienced
nearby in time will encoded as more ‘‘similar’’ in the address
space. Temporal autocorrelation, in the absence of additional
structure, is able to account for many aspects of human39 and
animal40 memory.
Below, wewill discuss neurobiologically inspired architectures

that implement a fixed scaffold, which can even outperform a
learned mapping. We will also show that learning the key and
query mappings allows us to explain data on repulsion effects
in memory and hippocampal representations. These results
pose a number of questions for future research: does the brain
use a combination of fixed and learned mappings? Is such a
combination useful for machine-learning applications?
The ubiquity of key-value memory
The work reviewed above focused on explicit constructions of
key-value memory. It turns out that other models are sometimes
implicitly equivalent. Irie and colleagues12 showed that linear
layers trained by gradient descent (ubiquitous in many ma-
chine-learning models) can also be expressed as key-value
memories. Here, we briefly review this theorem.
Let xn be the input vector at time n, as in the previous section.

The output of a linear layer is yn = xnW, where W is as weight
matrix. The weight matrix is trained by gradient descent, yielding
the following after N timesteps:

W = W0 +
XN

n = 1

xu
n en; (Equation 10)

whereW0 is the initial weight matrix and en = # hnðVyLÞn is the
error signal with learning rate hn and loss functionL. Generalizing
a classic result on kernel machines,41 Irie and colleagues12

showed that this construction is equivalent (in the sense of pro-
ducing the same output for a given input) to the following linear
key-value memory:

y = xW0 +
XN

n = 1

anvn; (Equation 11)
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where (using our earlier notation) a = qKu with vn = en, kn =
xn, and q = x, given an arbitrary input x. Thus, linear layers
effectively memorize their experienced error patterns,
computing their outputs as linear functions of these memories.
This interpretation is intriguing in light of the fact that errors are
particularly salient in human memory.42–46

The linear layers retain information about all training inputs—
they never ‘‘forget.’’12 However, retrieval access may be (tran-
siently) lost. We discuss evidence for this idea from psychology
and neuroscience below.

Neurobiological substrates
Although key-value memories are loosely inspired by the brain, it
remains an open question how to implement them in a biologi-
cally plausible manner. Equation 1 is a (somewhat) biologically
plausible rule for learning associations between keys and values,
but we still need rules for storing the keys and values themselves.
In the section on representation learning, we described the
widely used approach of modeling keys, queries, and values
as linear mappings from input vectors (which themselves could
be learned). This implies additional learning rules for the linear
mappings. One could posit that they are learned by backpropa-
gating the errors from whatever objective function is being opti-
mized for a downstream task.17 This would require a biologically
plausible approximation of the backpropagation algorithm.47

Kozachkov and colleagues48 have proposed an architecture
based on the ‘‘tripartite synapse,’’ consisting of pre-synaptic
and post-synaptic neurons modulated by an astrocyte (a type
of glial cell). In particular, they posited that this motif applies to
the hidden-to-output synapses in the three-layer network imple-
mentation of key-valuememory. The activation of each astrocyte
process is modeled as a linear function of the hidden unit activa-
tions. They showed how the astrocyte processes collectively
compute the similarity function SðK; qÞ, which then multiplica-
tively modulate the hidden-to-output weights so that the network
as a whole implements the transformer self-attention described
earlier.

Alternatively, Tyulmankov and colleagues49 have proposed a
non-Hebbian learning rule for key learning. They view the key-
value memory as a three-layer neural network, where the input
x (first layer) is transformed into a pattern of attention a (hidden
layer), which is finally transformed into retrieved values bv (output
layer); see the right panel of Figure 1. Each hidden-layer unit rep-
resents a ‘‘slot’’ to which a single input (or possibly multiple in-
puts) gets assigned. In this view, the key matrix K corresponds
to the input-hidden synaptic strengths and the value matrix V
(where row n corresponds to value vector vn) corresponds to
the hidden-output synaptic strengths. The proposed learning
rule for the synapse connecting input unit j to hidden unit i is
(simplifying slightly and dropping time indices):

DKijfmgiðxj # KijÞ; (Equation 12)

where m˛ f0;1g is a global third factor (possibly a neuromodula-
tor like acetylcholine or dopamine) and gi ˛ f0;1g is a local third
factor (possibly a dendritic spike). The factors are binary to pro-
mote sparsity in the hidden layer. The local third factor tags the
least-recently used hidden unit as eligible for plasticity. The au-

thors point out that the key learning rule resembles behavioral
timescale plasticity,50 which has been observed in the hippo-
campus. The possibility that key learning occurs in the hippo-
campus will be considered in detail below.
For value learning, Tzyulmankov and colleagues clamp the

output layer to the target value v and then update the synapse
connecting hidden unit i to output unit m according to the
following:

DVmifmgiaiðvm # VmiÞ: (Equation 13)

This is a Hebbian rule because it depends on the co-activation
of hidden and output units. It could potentially describe modifi-
cation of the output projections from the hippocampal area
CA1 to the entorhinal cortex.
Using a similar architecture (but with the important addition of

recurrence), Whittington and colleagues51 have shown that the
Tolman-Eichenbaum Machine,52 a model of the entorhinal-hip-
pocampal system, implements a form of key-value memory.
The hippocampus, according to this model, stores conjunctive
representations of sensory inputs from the lateral entorhinal cor-
tex and a ‘‘structural code’’ provided by cells in the medial ento-
rhinal cortex, which are updated recurrently. Conjunctive repre-
sentations in the hippocampus function as both the keys and the
values (i.e., an autoassociative memory). In a two-dimensional
(2D) open field, the model can reproduce hippocampal ‘‘place
cells’’ (firing fields localized to a particular spatial location), while
the structural code generates grid-cell-like responses (grid cells
fire with hexagonal periodicity as an animal moves through
space53). In environments of different dimensions, topologies,
and geometries, the structural code need not be grid-like. Whit-
tington and colleagues note that the structural code in their
model functions as a form of ‘‘position encoding’’—widely
used in transformers and other sequence models—where the
encodings (i.e., addresses) are adapted to the structure of
space. This is a critical aspect of the model: the structure-sensi-
tive properties of theirmodeled hippocampal and entorhinal cells
would not have been obtained using the fixed positional encod-
ings typically used in regular transformers. Related ideas have
proven successful in the machine learning literature.54

In contrast to the adaptive addresses used in the Tolman-
Eichenbaum Machine, Sharma, Chandra, and colleagues55,56

proposed neurobiologically motivated models (MESH and
Vector-HaSH) that use random projections of modular fixed
point (attractor) networks to address memories (see Box 1 for
details). The fixed points within each modular attractor, which
are fixed and not learned, may be sparse and random56 or
possess a 2D geometry55 such as the hexagonally periodic ac-
tivity patterns of grid cells. Consistent with the non-learned
assumption, grid cells exhibit a fixed relational organization
regardless of environment and behavioral state.57–60 The same
relationships are re-used to encode the organization of non-
spatial variables.61–63 The fixed modular attractor networks in
the models randomly and densely project into a larger network
(the hippocampus in Vector-HaSH) with self-consistent return
projections, forming a large scaffold of quasi-random stable
fixed point address states. Thus, we may view MESH and
Vector-HaSH as fitting the diagram of Figure 1 (right), except
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that the hidden layer in the diagram is replaced by a bipartite
scaffold circuit (modular attractor network bidirectionally
coupled to the densely connected layer) that computes nonlinear
robust nearest-neighbor (NN) search to compute sðSðK; QÞÞ,
with keys that are random and fixed. In Vector-HaSH, keys
reside in hippocampus and the memory values are recon-
structed at the sensory input layer (cortex).
The advantages of this construction, beyond standard key-

value constructions, are that (1) the address space is large and
(2) the scaffold fixed points possess large and uniform basins
of attraction. These properties allow many memories to be
robustly addressed, with error correction and without collapse
(blurring together the addresses of multiple memories). Such
collapse is characteristic of the ‘‘memory cliff’’ that afflicts
many memory models64,65: after a threshold number of inputs
have been stored, retrieval performance crashes. In contrast,
MESH and Vector-HaSH produce graceful degradation as multi-
ple memories share overlapping addresses, much like human
memory.66 Remarkably, these models also outperform a flexible
encoder trained to minimize reconstruction error,67 suggesting
that the entorhinal-hippocampal system may be a highly effec-
tive memory addressing system discovered by evolution.
The 2D and geometric aspect of Vector-HaSH over MESH

becomes relevant for memorizing (possibly discrete) items
embedded, remembered, or retrieved through traversal of a
continuous low-dimensional space. This may involve sequential
episodic memories (where time is the continuous dimension) or
spatial memories (where space is the continuous dimension).

Evidence from psychology and neuroscience
In this section, we review several lines of evidence suggestive of
key-value memory in the brain. Our review is organized around
the following claims central to the theory. (1) Memories are
stored indelibly but subject to retrieval interference. (2) Memories
are addressed by representations (keys) that are distinct from

the representations of memory content (values). The representa-
tional structure of the keys is optimized for discriminability,
whereas the representational structure of the values is optimized
for fidelity. (3) The information stored in keys is not available to
conscious access (i.e., recall). In other words, the brain uses
keys to recall values but cannot recall the keys themselves.
Retrieval interference, not erasure, is the principal
limiting factor in memory performance
An important implication of key-value memory systems is that
memory performance is constrained primarily by the ability to
retrieve relevant information, not by storage capacity. In this sec-
tion, we review some of the theoretical arguments and empirical
evidence that this assumption can be plausibly applied to
the brain.
A number of attempts have beenmade to estimate the storage

capacity of the human brain.68 Depending on different assump-
tions about numbers of neurons and connectivity, estimates can
range from 107 to 1015 bits. The total number of bits arriving from
sensory systems with minimal compression are estimated to
range from 1013 to 1017. These rough numbers suggest that,
with adequate compression, storage capacity may not be the
strongest constraint on memory performance.
Perhaps more persuasively than these theoretical arguments,

we can make the case based on observations about behavior. If
memory storage has reached its capacity limit, then it is impos-
sible to store new information without removing some old infor-
mation. This implies that old information should become perma-
nently inaccessible at some point. In contrast, studies of human
memory demonstrate that memories can be stored over de-
cades, despite being rarely rehearsed.69–72

Onemight try to explain these findings by arguing thatmemory
storage has not reached the capacity limit, but then it would be
very challenging to explain forgetting over the much shorter in-
tervals studied in experiments on list memory. When presented
with a list of random words, the proportion of recalled words

Box 1. Random projections of attractor states for error-correcting key-query matching

Vector-HaSH55 and MESH56 are tripartite networks consisting of an input (sensory) layer, a densely connected layer, and a layer
consisting of a modular set of fixed recurrent attractor networks. These models can be directly connected with a key-query-value
formulation: define the tripartite network weights to beWsd;Wda;Wad;Wds (from the sensory layer s to a densely connected layer
d, dense to attractor layer a, attractor to dense, and dense to sensory, respectively). Define the attractor, dense layer, and attractor
states to be fag;fdg;fsg, respectively. If we view the dense layer responses as linear (in practice they are nonlinear), the network
performs the following operation:
bs = fðsWsdWda;fagÞWadWdswhere fð:; :Þ is an efficient nearest-neighbor (NN) operation performed on the sensory inputs by the
scaffold consisting of the recurrent attractor network and the dense layer. The attractor retrieves the nearest of the attractor states
fag to the input sWsdWda. This model can be interpreted as the key-value system of Figure 1B, in which the output of the attractor
layer can be defined as a (denoised) query qn = xn = fðsWsdWda; fagÞ, and Wad and Wds correspond to the key and value
matrices, respectively (i.e., K = Wu

ad and V = Wds); that is, the diagram’s hidden states (attention weights) are an = xnWad.
The combined attractor-dense layer scaffold computes a similarity sðSðK;qÞÞ and the network produces the output bvn =
bsn = anWds = xnWadWds = fðsnWsdWda;fagÞWadWds = sðSðK;qnÞÞWds.
The value weights (from the dense to the sensory layer) and part of the query weights (from the sensory to the dense layer) are
trained by a Hebbian rule so that Wsd =

P
ns

u
n dn and Wds =

P
nd

u
n sn; the weights Wda are random and fixed and Wad are

also held fixed (after being set as a pseudoinverse on the random Wda, so these may also be viewed as random). Thus, the key
weights are random and fixed; the choice of modular attractor states and random projections from attractor neurons to the
dense layer pre-defines keys as a well-separated set so that NN behaves well for noisy inputs. The query weights are partly
random, fixed, and coupled with the keys and partly learned through Hebbian plasticity.
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declines with list length (typically in the range of 5 to 20 items). If
this was due to removal of items from memory, then one would
expect catastrophic forgetting over intervals of decades.

Furthermore, a series of experiments by Shiffrin73 demon-
strated that, when presented with a sequence of lists and then
asked to recall the list before the most recently presented list,
performance depended not on the length of the most recent
list but only on the length of the list being recalled. This suggests
that forgetting is not due to displacement of old items by items
from the last list. The limiting factor is retrieval interference
from other items on the same list.

Using word-location pairs, Berens and colleagues74 sepa-
rately estimated memory accessibility (whether or not a location
is recalled at all given a word cue) and precision (the variance of
angular errors). They found that accessibility, but not precision,
declined as a function of the retention interval. Similar results
have been reported using memory for real-world events.75

Thus, memories do not melt into oblivion but rather disappear
from view. When they come back into view, they are as sharp
as they were before they disappeared.

Supposedly lost memories can be found when appropriate
retrieval cues are used,76 when the number of retrieval attempts
increases,77,78 or even spontaneously after a sufficiently long
delay.79 This holds not only for standardmemory tasks in healthy
subjects but also for retrograde amnesia induced experimentally
or by neurological damage. Spontaneous ‘‘shrinkage’’ of
amnesia is a common clinical observation following brain
trauma,80 presumably due to the restoration of memory access.
In laboratory studies, amnesia can be induced experimentally in
a range of ways, such as electroconvulsive shock, hypothermia,
protein synthesis inhibition, and lesion or inactivation of the hip-
pocampus, with recovery also induced in a range of ways.4,81,82

For example, protein synthesis inhibition following classical con-
ditioning typically eliminates conditioned responding on long-
term memory tests. However, delayed testing sometimes re-
veals recovery of performance.83–85 It is even possible to restore
performance using the amnestic agent itself.86–88

These observations about amnesia mirror well-known phe-
nomena in classical conditioning. Extinction of a previously
conditioned stimulus (i.e., presenting the stimulus in the absence
of the unconditioned stimulus) causes a decline in conditioned
responding, eventually reaching baseline levels. This decline is
transient: conditioned responding can return spontaneously89

or can be induced by a single ‘‘reminder’’ of the unconditioned
stimulus.90

In summary, considerable evidence suggests that failures of
remembering primarily arise from failures of retrieval, typically
due to interference from other memories. Memories thought to
be lost can later be found under the right conditions. We will
explore this idea computationally when we discuss model
simulations.
Distinct representations of keys and values
The influential ‘‘Complementary Learning Systems’’ framework
holds that there is a division of labor between the hippocampus
and neocortex,91,92 with the hippocampus specialized for
episodic memory (remembering events that occurred in a spe-
cific spatiotemporal context) and a set of neocortical areas
(sometimes referred to as ‘‘association cortex’’) that are special-

ized for semantic memory (remembering regularities that gener-
alize across episodes). This framework has also influenced the
design of artificial intelligence systems.93 In this section, we
will argue that this framework can be understood in terms of
key-value memory.
Rather than thinking about the hippocampus as directly stor-

ing memory content, we can alternatively conceptualize it as
storing keys and matching queries to keys that address memory
content stored in neocortex. This view emphasizes the point that
episodic memories need to be bound to semantic content—
otherwise, they are essentially empty vessels, as in cases of se-
mantic dementia, where degeneration of the anterior temporal
lobe and prefrontal areas produces profound semantic impair-
ments despite relatively intact recognition memory for recent
experiences.94

If the hippocampus provides the keys necessary for activating
neocortical values, then we would expect a causal interplay
between the two. Indeed, there is empirical evidence for the
following facts: (1) cortical-encoding-related activity is reinstated
at the time of memory retrieval, (2) cortical reinstatement de-
pends on the hippocampus, and (3) the reinstatement is neces-
sary for memory retrieval.95–100

Another line of evidence comes from studies of generalization.
In the absence of the hippocampus, neocortical values cannot
be accessed in a targeted way, leading to overgeneralization.
A study by Winocur and colleagues101 offers a good example.
When trained to anticipate a shock in context A, rats specifically
freeze in context A but not in context B when tested a day later.
When tested a week later, rats show a generalization effect (loss
of context specificity), freezing in both contexts. This generaliza-
tionmight arise because of interference frommemories acquired
during the intervening time. Context specificity can be restored
by ‘‘reminding’’ the rat of the original memory (briefly placing it
back in context A). This reminder effect can be interpreted as
activation of the appropriate address given a highly specific
cue. Importantly, the reminder effect disappears in hippocam-
pal-lesioned rats, consistent with the claim that the hippocam-
pus stores the keys necessary for targeting specific memories
(see also Wiltgen et al.102 for converging evidence).
The idea that the hippocampus stores keys was to a large

extent anticipated by the hippocampal memory indexing the-
ory,103 which proposed that the hippocampus indexes memory
content stored in neocortical areas. Since it was first proposed,
new techniques have uncoveredmuchmore detailed support for
the theory.104,105 In particular, the advent of activity-dependent
labeling and optogenetic manipulation has enabled the identifi-
cation of ‘‘engram cells’’ in the hippocampus that are causally
linked to specific memories.106,107 Goode and colleagues105

interpret hippocampal engrams as indices (in the sense of Teyler
and DiScenna), linking together information stored in a distrib-
uted network of neocortical areas.
Several brain-wide engram mapping studies in rodents have

reported a collection of neocortical (as well as subcortical) areas
that are active during both encoding and retrieval and therefore
qualify as engrams.108,109 What makes the hippocampus special
is its role as a hub region with high connectivity to neocortical re-
gions.110 This allows the hippocampus to exert strong control
over neocortical regions. In addition, hippocampal engrams
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are highly sparse (involving a small subset of hippocampal cells)
and conjunctively tuned tomultiple sensory and cognitive inputs;
these features make hippocampal engrams well-suited to en-
coding episodically unique memories. A recent study of food-
caching birds111 provides a particularly dramatic demonstration:
hippocampal ensembles encoded unique representations for
over 100 cache sites (includingmultiple caches at the same loca-
tion), which were reactivated upon memory retrieval.
If hippocampal representations are optimized for discrimi-

nating between distinct episodes in a cue-dependent manner,
then we should expect changes in these representations under
different retrieval demands. For example, overlapping routes in
spatial navigation need to be discriminated in order to avoid
confusion. Chanales and colleagues112 showed that this situa-
tion produces repulsion of hippocampal representations specif-
ically for overlapping locations (see also Wanjia et al.113). The
repulsion effect emerges gradually over the course of learning,
ultimately reversing the objective similarity relations between lo-
cations. The strength of the repulsion effect also correlated with
behaviorally measured discrimination accuracy.
Note that optimization for discriminability is only part of the

story because the hippocampus receives noisy inputs that may
activate the wrong keys. The hippocampus needs to do some er-
ror correction/pattern completion in order to ‘‘clean up’’ the
retrieved keys. This may be accomplished by attractor dynamics
such that nearby inputs get mapped to a corresponding attractor
(pattern completion), whereas more distant inputs are separated
into distinct attractors (pattern separation). It remains to be seen
whether such attractor dynamics are implemented by the recur-
rent hippocampal-entorhinal loop55 (Box 1) or by the proposal
that both occur within the hippocampus, with pattern separation
by dentate gyrus and pattern completion by area CA3.114

In summary, evidence suggests a division of labor between
key encoding in the hippocampus and value encoding in the
neocortex. Hippocampal keys are optimized for discrimination,
whereas neocortical values are optimized for encoding semantic
regularities.
Values, but not keys, are available for recall
Keys store information that is never overtly recalled. Testing this
hypothesis is challenging because it is possible that some infor-
mation stored in keys is also stored in values. Clear support
comes from evidence that there is information used to guide
retrieval (putatively stored in keys) that, nonetheless, is not avail-
able for overt recall. More technically, we characterize ‘‘overt
recall’’ of a key as the ability to report some aspect of the key
vector. The evidence presented below suggests that keys can
be matched to queries without making the content of the keys
available for report.
Many of us are familiar with the experience of having amemory

at the ‘‘tip of the tongue’’—stored in memory yet temporarily un-
recallable.115,116 Closely related is the ‘‘feeling of knowing’’—a
subjective judgment about the likelihood of subsequently recog-
nizing items that are presently unrecallable. The typical study
procedure is to present subjects with difficult general knowledge
questions, elicit feelings of knowing for questions they cannot
presently answer, and then subsequently test their ability to
recognize correct answers to the questions. An important finding
from this literature is that feelings of knowing predict (though not

perfectly) subsequent recognition,117,118 indicating that people
are able to judge whether some piece of information is stored
in memory despite not being able to retrieve it. Similar results
have been found with cued recall tests.119 Another clue comes
from studies examining response times: Reder120 found that
people could report answerability for trivia questions faster
than they could report the answers, again indicating that meta-
memory does not require retrieval of memory content. Further-
more, feelings of knowing (but not recall) can be spuriously
increased by increasing cue familiarity,121,122 possibly due to
increased key-query match without increased probability that
the correct keys are matched.
These phenomena are broadly consistent with the hypothesis

that key-query matching can be used to judge whether some in-
formation (e.g., the answer to a question) is stored in memory,
without accessing the memory content (value) itself. This idea
has appeared in the human long-term-memory literature under
various guises; for example, Koriat123 discuss the tip-of-the-
tongue phenomenon in terms of ‘‘pointers’’ (cues that specify a
memory address without specifying memory content), whereas
Morton and colleagues124 use ‘‘headings’’ to refer to essentially
the same idea.
A pointer system has also been invoked to understand short-

term memory: rather than storing transient copies of long-term
memories, short-term memory might store pointers that refer
to information in long-term memory.125,126 This may explain
why people can detect changes even when they cannot report
what exactly has changed,127 analogous to the ‘‘butcher on
the bus’’ phenomenon in long term memory,128 where people
can recognize familiar items without being able to recollect any
details about them. Both change detection without identification
and familiarity without recollection might be accomplished using
keys (pointers) that are content addressable but do not obligato-
rily activate their associated values.55

Many standard models of memory cannot check whether in-
formation is stored without retrieving that information at least
partially. This is because most models base recognition mem-
ory judgments on the match between the cue and stored con-
tent; there is no separate representation of keys that can be
used to check whether something is stored in memory. This
makes it challenging for these models to explain why people
can be knowledgeable about what is stored in memory without
recalling it.

RESULTS

Illustrative simulations
In this section, we provide two simulations that illustrate some of
the distinctive characteristics of key-value models highlighted
above. Further implementation details can be found in our public
code repository, available at https://github.com/kazuki-irie/kv-
memory-brain.
Distinct representations for keys and values
As we discussed earlier, one of the essential properties of key-
value memory is the separate representations allocated for
keys and values, which can be optimized for their specific roles
in retrieval and storage, respectively. Here, we present a toy
simulation that illustrates this property.
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We consider a minimal key-value model whose trainable pa-
rameters are a set of pairs of key and value vectors (i.e., in this
model, we skip the step of mapping inputs to keys and values
and directly examine the properties of key/value representa-
tions). We set both keys and values to be 2D vectors that can
be easily visualized in the 2D space. The model can take an arbi-
trary 2D vector as an input that is treated as a query; the query is
compared with all the keys through dot product to obtain a sim-
ilarity score for each key (as in Equation 5). The resulting scores
are normalized by applying the softmax function (Equation 6) to
obtain the final ‘‘attention’’ scores. The output of the model is the
weighted average of value vectors using these attention scores
(Equation 2).
To train the model, we randomly assign each key/value pair to

a class; we test two settings using either two or three classes in
total. Each class has a fixed feature vector (representing some
specific object or event): in the two-class case, the feature vec-
tors for class ‘‘0’’ and ‘‘1’’ are vectors ð0;1Þ and ð1; 0Þ in the 2D
space, respectively; in the three-class case, we additionally
have a third class, class ‘‘2’’ with ð1; 1Þ as its feature vector.
The task of themodel is to output the correct class feature vector
when one of the keys is fed to the model as input. We apply the
sigmoid function to the value vectors to ensure their effective
values are between 0 and 1. The key and value vectors are initial-
ized with a uniform distribution between 0 and 1, and our goal is
to examine what key and value representations emerge when
this key-value model is optimized for this simple retrieval task.
We use the mean squared error loss and the gradient descent al-
gorithm, as is commonly used in modern deep learning.
The results are shown in Figure 2. We observe that key and

value representations effectively exhibit different optimal config-
urations. The key configuration is optimized for softmax-based
discrimination, facilitating effective retrieval: as we can see in
Figure 2A, top row (the two-class case), the two classes take
two opposite quadrants (which are highly distinguishable
through dot product and softmax). The trend is similar for the
three-class case (Figure 2B, top row). In contrast, the value rep-
resentations are optimized to represent the class features (i.e.,
the memory content). For example, in the two-class case (Fig-
ure 2A, bottom row), they are optimized to represent ð0;1Þ for
class ‘‘blue’’ and ð1;0Þ for class ‘‘red.’’ Again, the trend is similar
for the three-class case (Figure 2B, bottom row). This illustrates
how the key-value memory architecture allows for separate rep-
resentations for keys and values, optimized for retrieval and stor-
age, respectively.
Forgetting as retrieval failure, and recovery by memory
reactivation
Another distinctive property of the key-value memory we high-
lighted earlier is that, as recall relies on successful retrieval,
forgetting can be conceptualized as retrieval failure; that is,
even when a memory trace (i.e., a key/value pair corresponding
to an event) is stored in memory, forgetting can still occur when

retrieval fails due to interference/inaccessibility. This also implies
that, if we manage to fix the failure in the retrieval process, there
is a hope for recovering the corresponding memory without hav-
ing to relive the event itself. Here, we present a simulation illus-
trating these phenomena using an artificial neural network that
learns two tasks sequentially (the so-called continual learning
scenario) and examine it through the lens of key-value memory.
We also highlight how this simple experiment echoes neurobio-
logical findings on optogenetic recovery of memory following
retrograde amnesia.129,130

We train a simple feedforward neural network on two binary
image classification tasks sequentially. Using two classic image
datasets commonly used in deep learning, MNIST, and
FashionMNIST,131,132 we construct the two toy tasks that involve
classifying images from the two first classes of MNIST (digit 0 vs.
1) and FashionMNIST (‘‘T-shirt’’ vs. ‘‘Trouser’’), respectively. The
model has one hidden layer (i.e., it has two linear transforma-
tions: input-to-hidden and hidden-to-output mappings, with a
rectifier linear activation function in-between). The input images
are grayscale and their dimensions are 283 28; they are flat-
tened to yield a 784-dimensional vector accepted by the input
layer. We set the hidden-layer dimension to 64 and the model
output size is 4 (for two times two-way classification tasks).
Themodel is trained on the cross-entropy loss using the gradient
descent algorithm; by applying the dual formulation described
earlier, each linear layer in the model can be formalized as a
key-value system keeping memory traces of the entire learning
experience by storing layer inputs as keys and error signals as
values for every learning step.
In this sequential learning setting, we first train the model on

task 1 (MNIST) for 5 epochs, after which the model is trained
for another 5 epochs on the training dataset of task 2
(FashionMNIST) without having access to the task 1 training
data anymore. Although such a training process produces a
set of weight matrices for neural networks in their conventional
form, in the key-value memory view, the final model consists of
a sequence of key/value vectors; in this specific scenario of
two-task sequential learning, each key/value pair belongs to
either task 1 (MNIST) or task 2 (FashionMNIST) learning
experiences.
Figure 3A shows the evolution of model performance on the

test set of the two tasks as a function of training epochs. We
observe that the model achieves $99% test accuracy on task
1 (MNIST) in the first 5 epochs corresponding to task 1 learning,
but this performance drops to $9% after learning task 2
(FashionMNIST), until the model achieves $95% test accuracy
on task 2 (we deliberately train themodel long enough to observe
forgetting). This amnesic phenomenon, reminiscent of cata-
strophic forgetting in neural networks,65,133,134 is intriguing given
the key-value memory view of the model in which the key/value
memory pairs belonging to task 1 remain part of the model
parameters, explicitly and indefinitely. By using the same

Figure 2. Optimization of key and value representations
Each point represents an event in the memory and belongs to one of (A) two or (B) three classes, represented by different shapes. In each case, the evolution of

key (top row) and value (bottom row) representations during the optimization process is shown; each row shows (left) random initialization and (middle) trajectory

of representations during the optimization process; (right) final configuration. We observe that keys are optimized for retrieval/separability, whereas values are

optimized to store the memory content.
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terminology as in neuroscience experiments,129 these task
1-related key/value memories became ‘‘silent’’ after task 2
learning.

An interesting question is whether we can reactivate these si-
lent key/value memories to recover the model’s performance on
task 1 without any retraining on task 1, akin to how experimental
neuroscientists successfully reactivated ‘‘silent engrams’’
through an optogenetic procedure.130 For this, we introduce a
single positive scalar bR1 (an ‘‘optogenetic strength’’) to
multiply/amplify the keys (or, equivalently in this model, the
values) in all key-value pairs corresponding to task 1 in the
trained model. Figure 3B shows the performance of the model
on task 1 (MNIST) as a function of the optogenetic strength b

(b = 1 corresponds to no intervention on the model). We observe
that, by simply increasing b (i.e., by artificially ‘‘reactivating’’ the
existing key-value memories corresponding to the model’s prior
MNIST learning experiences), the model becomes capable of
solving MNIST again without any retraining.

This simulation not only illustrates the core property of the key-
valuememory, where forgetting can be attributed to retrieval fail-
ure, but also resonates with the neuroscientific findings of silent
memory engrams in retrograde amnesia and their recovery
through artificial reactivation.

Conclusions
Our goal in this paper was to connect ideas about key-value
memory across artificial intelligence, cognitive science, and
neuroscience. We have argued that the brain might plausibly
implement a key-value memory system in the division of labor
between hippocampus and neocortex. We have also argued
that a number of behavioral findings from memory studies
(e.g., the ability to report item familiarity without recollection) is
consistent with a key-value architecture.

Presently, the connections we have highlighted are specula-
tive. On the empirical side, we hope that more direct experi-

mental tests will be undertaken. For example, the key-value ar-
chitecture implies that repulsion effects in long-term memory
should be reversible—a prediction that has not yet been tested.
On the theoretical side, we hope that more biologically detailed
models will be developed that can explain the plethora of find-
ings discussed in previous sections.
Our paper was motivated by the fact that key-value memory

seems to be an important ingredient in the success of several
modern artificial intelligence systems, such as transformers
and fast weight programmers. The idea that the brain may imple-
ment something like this indicates evidence for convergence135

and suggests that this is a promising direction for exploring
brain-like mechanisms that can power intelligent systems.
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Figure 3. Forgetting and reactivation of memory events
A one-layer feedforward neural network is trained on two tasks sequentially, tasks 1 and 2, constructed using the MNIST and FashionMNIST datasets,

respectively. (A) The evolution of the test classification accuracy for the two tasks as a function of training epochs. After epoch 5, the training dataset changes

from task 1 to task 2, resulting in forgetting of task 1 as the model learns task 2. (B) The accuracy of the trained model on task 1 as a function of the value of the

artificial scaler b used to amplify the keys in all key-value memory pairs corresponding to task 1 learning.
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KEY RESOURCES TABLE

METHOD DETAILS

Our code was implemented using PyTorch.136

Distinct representations for keys and values
In both the two-class and three-class settings, 100 two-dimensional vectors were uniformly sampled from the range [0, 1] for each
key and valuewithin each class, resulting in a total of 200 key/value pairs for the two-class case (Figure 2A) and 300 for the three-class
case (Figure 2B).
The optimization was performed using the Adam optimizer137 with a learning rate of 3e-4 for 5,000 steps in the two-class setting

and 10,000 steps in the three-class setting.
The experiments were conducted using the free version of Google Colab with a CPU. The python notebooks to reproduce the re-

sults are https://github.com/kazuki-irie/kv-memory-brain/blob/master/2classes_key_value_optimization.ipynb and https://github.
com/kazuki-irie/kv-memory-brain/blob/master/3classes_key_value_optimization.ipynb for the two-class and three-class cases,
respectively.

Forgetting as retrieval failure, and recovery by memory reactivation
Both theMNIST and FashionMNIST datasets were used without modifications. We used the class ‘0’ and ‘1’ images from each data-
set; resulting in 12,665 training images for MNIST and 12,000 for Fashion MNIST. Note that MNIST does not have an equal number of
examples per class: 5,923 for class ‘0’ and 6,742 for class ‘1.’ We left this imbalance as is, as it is irrelevant to the main goal of our
experiment. The corresponding test sets consist of 2,115 and 2,000 images for MNIST and Fashion MNIST, respectively.
The initial weights of the two linear layers within the feedforward neural network were uniformly sampled from a uniform distribution

over the range [-a, a] where a = 1=
ffiffiffi
d

p
in, and din denotes the input dimension of the corresponding layer. No bias was applied in either

of the two layers. The optimization was conducted using the standard stochastic gradient descent algorithm using a learning rate of
6e-4 and a batch size of 128 images. We refer to one ‘‘epoch’’ of optimization as a single iteration over the entire training dataset.
The experiments were conducted using the free version of Google Colab with a T4 GPU. The python notebook to reproduce

the corresponding results can be found at: https://github.com/kazuki-irie/kv-memory-brain/blob/master/Forgetting_and_
recovery.ipynb.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

MNIST LeCun et al.131 https://ossci-datasets.s3.amazonaws.com/mnist

Fashion MNIST Xiao et al.132 http://fashion-mnist.s3-website.eu-central-1.amazonaws.com

Software and algorithms

PyTorch 2.5.1 Paszke et al.136 https://pytorch.org

Code for this paper This paper https://doi.org/10.5281/zenodo.14920916
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