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Abstract
Can you reduce uncertainty by thinking? Intuition suggests that this happens through the elusive process of attention: if we 
expend mental effort, we can increase the reliability of our sensory data. Models based on “rational inattention” formalize 
this idea in terms of a trade-off between the costs and benefits of attention. This paper surveys the origin of these models 
in economics, their connection to rate-distortion theory, and some of their recent applications to psychology and neurosci-
ence. We also report new data from a numerosity judgment task in which we manipulate performance incentives. Consistent 
with rational inattention, people are able to improve performance on this task when incentivized, in part by increasing the 
reliability of their sensory data.
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Introduction

Because our senses only give us partial and unreliable 
information about the environment, uncertainty is ubiq-
uitous. Bayesian models of perception have formalized 
how uncertainty is represented, computed, and used by 
downstream processes such as decision-making and con-
fidence judgments (Knill & Richards, 1996; Kersten et al., 
2004; Meyniel et al., 2015). According to these models, 
percepts are probabilistic beliefs about hidden features of 
the environment, updated based on sensory data accord-
ing to Bayes’ rule. A typical and often overlooked property 
of these models is the assumption that uncertainty arises 
from noise sources that are “exogeneous”—the brain can-
not directly control the reliability of sensory data, and by 
extension it cannot directly control the degree of subjec-
tive uncertainty. Thus, it is common practice to treat sen-
sory reliability either as a free parameter (estimated from 
psychophysical data) or as dependent on an experimental 
parameter (e.g., stimulus contrast).

In this paper, we survey recent work that endogenizes 
sensory reliability, thereby placing uncertainty at least par-
tially under mental control. The key idea is that sensory 

reliability is a kind of internal action—attention—that can 
be optimized based on a cost–benefit analysis. The benefit 
of attention is better task performance. The cost can take 
many forms; an influential line of work, originating in eco-
nomics (Sims, 2003; Woodford, 2009; Mackowiak & Wie-
derholt, 2009; Mackowiak et al., 2018), adopts an infor-
mation-theoretic cost function. We will derive this cost 
function from first principles, starting from the assumption 
that sensory channels have an upper bound on the average 
number of bits that can be transmitted per signal. The level 
of attention that maximizes utility (net benefit minus cost) 
can be understood as rational in the classical economic 
sense of rational choice theory. By the same token, neglect-
ing some information (i.e., inattention) is rational when 
the costs are sufficiently high. Accordingly, the framework 
was dubbed “rational inattention” by economists seeking 
to explain why and when people or firms fail to make use 
of all available information.

The rest of this paper is organized as follows. We will 
first provide a non-technical overview of rational inattention 
theory, beginning with its origins in economics, followed 
by a survey of applications in psychology and neurosci-
ence. We will then present a technical treatment special-
ized to an analytically tractable model class, which will 
allow us to concretely expose the key features of rational 
inattention. As a quantitative test of this model, we report 
new experimental data from a numerosity judgment task in 
which we manipulated incentives. Our analyses of this data 
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set highlight several implications of rational inattention for 
simple perceptual judgments.

Economic origins of rational inattention 
theory

The idea of rational inattention emerged from attempts 
to solve a long-standing macroeconomic puzzle: why do 
variables such as wages and prices respond slowly and 
coarsely to economic shocks? A closely related micro-
economic puzzle is the tendency of individuals to value 
their wealth or income in nominal (e.g., dollar) rather than 
real (purchasing power) terms, a phenomenon known as 
the “money illusion” (Shafir et al., 1997). Even a small 
amount of individual-level money illusion can give rise to 
substantial aggregate inertia in response to shocks (Fehr 
& Tyran, 2001). Intuitively, if individuals don’t notice 
changes in their purchasing power, then the economic 
pressure to adjust wages or prices will be blunted. But 
why, given the potentially large financial stakes, would 
individuals fail to notice such changes?

If we think of the economy as comprised of rational agents 
who respond instantaneously to market conditions, then we 
would expect no delay between shocks and adjustments, 
and the adjustments should vary predictably with the shock. 
Keynes (1936) incorporated a form of “stickiness” into an 
equilibrium model of the economy, but a satisfying explanation 
of how such stickiness arises did not appear until Sims (1998) 
located it in the limited attentional capacities of agents. This 
initial insight was subsequently developed by Sims (2003), 
Woodford (2009), and Mackowiak and Wiederholt (2009). 
The central feature of these models is that agents ignore some 
economic shocks, which explains why they adjust slowly and 
coarsely. Importantly, agents allocate their attention so as to 
optimize profit subject to their attentional capacity limit.

The concept of an attentional capacity limit can be for-
malized using information theory. In this section, we will 
provide a non-technical sketch of these ideas; later we will 
develop a more detailed technical treatment. The brain, 
like all physical information processing systems, has an 
upper bound (the channel capacity) on how much informa-
tion about the external world it can transmit across sensory 
channels. Transmitting a signal across a channel requires 
a number of bits equal (on average) to the entropy of the 
signal (Shannon, 1948). If the average number of bits per 
signal (the information rate) exceeds the channel capacity, 
then reliable transmission is impossible. However, it was 
also recognized by Shannon that not all errors are equally 
important, and therefore it may be acceptable to unreliably 
transmit some signals in order to optimize a distortion func-
tion that characterizes the costs of particular errors (Shan-
non, 1959). This insight was the foundation of rate-distortion 

theory (Berger, 1971), which marries information theory and 
decision theory.

Economists, beginning with Sims (2003), used these ideas to 
define attention as the sensitivity of an information processing 
system (which could be an individual, firm, or other economic 
entity) to external signals (e.g., prices, wages, etc.). Optimal 
attentional allocation depends both on the incentive structure 
and the capacity limit of the system. When incentives are larger, 
more attention can be allocated, but only up to a point.

Before proceeding, a terminological remark is needed. 
What economists call rational inattention is mathematically 
equivalent to what information theorists call rate-distortion 
theory: they are “duals” of one another, in the sense that 
they define different optimization problems with the same 
solution (Denti et al., 2020).1 Therefore, it doesn’t really 
make sense to discuss the two areas of research separately. 
Rate-distortion theory has recently become fertile ground 
for thinking about perception, memory, and decision-making 
(see Sims 2016; Lai and Gershman2021, for reviews). In this 
paper, we will refer to rational inattention because we feel 
that the emphasis on signal sensitivity provides a natural way 
of talking about particular phenomena. However, we want 
to make clear that this is a matter of emphasis rather than a 
deep theoretical distinction.

Applications to perception, memory, 
and decision‑making

Psychologists studying memory and perception have long 
been interested in capacity limits, and indeed much of the 
early work on these topics was directly influenced by infor-
mation theory (Attneave, 1954; Miller, 1956). What jumped 
out at Miller in his famous 1956 paper was the fact that the 
same capacity limit (measured in bits) seemed to appear 
across many different experiments with different stimuli. He 
suggested that items or sets of items could be compressed to 
make more efficient use of the fixed capacity limit. Compres-
sion also played an important role in Attneave’s discussion 
of perceptual organization such as grouping, where redun-
dant stimulus elements are compressed to produce a single 
Gestalt figure, thereby making more efficient use of a fixed 
perceptual capacity.

A stumbling block in these efforts was the fact that infor-
mation theory by itself could not comprehensively explain 
why some stimuli were more memorable or perceptible than 
others. For example, if a subject receives larger payoffs for 
remembering some items than others, memory is better for 
the high-payoff items (Taub, 1965; Christ, 1969; Tolkmitt 

1 Some rational inattention models adopt cost functions that do not 
have an information-theoretic interpretation, and in these cases the 
two approaches diverge.
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& Christ, 1970; Martin & Richards, 1972; Brissenden et al., 
2021). A purely information-theoretic treatment of capacity 
only constrains memory based on the signal statistics and 
channel noise; it has no means of prioritizing some signals 
over others based on their differential payoffs. Rational inat-
tention, in contrast, provides a natural explanation, since 
high-payoff items should be preferentially allocated bits in 
memory. One implication of this explanation, supported 
by the data, is that memory for low-payoff items should be 
worse compared to a condition in which there are no differ-
ential payoffs. This follows from the fact that extra bits for 
high-payoff items can only be obtained by reducing the bit 
allocation for low-payoff items.

Payoff history for different stimuli can affect prioriti-
zation in memory even when memory performance itself 
is not differentially rewarded. For example, Gong and Li 
(2014) associated some stimuli with low rewards and others 
with high rewards in a visual search task; they then used the 
same stimuli in a change detection task, finding that detec-
tion accuracy was better for the stimuli associated with high 
rewards, despite the fact that reward on the change detection 
task did not depend on these associations (see also Wallis 
et al., 2015; Thomas et al., 2016). In a similar vein, Bates 
et al., (2019) showed that changes are easier to detect along 
stimulus dimensions that are relevant to a previously learned 
category distinction. These findings suggest that the alloca-
tion of attentional capacity is adapted to the distribution of 
stimuli or tasks.

The data discussed so far come from studies with humans, 
but similar conclusions can be drawn from studies with ani-
mals. Using rat and pigeon subjects, Nevin et al., (1975) 
reported that signal sensitivity in a two-alternative forced 
choice task increased in proportion to the difference in pay-
off for correct and incorrect responses (see also Davison 
and McCarthy 1980). They pointed out that this finding 
appears to contradict classical signal detection theory, which 
assumes that differential payoffs should affect response 
bias but not sensitivity. More recently, Grujic et al., (2022) 
explicitly applied a rational inattention model to data from 
an orientation discrimination task in mice. By manipulat-
ing the mapping between stimuli and payoffs for correct 
responses, they were able to show that sensitivity was higher 
for orientations receiving larger payoffs. This pattern was 
quantitatively matched by a model that fully endogenized 
sensitivity based on the stimulus–reward mapping.2

Rational inattention theory can also be applied to 
more cognitive domains, where the signals are internally 

generated. For example, Gabaix and Laibson (2017) pro-
posed that intertemporal decisions may involve mental simu-
lation of the future. Intuitively, the value of a delayed payoff 
depends on the conditions at the time of receipt. Mental 
simulation is an inherently noisy way of prospecting about 
these conditions due to the fact that each simulation is a 
random sample path through a hypothetical future. The deci-
sion-maker can interpret the prospective values constructed 
by these simulations as signals, and then combine them 
with prior beliefs (via Bayes’ rule) to estimate payoff value. 
Gabaix and Laibson showed that under certain distributional 
assumptions they could derive a hyperbolic temporal dis-
counting function, where discounting of the future (myopia) 
increases with the simulation noise variance. This captures 
the idea that the decision-maker should rely less on simula-
tions when they are less reliable indicators of future value. 
Gabaix and Laibson treated the simulation noise variance as 
exogenous, but evidence suggests that it might be adaptively 
calibrated. In particular, the fact that myopia diminishes for 
larger magnitudes (Thaler, 1981) suggests that the noise 
variance may diminish for larger magnitudes. Gershman and 
Bhui (2020) showed how this arises naturally from a rational 
inattention treatment of the Bayesian discounting model. 
The key innovation is to endogenize the noise variance so 
that it becomes sensitive to payoff magnitude. A novel pre-
diction of this treatment, confirmed empirically, was that 
response variability decreases with magnitude, consistent 
with reduced simulation noise.

Links to the study of selective attention

Given that rational inattention theory invokes the psycho-
logical concept of attention, it is reasonable to expect that 
it should have something to say about the voluminous lit-
erature on attention. Here, we take a brisk tour of some key 
findings and ideas from this literature, drawing out some 
connections to rational inattention.

The earliest systematic studies of attention, exemplified 
by Broadbent (1958), suggested a “filter” theory of atten-
tion, whereby instructions to focus on one auditory source 
(presented to one ear) obliterated comprehension of another 
simultaneous auditory source in the other ear. The unat-
tended source was apparently filtered out at an early stage 
of perception, rendering it completely unavailable for down-
stream computation. It turned out, however, that some infor-
mation from the unattended source is available downstream, 
albeit in an attenuated form (Treisman 1960). The degree 
of attenuation is greater under conditions of high percep-
tual load (e.g., a large number of distractors; Lavie and Tsal 
1994; Lavie 1995). These findings suggest that the amount 
of unattended information available to downstream com-
putation depends on a capacity-limited perceptual channel: 

2 Note that Grujic et al., (2022) did not use the information-theoretic 
cost function, so it is somewhat different from the other models in 
this literature. Their cost function is motivated by neurobiological 
constraints, and is in that sense more similar in spirit to the work of 
Van den Berg and Ma (2018).
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unattended signals are propagated only when capacity is not 
saturated. The idea that attentional resources can be flexibly 
allocated based on available capacity and priority is broadly 
consistent with rational inattention theory.

Subsequent work attempted to unpack the mechanisms 
underlying attentional enhancement of perceptual process-
ing (see Carrasco 2011, for a review). Studies indicated 
that cues can affect both response bias and sensitivity, but 
these can be dissociated by different experimental manipu-
lations (Wyart et al., 2012; Luo & Maunsell, 2015). For 
example, Wyart et al., (2012) showed, using a spatial cue-
ing paradigm, that information about where a stimulus will 
appear affects response bias but not sensitivity, whereas 
information about whether a particular location will be 
queried (i.e., the location’s task relevance) affects sensi-
tivity but not response bias. This result can be understood 
in terms of rational inattention: sensitivity is predicted 
to increase when it pays off to decrease internal noise, 
as in the case of cues indicating task relevance (see also 
Engelmann and Pessoa 2007). Cues indicating stimulus 
location, on the other hand, do not dictate that a reduction 
of internal noise is worth the cost, but they do indicate 
how to set the optimal decision criterion.

A final link that we want to touch upon is the literature 
on enhancement of attention by reward associations (see 
Bourgeois et al., 2016, for a review). For example, Anderson 
et al., (2011) showed that stimuli previously associated with 
monetary rewards capture attention during visual search. 
This reward-induced enhancement can last for several days 
(Della Libera and Chelazzi, 2009), and is accompanied by 
changes in early visual cortex tuning (Itthipuripat et al., 
2019). While rational inattention theory does not directly 
address associative learning, these effects are broadly con-
sistent with the notion that reward shapes selective attention, 
in some cases by modulating activity in early perceptual 
areas (Serences, 2008; Luo & Maunsell, 2015).

Case study: Gaussian magnitude estimation

In this section, we will develop the mathematical details for 
a special case of rational inattention theory. This case will 
serve as the model for the behavioral experiment that we 
describe later.

We consider an agent that receives a signal m ∈ ℝ rep-
resenting a scalar magnitude (e.g., length, size, numeros-
ity, etc.), drawn from some distribution p(m). The goal of 
the agent is to estimate the expected value of m, denoted 
� = �[m] . For analytical tractability, we will specialize this 
setup to the assumption that the signal distribution is Gauss-
ian, m ∼ N(�, �−1) , with precision (inverse variance) λ.

Bayesian estimation

Bayes’ rule prescribes the normative solution to the estima-
tion problem. The posterior distribution over μ is given by:

where p(m|�) = N(m;�, �−1) is the likelihood and p(μ) 
is the prior. If we assume that the prior is Gaussian, 
� ∼ N(�0, �

−1
0
) , then the posterior is also Gaussian, with 

posterior mean �̂�:

where

is the sensitivity to the signal. The sensitivity w is deter-
mined by the relative precision of the likelihood and prior. 
In particular, the sensitivity is high when signal precision (λ) 
is high relative to prior precision (λ0).

Equation 2 offers a simple account of central tendency 
(also known as regression) effects, which are ubiquitous in 
magnitude estimation tasks (Petzschner et al., 2015): magni-
tude estimates tend to be pulled towards the prior mean, such 
that magnitudes less than the mean are overestimated and 
magnitudes greater than the mean are underestimated. Con-
sistent with the Bayesian account, these effects are greater 
under conditions in which sensory noise is putatively higher 
(and hence signal sensitivity w is lower). For example, Xiang 
et al., (2021) showed that briefer stimulus presentations 
induce a stronger central tendency effect. The Bayesian 
account also explains why central tendency effects tend to 
be larger when the range of stimuli is wider (Teghtsoonian 
and Teghtsoonian, 1978; Petzschner & Glasauer, 2011): w 
decreases with λ0, which is smaller when the range is wider.

Rational inattention

Intuition suggests that when signals are more important, the 
agent should pay more attention to them. This intuition can 
be formalized using the framework of rational inattention. 
The agent has a limited attentional capacity that can be allo-
cated to the signal estimation problem. In information-the-
oretic terms, this capacity limit C is the maximum feasible 
information rate of the channel. The rate is defined as the 
mutual information between μ and m:

where H(μ) is the entropy of the prior p(μ), expressing the 
amount of uncertainty about μ prior to observing the sig-
nal, and H(μ|m) is the conditional entropy, expressing the 

(1)p(�|m) ∝ p(m|�)p(�),

(2)�̂� = wm + (1 − w)𝜇0,

(3)w =
�

�+�0

(4)I(�;m) = H(�) − H(�|m),
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amount of uncertainty about μ after observing the signal. 
Thus, mutual information expresses the degree of uncer-
tainty reduction due to the signal—a formal conceptualiza-
tion of attention (see also Itti & Baldi 2009; Feldman & 
Friston 2010). For the Gaussian generative model described 
in the previous section, the mutual information is given by:

Shannon’s noisy channel theorem states that the minimum 
expected number of bits needed to communicate μ across a 
noisy channel without error is equal to I(μ;m). A corollary 
is that errorless communication is not possible if the agent’s 
capacity is less than I(μ;m).

If the agent is operating at its attentional capacity limit, 
then the optimization problem is to maximize expected 
reward subject to the constraint that I(μ;m) cannot exceed 
the capacity C. In our setup, the parameter being optimized 
is the signal precision λ, which allows us to capture the idea 
that the agent can attend more to the signal (by increasing λ) 
when it is more important, and hence worth paying a higher 
information cost. We will first describe the reward structure 
and then show how this is integrated into a capacity-con-
strained optimization problem.

We assume that the reward an agent collects on a par-
ticular task is a monotonically decreasing and differentiable 
function u(𝜖) of the squared error 𝜖 = (𝜇 − �̂�)2 . Taking a 
first-order Taylor series approximation around 𝜖 = 0 gives:

where β > 0 is the negative slope of u(𝜖) at 𝜖 = 0. Intuitively, 
β expresses how rapidly reward decreases with estimation 
error for a given task. We will interpret β as an attentional 
incentive parameter to capture the idea that agents are 
motivated to pay more attention to the signal when reward 
is contingent on error. Evidence for reward contingency-
dependent increases in cognitive effort are well documented 
(Kool et al., 2016; Kool et al., 2017; Manohar et al., 2017; 
Frömer et al., 2021).

For the Gaussian generative model, the expected reward 
is given by:

where we have used the Taylor series expansion in the sec-
ond expression. The denominator in the second term (λ + 
λ0) is equal to the posterior precision; thus, the expected 
reward is inversely related to the posterior uncertainty 
(variance) scaled by the attentional incentive (β). Another 
way to understand this expression is by noting that the 
expected squared error is given by �[�] = 1∕(� + �0) . Thus, 

(5)I(�;m) =
1

2
log

(
1 +

�

�0

)
.

(6)u(𝜖) ≈ u(0) − β(𝜇 − �̂�)2,

(7)U = �[u(�)] ≈ u(0) −
β

�+�0
,

U ≈ u(0) − β�[�] , meaning that β determines the first-order 
effect of squared error on utility.

We can now write down the optimization problem fac-
ing the agent. We formulate it as a Lagrangian “dual” 
function (the standard formulation in rational inattention 
models), which is equivalent to maximizing reward under 
a capacity constraint:

where κ ≥ 0 is a Lagrange multiplier that can be interpreted 
as the attentional cost. More precisely, κ is the “exchange 
rate” between reward and information: one unit of reward 
can be “bought” for κ units of information (e.g., bits, if using 
the base 2 logarithm in the definition of mutual information). 
In general, κ decreases with the agent’s capacity. Note that 
we no longer have the capacity limit C in this formulation; 
it is implicitly expressed by κ.

Using the Taylor series approximation, the optimal signal 
precision is given by:

From this result, we can deduce that the optimal sensitivity 
is given by:

subject to the constraint that w∗∈ [0,1]. Summarizing these 
results:

• As the attentional incentive β increases, optimal signal 
precision λ∗ and sensitivity w∗ increase.

• As the attentional cost κ increases, optimal signal preci-
sion λ∗ and sensitivity w∗ decrease.

• As the prior precision λ0 increases, optimal signal preci-
sion λ∗ and sensitivity w∗ decrease.

Note that d�
∗

d�
 is negative and monotonically decreasing as 

a function of β; thus, β amplifies the effect of κ on optimal 
signal precision.

Plugging the optimal signal precision λ∗ into Eq. 7 yields:

Thus, when the agent is operating at its capacity limit, its 
expected reward is inversely proportional to the attentional 
cost κ. Mikhael et al., (2021), following earlier work (Niv 
et al., 2007; Beierholm et al., 2013; Hamid et al., 2016), pro-
posed that tonic dopamine encodes average reward. Equa-
tion 11 means that the average reward interpretation of dopa-
mine is equivalent (under the rational inattention analysis) 
to an interpretation of dopamine in terms of the exchange 
rate between reward and information. This equivalence also 

(8)�∗ = argmax
�

U − �I(�;m),

(9)�∗ = max(0, 2β∕� − �0).

(10)w∗ = 1 −
�0�

2β
,

(11)U∗ = u(0) −
�

2
.
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allows us to draw a connection to the interpretation of dopa-
mine as posterior precision (Friston et al., 2012; FitzGerald 
et al., 2015; Tomassini et al., 2016; Shi et al., 2013): Eq. 7 
shows that expected reward is increasing in posterior preci-
sion, and the rational inattention analysis implies that poste-
rior precision is equal to 2β/κ. These expressions show that 
interpretations of dopamine as information–reward exchange 
rate, average reward, and posterior precision are in a sense 
interchangeable.

We can also re-express the optimal sensitivity in terms of 
the average reward:

which shows that optimal sensitivity increases with average 
reward, scaled inversely by β. One way to understand this 
is in terms of the task complexity interpretation of β: more 
complex tasks require a larger reward to induce the same 
degree of sensitivity.

Experiment: numerosity judgment 
with variable incentives

To test the predictions of the model described in the previous 
section, we collected a new data set from subjects perform-
ing a numerosity estimation task. We manipulated incen-
tives on a trial-by-trial basis in order to determine whether 
errors, variability, confidence, and central tendency change 
in accordance with the principles of rational inattention.

Subjects

We recruited 377 subjects from Amazon Mechanical Turk. 
All subjects gave informed consent prior to testing. To ensure 
that subjects fully understood the experiment, they completed 
a three-question comprehension check after the instructions. No 
subjects were excluded for failing the comprehension check. All 
subjects received a $6 base payment. As a performance bonus, 

(12)w∗ = 1 +
�0U

∗

β
,

subjects were awarded the incentive ($1 or $5) on a randomly 
selected trial if their estimate on that trial was within three of the 
true numerosity. We excluded seven subjects who were either 
older than 69 or made more than 30 invalid responses (outside 
the range of possible numerosities, or more than 40 away from 
the true numerosity). All invalid responses for the remaining 
subjects were excluded from subsequent analysis. The study was 
approved by the Harvard Institutional Review Board.

Stimuli and procedure

The stimuli were black dots in a random spatial arrangement 
within an aperture. The number of dots ranged between 15 
and 65.

To gain familiarity with the task, subjects were trained 
on four trials in which the true numerosity was revealed 
during feedback (in the rest of the task, this feedback was 
not provided). After training, subjects completed six blocks 
with 40 trials per block. Each block’s average numerosity 
was randomly drawn from a uniform distribution (30 to 50, 
sampled without replacement). The average numerosity was 
revealed to subjects at block onset.

On each trial, a numerosity was sampled from a uniform 
distribution (block average stimulus magnitude ± 15, sam-
pled with replacement). Trials were randomly assigned to 
either the high or low incentive condition, such that every 
condition was evenly distributed within and across blocks. 
High incentive trials were color-coded by a green border on 
the aperture and offered a potential performance bonus of 
$5. Low incentive trials were color-coded by a grey border 
and offered a potential performance bonus of $1.

As illustrated in Fig. 1, each trial began with the presentation 
of a green or grey color-coded incentive value at the center of the 
screen for 1 s. Then, a random dot array, bordered with the same 
color as the incentive, was presented for 1 s. Subjects then had 
10 s to report their numerosity estimate using the number pad 
on their keyboard. Subjects were then prompted to rate the con-
fidence in their estimate using a discrete slider ranging from 0 
(random guessing) to 10 (very confident). Finally, subjects were 

Estimate
(10 s or until response)Stimulus

(1 s)

+ $0Report Confidence

0-10Report Estimate

$0

Incentive
(1 s)

Confidence
(until response)

Feedback
(1 s)

Fig. 1  Illustration of a trial. After viewing the trial-specific perfor-
mance bonus, subjects viewed the stimulus, reported their numerosity 
estimate, and then rated their confidence on a ten-point scale. Lastly, 

they received feedback about whether they received the incentivized 
performance bonus
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given feedback ($0 for inaccurate performance, or the indicated 
incentive for accurate performance) for 1 s. Accurate perfor-
mance was defined as being with ± 3 of the true numerosity.

Parameter estimation and model comparison

To model the behavioral data (subjective magnitude reports, 
denoted by y), we assume that the sensory signal m is gener-
ated from mean � = log x , where x is the true numerosity. 
The log transformation captures diminishing sensitivity for 
larger magnitudes (i.e., the Weber-Fechner law; Dehaene 
2003). Likewise, the prior is represented on the log scale: 
�0 = �[log�].

We model subjective magnitude reports as exponential 
transformations of the logarithmic posterior mean estimates, 
corrupted by zero-mean Gaussian response noise with vari-
ance τ:

Marginalizing over the latent sensory signal m yields:

We use the reduced-form parametrization α =β /κ because 
β and κ only influence the signal sensitivity via their ratio. 
When incentive is varied across discrete conditions, we fit a 
separate value of α for each condition.3 Thus, for condition 
n, the optimal precision is �∗

n
= 2�n − �0 , with the constraint 

αn ≥ λ0/2. We set μ0 and λ0 to match the mean and precision 
(respectively) of the log-transformed numerosities for each 
block of trials.

We will refer to the model described above as the 
Rational Inattention (RI) model. Its free parameters are 𝜃 = 
(τ,α1:N), where α1:N is the set of attentional parameters for N 
different incentive conditions (in our experiment, N = 2). We 
compared it to the following alternative models:

• Fixed Precision (FP): the Bayesian estimator with fixed 
sensory precision (λ treated as a free parameter rather 
than endogenized based on α) and leak. Free parameters 
are 𝜃 = (τ,λ).

• Non-Bayesian (NB): numerosity judgments are noisy lin-
ear functions of the sensory signal m, log y|m ∼ N(am, �) , 
where a ∈ ℝ . In this model, the prior mean plays no role. 
Marginalizing over m yields: log y ∼ N(an�, a

2
n
∕� + �) , 

where we allow different signal weights for each incen-
tive condition. Free parameters are 𝜃 = (a1:N,τ,λ).

(13)log y|m ∼ N(�̂�, 𝜏).

(14)log y ∼ N(w� + (1 − w)�0,w
2∕� + �).

To fit the model to data, we searched for parameters 𝜃 that 
maximize the log-likelihood of the data for each subject sepa-
rately. The maximum likelihood estimates were obtained using 
a non-linear optimization routine with 5 random starting points. 
To compare models, we used random-effects Bayesian model 
selection (Rigoux et al., 2014), which estimates the frequency 
of each model in the population based on the log model evi-
dence (marginal likelihood), which we approximated using the 
Bayesian information criterion (BIC; Bishop, 2006):

where y is the collection of numerosity estimates. This 
approximation is asymptotically correct in the limit of many 
samples, where the posterior concentrates on the maximum 
likelihood estimate.

Results

Rational inattention makes several predictions, which we 
tested using our data set. First, performance should be better 
when incentives are high compared to when they are low. 
The expected squared error is given by:

Recall that α is the ratio of the attentional incentive (β) 
to the attentional cost (κ). We assume that α increases with 
incentive; we directly verify this hypothesis below. Since 
expected error is monotonically decreasing in α, it is also 
monotonically decreasing in incentive. This prediction was 
confirmed in our data set, as shown in Fig. 2a: the squared 
error was significantly larger in the low incentive condition 
[t(369) = 4.02,p < 0.0001].

Second, rational inattention predicts that variance of 
(signed) errors should be higher for lower incentives, due 
to the fact that mental precision (λ) is lower. This prediction 
was confirmed in our data set, as shown in Fig. 2b: the error 
variance was significantly larger in the low incentive condi-
tion [t(369) = 3.04, p < 0.005].

Third, rational inattention predicts that confidence should 
be higher under high incentives. There are a number of ways 
to formalize confidence (for an application to numerosity 
estimation, see Xiang et al., 2021), but in general confidence 
will increase in mental precision (λ), which increases with 
incentive. This prediction was confirmed in our data set, as 
shown in Fig. 2c: confidence was significantly larger in the 
high incentive condition [t(369) = 8.55, p < 0.0001].

Finally, rational inattention predicts that there should be a 
weaker central tendency effect (influence of the prior mean) 
under high incentives. Following Xiang et al., (2021), we quan-
tified the central tendency effect using a linear mixed-effects 
model with terms for the true stimulus on each trial, prior 

(15)logP(�) = ∫
�
P(�|�)P(�)d� ≈ −

1

2
BIC,

(16)�[(𝜇 − �̂�)2] =
1

𝜆+𝜆0
=

1

2𝛼
.

3 Note that because payoffs depend on a hard distance thresh-
old, our experimental design is not completely compatible with 
our assumption that reward is a differentiable function of squared 
error. However, we chose to overlook this nuance in order to retain 
analytical tractability.
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mean on each block, and the interaction between prior mean 
and incentive (coded as − 1 for low and + 1 for high). This 
analysis revealed significantly positive coefficients for stimulus 
[F(1,87249) = 4538.8, p < 0.0001] and prior mean [F(1,87249) 
= 8.6678, p < 0.005], indicating an overall central tendency 
effect. Critically, the interaction coefficient was significantly 
negative [F(1,87249) = 26.47, p < 0.0001], indicating that the 
central tendency effect diminished when incentives were higher.

To more quantitatively evaluate the Rational Inattention (RI) 
model, we compared it to two other models described above: 

the Fixed Precision model (FP) and the Non-Bayesian model 
(NB). The FP model is identical to the RI model, except that 
it assumes a fixed mental precision rather than adaptive preci-
sion. The NB model has a similar functional form to the FP 
model but ignores the prior and does not use the posterior to 
determine the signal weight. The log Bayes factors (differences 
in log model evidence for two models) decisively favored the RI 
model (Fig. 3a). Random-effects Bayesian model comparison 
produced a protected exceedance probability indistinguishable 
from 1, indicating a very high posterior probability that the RI 

Fig. 2  Behavioral results in the numerosity estimation task. A Squared error. B Error variance. C Confidence. Error bars show within-subject 
standard error of the mean

Fig. 3  Modeling results. A Log Bayes factors for the Rational Inattention (RI) and Fixed Precision (FP) models compared to the Non-Bayesian 
(NB) model. B Fitted α parameter for each incentive condition. Error bars show within-subject standard error of the mean
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model is the most frequent model in the population. As shown 
in Fig. 3b, the fitted α parameter in the RI model was signifi-
cantly larger in the high incentive condition compared to the 
low incentive condition [t(369) = 2.77, p < 0.01], supporting 
our claim that the benefit/cost ratio is sensitive to our incentive 
manipulation, putatively driving the effects of squared error, 
error variance, and confidence detailed above.

Discussion

The idea that uncertainty may be under mental control unifies 
many disparate observations from economics, psychology, and 
neuroscience. Rational inattention provides a formal framework 
for thinking about uncertainty endogenously rather than exog-
enously (the standard approach in cognitive science). Using 
magnitude estimation as a tractable case study, we developed a 
detailed mathematical model and tested its predictions experi-
mentally with a numerosity estimation task. In particular, we 
found that subjects were more accurate, reliable, and confident 
when performance incentives were higher, supporting the view 
that mental uncertainty can be endogenously reduced when 
potential payoffs outweigh the attentional costs. Quantitative 
model fitting and comparison supported these conclusions.

Our findings from the numerosity estimation task are con-
sistent with a recent study of numerosity discrimination, where 
subjects had to judge which display contained more elements 
(Dix and Li, 2020). The researchers found that accuracy was 
increased when incentives were larger, consistent with the 
rational inattention account. One advantage of our estimation 
task is that it is more straightforward to formalize using the 
rational inattention model (see Hébert & Woodford 2019, for 
an application to two-alternative forced choice tasks).

More broadly, rational inattention fits with a constellation 
of hypotheses that suggest how mental effort can be adaptively 
allocated based on task demands and incentives (Shenhav 
et al., 2017; Kool & Botvinick, 2018). For example, people 
will engage in more effortful thinking—such as planning 
(Kool et al., 2016; Kool et al., 2017) and storing information 
in memory (Kool & Botvinick, 2012; Westbrook & Braver, 
2015)—when incentives are larger. Uncertainty may thus be 
one among many dials in the brain that are managed by con-
trol processes based on a cost-benefit analysis.
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