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1. Introduction

How many classes should I use in my mixture model? How
many factors should I use in factor analysis? These questions
regularly exercise scientists as they explore their data. Most sci-
entists address them by first fitting several models, with differ-
ent numbers of clusters or factors, and then selecting one using
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model comparisonmetrics (Claeskens & Hjort, 2008). Model selec-
tion metrics usually include two terms. The first term measures
how well the model fits the data. The second term, a complexity
penalty, favors simpler models (i.e., ones with fewer components
or factors).

Bayesian nonparametric (BNP) models provide a different
approach to this problem (Hjort, Holmes, Müller, & Walker, 2010).
Rather than comparing models that vary in complexity, the BNP
approach is to fit a single model that can adapt its complexity to
the data. Furthermore, BNP models allow the complexity to grow
as more data are observed, such as when using a model to perform
prediction. For example, consider the problem of clustering data.
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The traditional mixture modeling approach to clustering requires
the number of clusters to be specified in advance of analyzing the
data. The Bayesian nonparametric approach estimates how many
clusters are needed to model the observed data and allows future
data to exhibit previously unseen clusters.1

Using BNP models to analyze data follows the blueprint for
Bayesian data analysis in general (Gelman, Carlin, Stern, & Rubin,
2004). Each model expresses a generative process of the data that
includes hidden variables. This process articulates the statistical
assumptions that the model makes, and also specifies the joint
probability distribution of the hidden and observed random
variables. Given an observed data set, data analysis is performed
by posterior inference, computing the conditional distribution of
the hidden variables given the observed data. Loosely, posterior
inference is akin to ‘‘reversing’’ the generative process to find
the distribution of the hidden structure that likely generated
the observed data. What distinguishes Bayesian nonparametric
models from other Bayesian models is that the hidden structure is
assumed to grow with the data. Its complexity, e.g., the number
of mixture components or the number of factors, is part of the
posterior distribution. Rather than needing to be specified in
advance, it is determined as part of analyzing the data.

In this tutorial, we survey Bayesian nonparametric methods.
We focus on Bayesian nonparametric extensions of two common
models, mixture models and latent factor models. As we men-
tioned above, traditional mixture models group data into a pre-
specified number of latent clusters. The Bayesian nonparametric
mixture model, which is called a Chinese restaurant process mix-
ture (or a Dirichlet process mixture), infers the number of clusters
from the data and allows the number of clusters to grow as new
data points are observed.

Latent factor models decompose observed data into a linear
combination of latent factors. Different assumptions about the
distribution of factors lead to variants such as factor analysis,
principal component analysis, independent component analysis,
and others. As for mixtures, a limitation of latent factor models is
that the number of factorsmust be specified in advance. The Indian
buffet process latent factor model (or Beta process latent factor
model) infers the number of factors from the data and allows the
number of factors to grow as new data points are observed.

We focus on these two types of models because they have
served as the basis for a flexible suite of BNP models. Models
that are built on BNP mixtures or latent factor models include
those tailored for sequential data (Beal, Ghahramani, & Rasmussen,
2002; Fox, Sudderth, Jordan, &Willsky, 2008, 2009; Paisley & Carin,
2009), grouped data (Navarro, Griffiths, Steyvers, & Lee, 2006; Teh,
Jordan, Beal, & Blei, 2006), data in a tree (Johnson, Griffiths, &
Goldwater, 2007; Liang, Petrov, Jordan, & Klein, 2007), relational
data (Kemp, Tenenbaum, Griffiths, Yamada, & Ueda, 2006; Miller,
Griffiths, & Jordan, 2009;Navarro&Griffiths, 2008) and spatial data
(Duan, Guindani, & Gelfand, 2007; Gelfand, Kottas, & MacEachern,
2005; Sudderth & Jordan, 2009).

This tutorial is organized as follows. In Sections 2 and 3, we
describe mixture and latent factor models in more detail, starting
from finite-capacity versions and then extending these to their
infinite-capacity counterparts. In Section 4, we summarize the

1 The origins of these methods are in the distribution of randommeasures called
theDirichlet process (Antoniak, 1974; Ferguson, 1973), whichwas developedmainly
for mathematical interest. These models were dubbed ‘‘Bayesian nonparametric’’
because they place a prior on the infinite-dimensional space of random measures.
With the maturity of Markov chain Monte Carlo sampling methods, nearly twenty
years later, Dirichlet processes became a practical statistical tool (Escobar & West,
1995). Bayesian nonparametric modeling is enjoying a renaissance in statistics and
machine learning; we focus here on their application to latent component models,
which is one of their central applications. We describe their formal mathematical
foundations in Appendix A.

standard algorithms for inference in mixture and latent factor
models. Finally, in Section 5, we describe several limitations and
extensions of these models. In Appendix A, we detail some of the
mathematical and statistical foundations of BNP models.

We hope to demonstrate how Bayesian nonparametric data
analysis provides a flexible alternative to traditional Bayesian (and
non-Bayesian) modeling. We give examples of BNP analysis of
published psychological studies, and we point the reader to the
available software for performing her own analyses.

2. Mixture models and clustering

In a mixture model, each observed data point is assumed to
belong to a cluster. In posterior inference, we infer a grouping or
clustering of the data under these assumptions—this amounts to
inferring both the identities of the clusters and the assignments
of the data to them. Mixture models are used for understanding
the group structure of a data set and for flexibly estimating the
distribution of a population.

For concreteness, consider the problem of modeling response
time (RT) distributions. Psychologists believe that several cognitive
processes contribute to producing behavioral responses (Luce,
1986), and therefore it is a scientifically relevant question how
to decompose observed RTs into their underlying components.
The generative model we describe below expresses one possible
process by which latent causes (e.g., cognitive processes) might
give rise to observed data (e.g., RTs).2 Using Bayes’ rule, we can
invert the generative model to recover a distribution over the
possible set of latent causes of our observations. The inferred latent
causes are commonly known as ‘‘clusters’’.

2.1. Finite mixture modeling

One approach to this problem is finite mixture modeling. A
finite mixture model assumes that there are K clusters, each
associated with a parameter ✓k. Each observation yn is assumed
to be generated by first choosing a cluster cn according to
P(cn) and then generating the observation from its corresponding
observation distribution parameterized by ✓cn . In the RT modeling
problem, each observation is a scalar RT and each cluster specifies
a hypothetical distribution F(yn|✓cn) over the observed RT.3

Finite mixtures can accommodate many kinds of data by
changing the data generating distribution. For example, in a
Gaussian mixture model the data – conditioned on knowing their
cluster assignments – are assumed to be drawn from a Gaussian
distribution. The cluster parameters ✓k are the means of the
components (assuming known variances). Fig. 1 illustrates data
drawn from a Gaussian mixture with four clusters.

Bayesian mixture models further contain a prior over the
mixing distribution P(c), and a prior over the cluster parameters:
✓ ⇠ G0. (We denote the prior over cluster parameters G0 to later

2 A number of papers in the psychology literature have adopted a mixture model
approach to modeling RTs (e.g., Ratcliff & Tuerlinckx, 2002; Wagenmakers, van der
Maas, Dolan, &Grasman, 2008). It isworth noting that the decomposition of RTs into
constituent cognitive processes performed by the mixture model is fundamentally
different from the diffusion model analysis (Ratcliff & Rouder, 1998), which has
become the gold standard in psychology and neuroscience. In the diffusion model,
behavioral effects are explained in terms of variations in the underlying parameters
of themodel, whereas themixturemodel attempts to explain these effects in terms
of different latent causes governing each response.
3 The interpretation of a cluster as a psychological process must be made with

caution. In our example, the hypothesis is that some number of cognitive processes
produces the RT data, and the mixture model provides a characterization of the
cognitive process under that hypothesis. Further scientific experimentation is
required to validate the existence of these processes and their causal relationship
to behavior.
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Fig. 1. Draws from a Gaussian mixture model. Ellipses show the standard deviation
contour for each mixture component.

make a connection to BNPmixture models.) In a Gaussianmixture,
for example, it is computationally convenient to choose the cluster
parameter prior to be Gaussian. A convenient choice for the
distribution on the mixing distribution is a Dirichlet. We will build
on fully Bayesian mixture modeling when we discuss Bayesian
nonparametric mixture models.

This generative process defines a joint distribution over the
observations, cluster assignments, and cluster parameters,

P(y, c, ✓) =
KY

k=1

G0(✓k)
NY

n=1

F(yn|✓cn)P(cn), (1)

where the observations are y = {y1, . . . , yN}, the cluster assign-
ments are c = {c1, . . . , cN}, and the cluster parameters are ✓ =
{✓1, . . . , ✓K }. The product over n follows from assuming that each
observation is conditionally independent given its latent cluster
assignment and the cluster parameters. Returning to the RT exam-
ple, the RTs are assumed to be independent of each other once we
know which cluster generated each RT and the parameters of the
latent clusters.

Given a data set, we are usually interested in the cluster assign-
ments, i.e., a grouping of the data.4 We can use Bayes’ rule to cal-
culate the posterior probability of assignments given the data:

P(c|y) = P(y|c)P(c)P
c

P(y|c)P(c)
, (2)

where the likelihood is obtained by marginalizing over settings
of ✓ :

P(y|c) =
Z

✓

"
NY

n=1

F(y|✓cn)
KY

k=1

G0(✓k)

#

d✓ . (3)

A G0 that is conjugate to F allows this integral to be calculated
analytically. For example, the Gaussian is the conjugate prior to a
Gaussian with fixed variance, and this is why it is computationally
convenient to select G0 to be Gaussian in a mixture of Gaussians
model.

The posterior over assignments is intractable because comput-
ing the denominator (marginal likelihood) requires summing over
every possible partition of the data into K groups. (This problem

4 Under the Dirichlet prior, the assignment vector c = [1, 2, 2] has the same
probability as c = [2, 1, 1]. That is, these vectors are equivalent up to a ‘‘label
switch’’. Generally, we do not care about what particular labels are associated
with each class; rather, we care about partitions—equivalence classes of assignment
vectors that preserve the same groupings but ignore labels.

becomes more salient in the next section, where we consider the
limiting case K ! 1.) We can use approximate methods, such
as Markov chain Monte Carlo (McLachlan & Peel, 2000) or varia-
tional inference (Attias, 2000); thesemethods are discussed further
in Section 4.

2.2. The Chinese restaurant process

When we analyze data with the finite mixture of Eq. (1), we
must specify the number of latent clusters (e.g., hypothetical
cognitive processes) in advance. In many data analysis settings,
however, we do not know this number and would like to learn it
from the data. BNP clustering addresses this problem by assuming
that there is an infinite number of latent clusters, but that a
finite number of them is used to generate the observed data.
Under these assumptions, the posterior provides a distribution
over the number of clusters, the assignment of data to clusters,
and the parameters associated with each cluster. Furthermore, the
predictive distribution, i.e., the distribution of the next data point,
allows for new data to be assigned to a previously unseen cluster.

The BNP approach finesses the problem of choosing the number
of clusters by assuming that it is infinite, while specifying the prior
over infinite groupings P(c) in such a way that it favors assigning
data to a small number of groups. The prior over groupings is
called the Chinese restaurant process (CRP; Aldous, 1985; Pitman,
2002), a distribution over infinite partitions of the integers; this
distribution was independently discovered by Anderson (1991) in
the context of his rational model of categorization (see Section 6.1
formore discussion of psychological implications). The CRP derives
its name from the following metaphor. Imagine a restaurant with
an infinite number of tables,5 and imagine a sequence of customers
entering the restaurant and sitting down. The first customer enters
and sits at the first table. The second customer enters and sits
at the first table with probability 1

1+↵
, and the second table with

probability ↵
1+↵

, where ↵ is a positive real. When the nth customer
enters the restaurant, she sits at each of the occupied tables with
probability proportional to the number of previous customers
sitting there, and at the next unoccupied table with probability
proportional to ↵. At any point in this process, the assignment of
customers to tables defines a random partition. A schematic of this
process is shown in Fig. 2.

More formally, let cn be the table assignment of the nth cus-
tomer. A draw from this distribution can be generated by sequen-
tially assigning observations to classes with probability

P(cn = k|c1:n�1)

=

8
>>>><

>>>>:

mk

n � 1 + ↵
if k  K+

(i.e., k is a previously occupied table)
↵

n � 1 + ↵
otherwise

(i.e., k is the next unoccupied table)

(4)

where mk is the number of customers sitting at table k, and K+ is
the number of tables for which mk > 0. The parameter ↵ is called
the concentration parameter. Intuitively, a larger value of ↵ will
produce more occupied tables (and fewer customers per table).

The CRP exhibits an important invariance property: the cluster
assignments under this distribution are exchangeable. This means
that p(c) is unchanged if the order of customers is shuffled (up to
label changes). This may seem counter-intuitive at first, since the
process in Eq. (4) is described sequentially.

5 The Chinese restaurant metaphor is due to Pitman and Dubins, who were
inspired by the seemingly infinite seating capacity of Chinese restaurants in San
Francisco.
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Fig. 2. The Chinese restaurant process. The generative process of the CRP, where numbered diamonds represent customers, attached to their corresponding observations
(shaded circles). The large circles represent tables (clusters) in the CRP and their associated parameters (✓ ). Note that technically the parameter values {✓} are not part of
the CRP per se, but rather belong to the full mixture model.

Consider the joint distribution of a set of customer assignments
c1:N . It decomposes according to the chain rule,

p(c1, c2, . . . , cN)

= p(c1)p(c2 | c1)p(c3 | c1, c2) · · · p(cN | c1, c2, . . . , cN�1), (5)

where each terms comes from Eq. (4). To show that this distribu-
tion is exchangeable, we will introduce some new notation. Let
K(c1:N) be the number of groups in which these assignments place
the customers, which is a number between 1 and N . (Below, we
will suppress its dependence on c1:N .) Let Ik be the set of indices of
customers assigned to the kth group, and let Nk be the number of
customers assigned to that group (i.e., the cardinality of Ik).

Now, examine the product of terms in Eq. (5) that correspond
to the customers in group k. This product is

↵ · 1 · 2 · · · (Nk � 1)
(Ik,1 � 1 + ↵)(Ik,2 � 1 + ↵) · · · (Ik,N � 1 + ↵)

. (6)

To see this, notice that the first customer in group k contributes
probability ↵

Ik,1�1+↵
because he is starting a new table, the second

customer contributes probability 1
Ik,2�1+↵

because he is sitting
a table with one customer at it, the third customer contributes
probability 2

Ik,3�1+↵
, and so on. The numerator of Eq. (6) can be

more succinctly written as ↵(Nk � 1)!
With this expression, we now rewrite the joint distribution in

Eq. (5) as a product over per-group terms,

p(c1:N) =
KY

k=1

↵(Nk � 1)!
(Ik,1 � 1 + ↵)(Ik,2 � 1 + ↵) · · · (Ik,Nk � 1 + ↵)

. (7)

Finally, notice that the union of Ik across all groups k identifies
each index once, because each customer is assigned to exactly one
group. This simplifies the denominator and lets us write the joint
as

p(c1:N) =
↵K

KQ
k=1

(Nk � 1)!
NQ
i=1

(i � 1 + ↵)

. (8)

Eq. (8) reveals that Eq. (5) is exchangeable. It only depends on the
number of groups K and the size of each group Nk. The probability
of a particular seating configuration c1:N does not depend on the
order in which the customers arrived.

2.3. Chinese restaurant process mixture models

The BNP clustering model uses the CRP in an infinite-capacity
mixture model (Anderson, 1991; Antoniak, 1974; Escobar & West,
1995; Rasmussen, 2000). Each table k is associated with a cluster
and with a cluster parameter ✓k, drawn from a prior G0. We
emphasize that there are an infinite number of clusters, though
a finite data set only exhibits a finite number of active clusters.
Each data point is a ‘‘customer’’, who sits at a table cn and then

Response time (log sec)
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Fig. 3. Response time modeling with the CRP mixture model. An example
distribution of response times from a two-alternative forced-choice decision
making experiment (Simen et al., 2009). Colors denote clusters inferred by 100
iterations of Gibbs sampling.

draws its observed value from the distribution F(yn|✓cn). The
concentration parameter ↵ controls the prior expected number
of clusters (i.e., occupied tables) K+. In particular, this number
grows logarithmically with the number of customers N: E[K+] =
↵ logN (for↵ < N/ logN). If↵ is treated as unknown, one can put a
hyperprior over it and use the same Bayesianmachinery discussed
in Section 4 to infer its value.

Returning to the RT example, the CRP allows us to place a prior
over partitions of RTs into the hypothetical cognitive processes that
generated them, without committing in advance to a particular
number of processes. As in the finite setting, each process k is
associated with a set of parameters ✓k specifying the distribution
over RTs (e.g., the mean of a Gaussian for log-transformed RTs).
Fig. 3 shows the clustering of RTs obtained by approximating the
posterior of the CRP mixture model using Gibbs sampling (see
Section 4); in this figure, the cluster assignments from a single
sample are shown. These data were collected in an experiment on
two-alternative forced-choice decisionmaking (Simen et al., 2009).
Notice that themodel captures the two primarymodes of the data,
as well as a small number of left-skewed outliers.

By examining the posterior over partitions, we can infer the
assignment of RTs to hypothetical cognitive processes and the
number of hypothetical processes. In addition, the (approximate)
posterior provides a measure of confidence in any particular
clustering, without committing to a single cluster assignment.
Notice that the number of clusters can grow as more data are
observed. This is a natural regime for many scientific applications,
and it makes the CRP mixture robust to new data that is far away
from the original observations.

When we analyze data with a CRP, we form an approximation
of the joint posterior over all latent variables and parameters.
In practice, there are two uses for this posterior. One is to
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examine the likely partitioning of the data. This gives us a sense
of how data are grouped, and how many groups the CRP model
chose to use. The second use is to form predictions with the
posterior predictive distribution.With a CRPmixture, the posterior
predictive distribution is

P(yn+1|y1:n) =
X

c1:n+1

Z

✓

P(yn+1|cn+1, ✓)

⇥ P(cn+1|c1:n)P(c1:n, ✓ |y1:n)d✓ . (9)

Since the CRP prior, P(cn+1|c1:n), appears in the predictive
distribution, the CRP mixture allows new data to possibly exhibit
a previously unseen cluster.

3. Latent factor models and dimensionality reduction

Mixturemodels assume that each observation is assigned to one
of K components. Latent factor models weaken this assumption:
each observation is influenced by each of K components in a
different way (see Comrey & Lee, 1992, for an overview). These
models have a long history in psychology and psychometrics
(Pearson, 1901; Thurstone, 1931), and one of their first applications
was to modeling human intelligence (Spearman, 1904). We will
return to this application shortly.

Latent factor models provide dimensionality reduction in the
(usual) case when the number of components is smaller than the
dimension of the data. Each observation is associated with a vector
of component activations (latent factors) that describes howmuch
each component contributes to it, and this vector can be seen as a
lower dimensional representation of the observation itself. When
fit to data, the components parsimoniously capture the primary
modes of variation in the observations.

The most popular of these models—factor analysis (FA), princi-
pal component analysis (PCA) and independent component anal-
ysis (ICA)—all assume that the number of factors (K ) is known.
The Bayesian nonparametric variant of latent factor models we de-
scribe below, allows the number of factors to grow as more data
are observed. As with the BNP mixture model, the posterior distri-
bution provides both the properties of the latent factors and how
many are exhibited in the data.6

In classical factor analysis, the observed data is a collection of N
vectors, Y = {y1, . . . , yN}, each of which areM-dimensional. Thus,
Y is a matrix where rows correspond to observations and columns
correspond to observed dimensions. The data (e.g., intelligence test
scores) are assumed to be generated by a noisy weighted combina-
tion of latent factors (e.g., underlying intelligence faculties):

yn = Gxn + ✏n, (10)

where G is a M ⇥ K factor loading matrix expressing how latent
factor k influences observation dimensionm, xn is a K -dimensional
vector expressing the activity of each latent factor, and ✏n is a vec-
tor of independent Gaussian noise terms.7 We can extend this to a
sparse model by decomposing the factor loading into the product
of two components: Gmk = zmkwmk, where zmk is a binary ‘‘mask’’
variable that indicates whether factor k is ‘‘on’’ (zmk = 1) or ‘‘off’’
(zmk = 0) for dimension m, and wmk is a continuous weight vari-
able. This is sometimes called a ‘‘spike and slab’’ model (Ishwaran
& Rao, 2005; Mitchell & Beauchamp, 1988) because the marginal

6 Historically, psychologists have explored a variety of rotation methods for
enforcing sparsity and interpretability in FA solutions, starting with early work
summarized by Thurstone (1947). Many recent methods are reviewed by Browne
(2001). The Bayesian approach we adopt differs from these methods by specifying
a preference for certain kinds of solutions in terms of the prior.
7 The assumption of Gaussian noise in Eq. (10) is not fundamental to the latent

factor model, but is the most common choice of noise distribution.

distribution over xmk is a mixture of a (typically Gaussian) ‘‘slab’’
P(wmk) over the space of latent factors and a ‘‘spike’’ at zero,
P(zmk = 0).

We take a Bayesian approach to inferring the latent factors,
mask variables, and weights. We place priors over them and use
Bayes’ rule to compute the posterior P(G, Z,W|Y). In contrast,
classical techniques like ICA, FA and PCA fit point estimates of the
parameters (typically maximum likelihood estimates).

As mentioned above, a classic application of factor analysis in
psychology is to the modeling of human intelligence (Spearman,
1904). Spearman (1904) argued that there exists a general
intelligence factor (the so-called g-factor) that can be extracted
by applying classical factor analysis methods to intelligence test
data. Spearman’s hypothesis was motivated by the observation
that scores on different tests tend to be correlated: participants
who score highly on one test are likely to score highly on another.
However, several researchers have disputed the notion that this
pattern arises from a unitary intelligence construct, arguing that
intelligence consists of amultiplicity of components (Gould, 1981).
Althoughwe do not aspire to resolve this controversy, the question
of how many factors underlie human intelligence is a convenient
testbed for the BNP factor analysis model described below.

Since in reality the number of latent intelligence factors is
unknown, we would like to avoid specifying K and instead allow
the data to determine the number of factors. Following the model
proposed by Knowles and Ghahramani (2011), Z is a binary matrix
with a finite number of rows (each corresponding to an intelligence
measure) and an infinite number of columns (each corresponding
to a latent factor).

Like the CRP, the infinite-capacity distribution over Z has been
furnished with a similarly colorful culinary metaphor, dubbed the
Indian buffet process (IBP; Griffiths & Ghahramani, 2005, 2011). A
customer (dimension) enters a buffet with an infinite number of
dishes (factors) arranged in a line. The probability that a customer
m samples dish k (i.e., sets zmk = 1) is proportional to its popularity
hk (the number of prior customers who have sampled the dish).
When the customer has considered all the previously sampled
dishes (i.e., those for which hk > 0), she samples an additional
Poisson(↵/N) dishes that have never been sampled before. When
all M customers have navigated the buffet, the resulting binary
matrix Z (encoding which customers sampled which dishes) is a
draw from the IBP.

The IBP plays the same role for latent factor models that the
CRP plays for mixture models: it functions as an infinite-capacity
prior over the space of latent variables, allowing an unbounded
number of latent factors (Knowles & Ghahramani, 2011). Whereas
in the CRP, each observation is associated with only one latent
component, in the IBP each observation (or, in the factor analysis
model described above, each dimension) is associated with a
theoretically infinite number of latent components.8 A schematic
of the IBP is shown in Fig. 4. Comparing to Fig. 2, the key difference
between the CRP and the IBP is that in the CRP, each customer sits
at a single table, whereas in the IBP, a customer can sample several
dishes. This difference is illustrated in Fig. 5, which shows random
draws from both models side-by-side.

Returning to the intelligence modeling example, posterior
inference in the infinite latent factor model yields a distribution
over matrices of latent factors which describe hypothetical
intelligence structures:
P(X,W, Z|Y) / P(Y|X,W, Z)P(X)P(W)P(Z). (11)
Exact inference is intractable because the normalizing constant
requires a sum over all possible binary matrices. However, we can

8 Most of these latent factorswill be ‘‘off’’ because the IBPpreserves the sparsity of
the finite Beta-Bernoulli prior (Griffiths&Ghahramani, 2005). The degree of sparsity
is controlled by ↵: for larger values, more latent factors will tend to be active.
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Fig. 4. The Indian buffet process. The generative process of the IBP, where numbered diamonds represent customers, attached to their corresponding observations (shaded
circles). Large circles represent dishes (factors) in the IBP, along with their associated parameters ('). Each customer selects several dishes, and each customer’s observation
(in the latent factor model) is a linear combination of the selected dish’s parameters. Note that technically the parameter values {�} are not part of the IBP per se, but rather
belong to the full latent factor model.

Fig. 5. Draws from the CRP and IBP. (Left) Random draw from the Chinese restaurant process. (Right) Random draw from the Indian buffet process. In the CRP, each customer
is assigned to a single component. In the IBP, a customer can be assigned to multiple components.

approximate the posterior using one of the techniques described
in the next section (e.g., with a set of samples). Given posterior
samples of Z, one typically examines the highest-probability
sample (themaximum a posteriori, or MAP, estimate) to get a sense
of the latent factor structure. As with the CRP, if one is interested
in predicting some function of Z, then it is best to average this
function over the samples.

Fig. 6 shows the results of the IBP factor analysis applied to
data collected by Kane et al. (2004). We consider the 13 reasoning
tasks administered to 234 participants. The left panel displays
a histogram of the factor counts (the number of times zmk = 1
across posterior samples). This plot indicates that the dataset is
best described by a combination of around 4 � 7 factors; although
this is obviously not a conclusive argument against the existence
of a general intelligence factor, it suggests that additional factors
merit further investigation. The right panel displays the first factor
loading from the IBP factor analysis plotted against the g-factor,

demonstrating that the nonparametric method is able to extract a
structure consistent with classical methods.9

4. Inference

Wehave described two classes of BNPmodels—mixturemodels
based on the CRP and latent factor models based on the IBP.
Both types of models posit a generative probabilistic process of
a collection of observed (and future) data that includes hidden
structure. We analyze data with these models by examining
the posterior distribution of the hidden structure given the
observations; this gives us a distribution over which latent
structure likely generated our data.

9 It is worth noting that the field of intelligence research has developed its
methods far beyond Spearman’s g-factor. In particular, hierarchical factor analysis
is now in common use. See Kane et al. (2004) for an example.
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Fig. 6. IBP factor analysis of human performance on reasoning tasks. (Left) Histogram of the number of latent factors inferred by Gibbs sampling applied to reasoning task data
from Kane et al. (2004). 1000 samples were generated, and the first 500 were discarded as burn-in. (Right) Relationship between the loading of the first factor inferred by
IBP factor analysis and Spearman’s g (i.e., the loading of the first factor inferred by classical factor analysis; Spearman, 1904).

Fig. 7. Inference in a Chinese restaurant process mixture model. The approximate predictive distribution given by variational inference at different stages of the algorithm.
The data are 100 points generated by a Gaussian DP mixture model with fixed diagonal covariance.
Source: Figure reproduced with permission from Blei and Jordan (2006).

Thus, the basic computational problem in BNP modeling (as in
most of Bayesian statistics) is computing the posterior. For many
interestingmodels, including those discussed here, the posterior is
not available in closed form. There are severalways to approximate
it. While a comprehensive treatment of inference methods in BNP
models is beyond the scope of this tutorial, we will describe some
of the most widely-used algorithms. In Appendix B, we provide
links to software packages implementing these algorithms.

The most widely used posterior inference methods in Bayesian
nonparametric models are Markov Chain Monte Carlo (MCMC)
methods. The idea MCMC methods is to define a Markov chain
on the hidden variables that has the posterior as its equilibrium
distribution (Andrieu, De Freitas, Doucet, & Jordan, 2003). By
drawing samples from this Markov chain, one eventually obtains
samples from the posterior. A simple form of MCMC sampling
is Gibbs sampling, where the Markov chain is constructed
by considering the conditional distribution of each hidden
variable given the others and the observations. Thanks to the
exchangeability property described in Section 2.2, CRP mixtures
are particularly amenable to Gibbs sampling—in considering the
conditional distributions, each observation can be considered to be
the ‘‘last’’ one and the distribution of Eq. (4) can be used as one term
of the conditional distribution. (The other term is the likelihood
of the observations under each partition.) Neal (2000) provides an
excellent survey of Gibbs sampling and other MCMC algorithms
for inference in CRP mixture models (see also Escobar & West,
1995; Fearnhead, 2004; Ishwaran & James, 2001; Jain &Neal, 2004;
Rasmussen, 2000; Wood & Griffiths, 2007). Gibbs sampling for the
IBP factor analysis model is described in Knowles and Ghahramani
(2011).

MCMC methods, although guaranteed to converge to the
posterior with enough samples, have two drawbacks: (1) the
samplers must be run for many iterations before convergence and
(2) it is difficult to assess convergence. An alternative approach
to approximating the posterior is variational inference (Jordan,
Ghahramani, Jaakkola, & Saul, 1999). This approach is based on
the idea of approximating the posterior with a simpler family of
distributions and searching for the member of that family that is
closest to it.10 Although variational methods are not guaranteed
to recover the true posterior (unless it belongs to the simple
family of distributions), they are typically faster than MCMC and
convergence assessment is straightforward. These methods have
been applied to CRPmixturemodels (Blei & Jordan, 2006; Kurihara,
Welling, & Teh, 2007, see Fig. 7 for an example) and IBP latent
factor models (Doshi-Velez, Miller, Berkeley, Van Gael, & Teh,
2009; Paisley, Zaas, Woods, Ginsburg, & Carin, 2010). We note
that variational inference usually operates on a random measure
representation of CRP mixtures and IBP factor models, which are
described in Appendix A. Gibbs samplers that operate on this
representation are also available (Ishwaran & James, 2001).

As we mentioned in the introduction, BNP methods provide
an alternative to model selection over a parameterized family
of models.11 In effect, both MCMC and variational strategies
for posterior inference provide a data-directed mechanism for

10 Distance between probability distributions in this setting is measured by the
Kullback–Leibler divergence (relative entropy).
11 The Journal of Mathematical Psychology has published two special issues
(Myung, Forster, & Browne, 2000; Wagenmakers & Waldorp, 2006) on model
selection which review a broad array of model selection techniques (both Bayesian
and non-Bayesian).
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simultaneously searching the space of models and finding optimal
parameters. This is convenient in settings like mixture modeling
or factor analysis because we avoid needing to fit models for each
candidate number of components. It is essential in more complex
settings, where the algorithm searches over a space that is difficult
to efficiently enumerate and explore.

5. Limitations and extensions

We have described the most widely used BNP models, but this
is only the tip of the iceberg. In this section we highlight some
key limitations of the models described above, and the extensions
that have been developed to address these limitations. It is worth
mentioning here that we cannot do full justice to the variety of
BNP models that have been developed over the past 40 years;
we have omitted many exciting and widely-used ideas, such as
Pitman–Yor processes, gamma processes, Dirichlet diffusion trees
and Kingman’s coalescent. To learnmore about these ideas, see the
recent volume edited by Hjort et al. (2010).

5.1. Hierarchical structure

The first limitation concerns grouped data: how can we capture
both commonalities and idiosyncrasies across individuals within
a group? For example, members of an animal species will tend
to be similar to each other, but also unique in certain ways.
The standard Bayesian approach to this problem is based on
hierarchical models (Gelman et al., 2004), in which individuals
are coupled by virtue of being drawn from the same group-level
distribution.12 The parameters of this distribution govern both
the characteristics of the group and the degree of coupling. In
the nonparametric setting, hierarchical extensions of the Dirichlet
process (Teh et al., 2006) and beta process (Thibaux & Jordan,
2007) have been developed, allowing an infinite number of latent
components to be shared by multiple individuals. For example,
hierarchical Dirichlet processes can be applied to modeling text
documents, where each document is represented by an infinite
mixture of word distributions (‘‘topics’’) that are shared across
documents.

Returning to the RT example from Section 2, imaginemeasuring
RTs for several subjects. The goal again is to infer which underlying
cognitive process generated each response time. Suppose we
assume that the same cognitive processes are shared across
subjects, but they may occur in different proportions. This is
precisely the kind of structure the HDP can capture.

5.2. Time series models

The second limitation concerns sequential data: how can
we capture dependencies between observations arriving in a
sequence? One of the most well-known models for capturing
such dependencies is the hidden Markov model (see, e.g., Bishop,
2006), in which the latent class for observation n depends on the
latent class for observation n � 1. The infinite hidden Markov
model (HMM; Beal et al., 2002; Paisley & Carin, 2009; Teh et al.,
2006) posits the same sequential structure, but employs an infinite
number of latent classes. Teh et al. (2006) showed that the infinite
HMM is a special case of the hierarchical Dirichlet process.

As an alternative to the HMM (which assumes a discrete latent
state), a linear dynamical system (also known as an autoregressive
moving averagemodel) assumes that the latent state is continuous

12 See also the recent issue of Journal of Mathematical Psychology (Volume 55,
Issue 1) devoted to hierarchical Bayesian models. Lee (2010) provides an overview
for cognitive psychologists.

and evolves over time according to a linear-Gaussian Markov
process. In a switching linear dynamical system, the system can
have a number of dynamical modes; this allows the marginal
transition distribution to be non-linear. Fox et al. (2008) have
explored nonparametric variants of switching linear dynamical
systems, where the number of dynamical modes is inferred from
the data using an HDP prior.

5.3. Spatial models

Another type of dependency arising in many datasets is spatial.
For example, one expects that if a disease occurs in one location, it
is also likely to occur in a nearby location. One way to capture such
dependencies in a BNPmodel is tomake the base distribution G0 of
the DP dependent on a location variable (Duan et al., 2007; Gelfand
et al., 2005). In the field of computer vision, Sudderth and Jordan
(2009) have applied a spatially-coupled generalization of the DP to
the task of image segmentation, allowing them to encode a prior
bias that nearby pixels belong to the same segment.

We note in passing a burgeoning area of research attempting
to devise more general specifications of dependencies in BNP
models, particularly for DPs (Blei & Frazier, 2010; Griffin & Steel,
2006; MacEachern, 1999). These dependencies could be arbitrary
functions defined over a set of covariates (e.g., age, income,
weight). For example, peoplewith similar age andweight will tend
to have similar risks for certain diseases.

More recently, several authors have attempted to apply
these ideas to the IBP and latent factor models (Doshi-Velez &
Ghahramani, 2009; Miller, Griffiths, & Jordan, 2008; Williamson,
Orbanz, & Ghahramani, 2010).

5.4. Supervised learning

We have restricted ourselves to a discussion of unsupervised
learning problems, where the goal is to discover hidden structure
in data. In supervised learning, the goal is to predict some output
variable given a set of input variables (covariates). When the
output variable is continuous, this corresponds to regression; when
the output variable is discrete, this corresponds to classification.

For many supervised learning problems, the outputs are non-
linear functions of the inputs. The BNP approach to this problem is
to place a prior distribution (known as a Gaussian process) directly
over the space of non-linear functions, rather than specifying
a parametric family of non-linear functions and placing priors
over their parameters. Supervised learning proceeds by posterior
inference over functions using the Gaussian process prior. The
output of inference is itself a Gaussian process, characterized by
a mean function and a covariance function (analogous to a mean
vector and covariance matrix in parametric Gaussian models).
Given a new set of inputs, the posterior Gaussian process induces a
predictive distribution over outputs. Although we do not discuss
this approach further, Rasmussen and Williams (2006) is an
excellent textbook on this topic.

Recently, another nonparametric approach to supervised learn-
ing has been developed, based on the CRPmixturemodel (Hannah,
Blei, & Powell, 2010; Shahbaba & Neal, 2009). The idea is to place a
DPmixture prior over the inputs and thenmodel themean function
of the outputs as conditionally linear within each mixture compo-
nent (see alsoMeeds & Osindero, 2006; Rasmussen & Ghahramani,
2002, for related approaches). The result is a marginally non-linear
model of the outputs with linear sub-structure. Intuitively, each
mixture component isolates a region of the input space andmodels
themean output linearlywithin that region. This is an example of a
generative approach to supervised learning, where the joint distri-
bution over both the inputs and outputs ismodeled. In contrast, the
Gaussian process approach described above is a discriminative ap-
proach, modeling only the conditional distribution of the outputs
given the inputs.



S.J. Gershman, D.M. Blei / Journal of Mathematical Psychology 56 (2012) 1–12 9

6. Conclusions

BNP models are an emerging set of statistical tools for building
flexible models whose structure grows and adapts to data. In
this tutorial, we have reviewed the basics of BNP modeling and
illustrated their potential in scientific problems.

It is worth noting here that while BNPmodels address the prob-
lem of choosing the number of mixture components or latent fac-
tors, they are not a general solution to themodel selection problem
which has received extensive attention within mathematical psy-
chology and other disciplines (see Claeskens & Hjort, 2008, for a
comprehensive treatment). In some cases, it may be preferable to
place a prior over finite-capacity models and then compare Bayes
factors (Kass & Raftery, 1995; Vanpaemel, 2010), or to use selection
criteria motivated by other theoretical frameworks, such as infor-
mation theory (Grünwald, 2007).

6.1. Bayesian nonparametric models of cognition

We have treated BNP models purely as a data analysis tool.
However, there is a flourishing tradition of work in cognitive
psychology on using BNP models as theories of cognition. The
earliest example dates back to Anderson (1991), who argued
that a version of the CRP mixture model could explain human
categorization behavior. The idea in this model is that humans
adaptively learn the number of categories from their observations.
A number of recent authors have extended this work (Griffiths,
Canini, Sanborn, & Navarro, 2007; Heller, Sanborn, & Chater,
2009; Sanborn, Griffiths, & Navarro, 2010) and applied it to other
domains, such as classical conditioning (Gershman, Blei, & Niv,
2010).

The IBP has also been applied to human cognition. In particular,
Austerweil and Griffiths (2009a) argued that humans decompose
visual stimuli into latent features in a manner consistent with
the IBP. When the parts that compose objects strongly covary
across objects, humans treat whole objects as features, whereas
individual parts are treated as features if the covariance is weak.
This finding is consistent with the idea that the number of inferred
features changes flexibly with the data.

BNP models have been fruitfully applied in several other
domains, including word segmentation (Goldwater, Griffiths, &
Johnson, 2009), relational theory acquisition (Kemp, Tenenbaum,
Niyogi, & Griffiths, 2010) and function learning (Austerweil &
Griffiths, 2009b).

6.2. Suggestions for further reading

A recent edited volume by Hjort et al. (2010) is a useful
resource on applied Bayesian nonparametrics. For a more general
introduction to statistical machine learning with probabilistic
models, see Bishop (2006). For a review of applied Bayesian
statistics, see Gelman et al. (2004).
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Appendix A. Foundations

We have developed BNP methods via the CRP and IBP, both of
which are priors over combinatorial structures (infinite partitions
and infinite binary matrices). These are the easiest first ways
to understand this class of models, but their mathematical
foundations are found in constructions of random distributions. In
this section, we review this perspective of the CRPmixture and IBP
factor model.

The Dirichlet process

The Dirichlet process (DP) is a distribution over distributions. It
is parameterized by a concentration parameter ↵ > 0 and a base
distribution G0, which is a distribution over a space ⇥ . A random
variable drawn from a DP is itself a distribution over ⇥ . A random
distribution G drawn from a DP is denoted G ⇠ DP(↵,G0).

The DP was first developed in Ferguson (1973), who showed
its existence by appealing to its finite dimensional distributions.
Consider a measurable partition of ⇥, {T1, . . . , TK }.13 If G ⇠
DP(↵,G0) then every measurable partition of ⇥ is Dirichlet-
distributed,

(G(T1), . . . ,G(TK )) ⇠ Dir(↵G0(T1), . . . ,↵G0(TK )). (12)

This means that if we draw a random distribution from the DP
and add up the probability mass in a region T 2 ⇥ , then there
will on average be G0(T ) mass in that region. The concentration
parameter plays the role of an inverse variance; for higher values of
↵, the random probability mass G(T )will concentrate more tightly
around G0(T ).

Ferguson (1973) proved two properties of the Dirichlet process.
The first property is that random distributions drawn from the
Dirichlet process are discrete. They place their probability mass on
a countably infinite collection of points, called ‘‘atoms’’,

G =
1X

k=1

⇡k�✓⇤
k
. (13)

In this equation, ⇡k is the probability assigned to the kth atom and
✓⇤
k is the location or value of that atom. Further, these atoms are

drawn independently from the base distribution G0.
The second property connects the Dirichlet process to the

Chinese restaurant process. Consider a random distribution drawn
from a DP followed by repeated draws from that random
distribution,

G ⇠ DP(↵,G0) (14)
✓i ⇠ G i 2 {1, . . . , n}. (15)

Ferguson (1973) examined the joint distribution of ✓1:n, which is
obtained by marginalizing out the random distribution G,

p(✓1, . . . , ✓n | ↵,G0) =
Z  

nY

i=1

p(✓i | G)

!

dP(G | ↵,G0). (16)

He showed that, under this joint distribution, the ✓i will exhibit a
clustering property—they will share repeated values with positive
probability. (Note that, for example, repeated draws from a
Gaussian do not exhibit this property.) The structure of shared
values defines a partition of the integers from 1 to n, and the
distribution of this partition is a Chinese restaurant process with
parameter ↵. Finally, he showed that the unique values of ✓i shared
among the variables are independent draws from G0.

13 A partition of ⇥ defines a collection of subsets whose union is ⇥ . A partition is
measurable if it is closed under complementation and countable union.
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Fig. 8. Stick-breaking construction. Procedure for generating ⇡ by breaking a stick
of length 1 into segments. Inset shows the beta distribution fromwhich�k is drawn,
for different values of ↵.

Note that this is another way to confirm that the DP assumes
exchangeability of ✓1:n. In the foundations of Bayesian statistics,
De Finetti’s representation theorem (De Finetti, 1931) says that an
exchangeable collection of random variables can be represented
as a conditionally independent collection: first, draw a data gen-
erating distribution from a prior over distributions; then draw
random variables independently from that data generating distri-
bution. This reasoning in Eq. (16) shows that ✓1:n are exchangeable.
(For a detailed discussion of De Finetti’s representation theorems,
see Bernardo and Smith (1994).)

Dirichlet process mixtures
A DP mixture adds a third step to the model above Antoniak

(1974),
G ⇠ DP(↵,G0) (17)
✓i ⇠ G (18)
xi ⇠ p(· | ✓i). (19)
Marginalizing out G reveals that the DP mixture is equivalent to a
CRP mixture. Good Gibbs sampling algorithms for DP mixtures are
based on this representation (Escobar & West, 1995; Neal, 2000).

The stick-breaking construction
Ferguson (1973) proved that the DP exists via its finite dimen-

sional distributions. Sethuraman (1994) provided amore construc-
tive definition based on the stick-breaking representation (Fig. 8).

Consider a stick with unit length. We divide the stick into an
infinite number of segments ⇡k by the following process. First,
choose a beta random variable �1 ⇠ beta(1, ↵) and break of �1
of the stick. For each remaining segment, choose another beta
distributed random variable, and break off that proportion of
the remainder of the stick. This gives us an infinite collection of
weights ⇡k,
�k ⇠ Beta(1, ↵) (20)

⇡k = �k

k�1Y

j=1

(1 � �j) k = 1, 2, 3, . . . . (21)

Finally, we construct a random distribution using Eq. (13), where
we take an infinite number of draws from a base distribution G0
and draw the weights as in Eq. (21). Sethuraman (1994) showed
that the distribution of this random distribution is a DP(↵,G0).

This representation of the Dirichlet process, and its correspond-
ing use in a Dirichlet process mixture, allows us to compute a vari-
ety of functions of posterior DPs (Gelfand & Kottas, 2002) and is the
basis for the variational approach to approximate inference (Blei &
Jordan, 2006).

The beta process and Bernoulli process

Latent factormodels admit a similar analysis (Thibaux & Jordan,
2007).Wedefine the randommeasureB as a set ofweighted atoms:

B =
KX

k=1

wk�✓k , (22)

where wk 2 (0, 1) and the atoms {✓k} are drawn from a base
measure B0 on ⇥ . Note that in this case (in contrast to the DP), the
sumof theweights does not sum to 1 (almost surely), whichmeans
that B is not a probability measure. Analogously to the DP, we
can define a ‘‘distribution on distributions’’ for random measures
withweights between 0 and 1—namely the beta process, whichwe
denote by B ⇠ BP(↵, B0). Unlike the DP (which we could define
in terms of Dirichlet-distributed marginals), the beta process
cannot be defined in terms of beta-distributed marginals. A formal
definition requires an excursion into the theory of completely
random measures, which would take us beyond the scope of this
Appendix (see Thibaux & Jordan, 2007).

To build a latent factor model from the beta process, we define
a new randommeasure

Xn =
KX

k=1

znk��k , (23)

where znk ⇠ Bernoulli(wk). The randommeasure Xn is then said to
be distributed according to a Bernoulli process with base measure
B, written as Xn ⇠ BeP(B). A draw from a Bernoulli process places
unit mass on atoms for which znk = 1; this defines which latent
factors are ‘‘on’’ for the nth observation.N draws from the Bernoulli
process yield an IBP-distributed binary matrix Z, as shown by
Thibaux and Jordan (2007).

In the context of factor analysis, the factor loading matrix G is
generated from this process by first drawing the atoms and their
weights from the beta process, and then constructing each G by
turning on a subset of these atoms according to a draw from the
Bernoulli process. Finally, observation yn is generated according to
Eq. (10).

Stick breaking construction of the beta process
A ‘‘double-use’’ of the same breakpoints � leads to a stick-

breaking construction of the beta process (Teh, Görür, & Ghahra-
mani, 2007); see also Paisley et al. (2010). In this case, the weights
correspond to the length of the remaining stick, rather than the
length of the segment that was just broken off: ⇡k = Qk

j=1(1��j).

The infinite limit of finite models

In this section, we show BNP models can be derived by taking
the infinite limit of a corresponding finite-capacity model. For
mixture models, we assume that the class assignments z were
drawn from a multinomial distribution with parameters ⇡ = {⇡1,
. . . , ⇡K }, and place a symmetric Dirichlet distribution with
concentration parameter ↵ on ⇡ . The finite mixture model can be
summarized as follows:
⇡ |↵ ⇠ Dir(↵), zn|⇡ ⇠ ⇡

✓k|G0 ⇠ G0, yn|zn, ✓ ⇠ F(✓zn). (24)
When K ! 1, this mixture converges to a Dirichlet process mix-
ture model (Ishwaran & Zarepour, 2002; Neal, 1992; Rasmussen,
2000).

To construct a finite latent factor model, we assume that each
mask variable is drawn from the following two-stage generative
process:
wk|↵ ⇠ Beta(↵/K , 1) (25)
znk|wk ⇠ Bernoulli(wk). (26)

samuel
This should read: Dir(alpha/K)
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Table B.1

Software packages implementing various Bayesian nonparametric models.

Model Algorithm Language Author Link

CRP mixture model MCMC Matlab Jacob Eisenstein http://people.csail.mit.edu/jacobe/software.html
CRP mixture model MCMC R Matthew Shotwell http://cran.r-project.org/web/packages/profdpm/index.html
CRP mixture model Variational Matlab Kenichi Kurihara http://sites.google.com/site/kenichikurihara/academic-software
IBP latent factor model MCMC Matlab David Knowles http://mlg.eng.cam.ac.uk/dave
IBP latent factor model Variational Matlab Finale Doshi-Velez http://people.csail.mit.edu/finale/new-

wiki/doku.php?id=publications_posters_presentations_code

Intuitively, this generative process corresponds to creating a bent
coin with bias wk, and then flipping it N times to determine
whether to activate factors {z1k, . . . , zNk}. Griffiths and Ghahra-
mani (2005) showed that taking the limit of this model as K ! 1
yields the IBP latent factor model.

Appendix B. Software packages

We present a table (Table B.1) of several available software
packages implementing the models presented in the main text.
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