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Abstract

Our understanding of probabilistic inference in the brain has progressed rapidly. However,
there remains a big gap between the relatively simple probabilistic inference problems facing
low-level sensory systems and the intractably complex problems facing high-level cognitive sys-
tems. Psychologists have begun exploring cognitively plausible algorithms for approximately
solving complex inference problems. We review recent attempts to connect these algorithmic
accounts to neural circuit mechanisms, and argue that neural mechanisms for solving low-level
sensory inference problems can be extended to tackle complex inference problems.
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1 Introduction

Sensory receptors collect a limited amount of noisy data, from which the brain must reconstruct
the external world. This problem is fundamentally ambiguous; for example, the image of an object
projected on the retina is equally consistent with a small object close to the eye and a large object far
away from the eye. To resolve such ambiguities, an ideal observer should combine sensory data with
prior knowledge (e.g., the typical sizes of objects) through the application of Bayes’ rule. However,
these constraints still do not fully resolve all ambiguities—uncertainty is an irreducible facet of
information processing. The brain’s reconstruction of the external world explicitly represents its
uncertainty in the form of probability distributions over internal models. Understanding the nature
of these representations and how they are computed is the goal of a vigorous program of research
[1].

Much of the theoretical neuroscience research on “simple” (low-dimensional and analytically tractable)
probabilistic inference has focused on low-level perceptual domains such as multi-sensory cue inte-
gration and motion perception (e.g., [2, 3, 4]). While the same principles apply, at least in theory,
to higher-level cognitive domains, the increase in complexity of the internal models poses daunting
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computational challenges. The intractability of probabilistic inference in even modestly complex
models necessitates approximations, which means that the kinds of mechanisms previously proposed
for probabilistic inference in low-level neural systems (mostly based on exact inference schemes)
may not be appropriate for high-level cognition. It is not clear how these neural mechanisms can
be “scaled up” to the kinds of domains that cognitive psychologists study. Nonetheless, we know
that complex inference pervades these domains [5], and is also an inherent part of basic sensory
processing in visual and auditory cortex, as we illustrate below. A variety of neural schemes for
complex inference have been proposed [6, 7, 8, 9, 10], but so far these have made relatively little
contact with the rich literature on psychological mechanisms.

We attempt to bridge the gap between neural mechanisms for simple inference and psychological
mechanisms for complex inference. We begin by briefly reviewing evidence for complex inference,
using examples of both low-level sensory processing and high-level cognition. We then describe the
algorithmic challenges facing complex probabilistic inference. These challenges have been tackled
in the machine learning literature by using two families of techniques: Monte Carlo approximations
[11], which replace the exact posterior with a set of stochastically generated samples, and varia-
tional approximations [12], which replace the exact posterior with a tractable surrogate distribution
optimized to be as close as possible to the exact posterior. Both families have been explored as
psychologically plausible mechanistic models of probabilistic inference [13]. Finally, we discuss at-
tempts to implement these techniques in neural circuits, and the experimental evidence supporting
di↵erent implementation schemes.

2 Tractable algorithmic approaches to complex inference

Given data D, Bayes’ rule stipulates how to convert prior beliefs P (Z) about latent variable Z into
posterior beliefs P (Z|D):

P (Z|D) =
P (D|Z)P (Z)

P (D)
, (1)

where P (D|Z) is the likelihood of data D conditional on latent variable Z. For example, D might
be an image patch (corrupted by sensory noise) and Z is the orientation of an edge in the patch.
When the image contrast is higher (lower sensory noise), or the display is viewed for longer (evidence
accumulation), the likelihood of the data under the true orientation increases. The prior encodes the
distribution of oriented edges in natural images (e.g., cardinal orientations are more common than
oblique orientations). Taken together, the prior and likelihood can be understood as constituting a
generative model—a recipe for generating observed data from latent variables. Bayes’ rule inverts
this generative model to produce a belief about the latent variables after observing data.

Bayesian models have been applied to a wide variety of perceptual phenomena [14, 15], and form
the cornerstone of signal detection theory [16]. The same principles, applied to di↵erent generative
models, have been used to explain more complex cognitive phenomena, such as causal reasoning
[17], semantic memory [18], language processing [19], and concept learning [20, 21, 22]. One hall-
mark of these models is that they are complex : the latent variables are high dimensional and
often combinatorial. As a consequence, exactly computing Bayes’ rule is intractable. Below, we
summarize several tractable algorithmic approximations.
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2.1 Monte Carlo methods

By drawing a set of samples {Zn}Nn=1

from the posterior distribution, the posterior probability
density can then be approximated as an empirical point-mass function:

P (Z|D) ⇡ 1

N

NX

n=1

�[Zn, Z], (2)

where �[·, ·] = 1 if its arguments are equal, and 0 otherwise (for simplicity our exposition uses
discrete distributions, but applies with minor modifications to the continuous case). As the number
of samples N approaches infinity, the posterior is approximated to arbitrary accuracy.

The key challenge in applying Monte Carlo methods to Bayesian inference is generating the sam-
ples, since the posterior cannot be sampled directly. Most approaches involve sampling from an
alternative distribution from which an approximate posterior can be constructed. We will focus
on the two most widely used approaches: importance sampling and Markov chain Monte Carlo

(MCMC).

The idea behind importance sampling is to sample from a proposal distribution �(Z) and then
weight the samples according to their “importance”:

P (Z|D) ⇡ 1

N

NX

n=1

wn�[Zn, Z] (3)

wn
t / P (D|Zn)P (Zn)

�(Zn)
. (4)

When the proposal is equal to the prior, �(Z) = P (Z), importance sampling reduces to likelihood
weighting: wn / P (D|Zn). Particle filtering is a form of importance sampling applied to sequen-
tially structured models. For example, in a hidden Markov model, the latent variable at time t
depends on its state at time t � 1 through the transition distribution P (Zt|Zt�1

, and the obser-
vations at time t are generated conditional on Zt through an observation distribution P (Dt|Zt).
Particle filtering samples Zn

t ⇠ �(·) and applies the importance sampling equation recursively:

P (Zt|D1:t) ⇡
1

N

NX

n=1

wn
t �[Z

n
t , Zt] (5)

wn
t / wn

t�1

P (Dt|Zn
t )P (Zn

t |Zn
t�1

)

�(Zn
t )

, (6)

where D
1:t denotes the set of observations {D

1

, . . . , Dt}. Analogously to the general importance
sampling method, sampling from the transition distribution yields likelihood weighting: wn

t /
wn
t�1

P (Dt|Zn
t ).The success of importance sampling of particle filtering depends crucially on the

proposal distribution; the prior or transition distribution is not in general the optimal choice. A
common pitfall is degeneracy, where most weights go to zero and the e↵ective sample size shrinks
accordingly. This occurs when the proposal distribution focuses on a region of the hypothesis
space that has low posterior probability, such that few samples land in regions of high posterior
probability, and these samples end up dominating the Monte Carlo approximation.
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Particle filters have been successfully applied to problems with dynamical structure like object
tracking [23] and robot navigation [24]. However, for problems with complex static structure they
are less widely applied, and static importance sampling methods will often fail on these problems
due to the di�culty in specifying a good proposal distribution. MCMC methods can overcome this
limitation to some extent by making local stochastic updates to hypothesis samples. The basic
idea is to construct a Markov chain whose stationary distribution is the posterior. One generic way
to do this, known as the Metropolis-Hastings algorithm [25], is to draw samples from a proposal
distribution �(Zn|Zn�1) and accept the proposal with probability

A = min


1,

P (D|Zn)P (Zn)�(Zn�1|Zn)

P (D|Zn�1)P (Zn�1)�(Zn|Zn�1)

�
. (7)

If the proposal is rejected, Zn = Zn�1. Importantly, the proposal distribution can make local
modifications to Zn�1. When the proposal distribution is symmetric, �(Zn�1|Zn) = �(Zn|Zn�1),
the acceptance function simplifies to:

A = min


1,

P (D|Zn)P (Zn)

P (D|Zn�1)P (Zn�1)

�
. (8)

Intuitively, this equation says that proposals that increase the joint probability will be determin-
istically accepted, but proposals that decrease the joint probability can also be accepted with
some probability. Writing the acceptance function in this way allows us to draw a connection
between Metropolis-Hastings and an important stochastic optimization algorithm known as simu-

lated annealing [26], which raises the joint probability to a power 1/T , where T is a “temperature”
parameter emulating the temperature in a thermodynamic system. When T > 1, the posterior is
overdispersed, and when T < 1, the posterior is underdispersed. By decreasing T as a function of n
(according to an annealing schedule), the equilibrium distribution will collapse onto the mode of the
posterior. High initial temperatures serve the purpose of facilitating exploration of the hypothesis
space without getting stuck in local optima.

A special case of Metropolis-Hastings, known as Gibbs sampling [27], draws iteratively from the
conditional distribution P (Zn

i |Z
n�1

C(i) ) where i indexes one variable (or a collection of variables) in

Z and C(i) denotes the set of other variables upon which Zi depends probabilistically (formally,
the “Markov blanket” of Zi). Gibbs sampling is one of the most widely used MCMC methods, and
will appear again in our discussion of psychological and neural mechanisms.

Note that while importance sampling and particle filtering represent multiple hypotheses simul-

taneously, MCMC methods typically represent hypotheses sequentially. This sequential structure
is dictated by the algorithmic dynamics, rather than the structure of the probabilistic model as
in particle filtering (although the model structure will also have an influence on the dynamics of
MCMC). Recent work has explored ways to meld these approaches, by considering an ensemble of
samples that can evolve according to a Markov chain [28].

2.2 Variational methods

Monte Carlo methods can be viewed as “nonparametric” in the sense that the posterior approx-
imation does not have a fixed structure: the “complexity” of the approximation grows with the
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number of samples. This flexibility comes with asymptotically vanishing approximation error, but
at possibly great computational expense. An alternative approach is to consider approximations
belonging to some parametric family, and choose the parameters that make the approximation as
similar as possible to the true posterior. If the posterior does not belong to the parametric family,
then approximation error will never vanish, but the optimal parametric approximation may be
su�ciently good and computationally cheaper than sampling.

Variational methods [12] provide a principled framework for choosing a parametric approximation,
by formulating inference as an optimization problem. Let Q(Z) be a parametrized distribution
belonging to family Q. The most widely used variational method chooses Q(Z) to minimize the
Kullback-Leibler (KL) divergence between Q(Z) and P (Z|D):

KL[Q(Z)||P (Z|D)] =
X

Z

Q(Z) log
Q(Z)

P (Z|D)
. (9)

When Q(Z) is chosen to factorize over variables (or groups of variables), Q(Z) =
Q

iQi(Zi), this
optimization problem is known as mean-field variational inference. Another approach is to optimize
the opposite KL divergence, KL[P (Z|D)||Q(Z)]; this leads to expectation propagation [29].

Optimizing the KL divergence is not itself tractable, since it is a function of the true posterior.
However, minimizing KL[Q(Z)||P (Z|D)] is equivalent to maximizing a lower bound L[Q] on the
log marginal likelihood (or “evidence”), logP (Z), using the following relation:

logZ = L[Q] + KL[Q(Z)||P (Z|D)] (10)

L[Q] =
X

Z

Q(Z) log
P (D|Z)P (Z)

Q(Z)
. (11)

Notice that the evidence lower bound L[Q] depends only on the joint probability of Z and D, and
hence is tractable to compute. Moreover, when the factors of Q(Z) are in the same conjugate-
exponential family as P (D,Z), then L[Q] can be optimized via closed-form coordinate ascent
updates (we present an example below).

3 Psychological mechanisms

Both Monte Carlo and variational algorithms have been proposed as psychologically plausible mech-
anisms for probabilistic inference [13], although Monte Carlo algorithms have received much more
attention and thus will be our focus in this section. Broadly speaking, the psychological evidence
for Monte Carlo algorithms falls into 3 categories: (1) stochasticity, (2) dynamics, and (3) re-
source constraints. It should be noted at the outset, however, that these sources of evidence may
not decisively discriminate between Monte Carlo and variational algorithms. While the evidence
for variational algorithms mostly comes from studies implicating particular parametric approxi-
mations, variational algorithms can also exhibit stochasticity [30, 31], as well as dynamics and
resource constraints resembling Monte Carlo methods. Because these di↵erent approaches have
rarely been directly compared to each other as models of psychological phenomena, discriminating
them empirically remains an open challenge.
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3.1 Stochasticity

Monte Carlo methods are inherently stochastic. One implication of this property is that mental
representations, and possibly also behavioral responses, should be stochastic. Bayesian sampling
specifically predicts that the stochasticity should reflect the posterior distribution: high probability
hypotheses should be sampled more often than low probability hypotheses. This is reminiscent of
“probability matching” in instrumental choice, the observation that humans and animals choose
actions with probability proportional to their payo↵s [32]. Indeed, evidence suggests that the visual
system also uses a probability matching strategy. Wozny et al. [33] studied location estimation
in an auditory-visual cue combination experiment, where probability matching predicts that the
distribution of location estimates should be bimodal when auditory and visual information conflict,
but importantly there will be some probability mass in between the two modes due to their over-
lapping distribution. Most participants’ estimates were consistent with this probability matching
strategy (see also [34, 35]). However, this assertion has been controversial, with some arguing, in
accordance with classical signal detection theory, that humans make Bayes-optimal perceptual deci-
sions [36]. Other evidence suggests that the stochastic representation of belief is a power function of
the posterior, such that the response rule is somewhere between probability matching and selecting
the posterior mode [37]. Probability matching has also been found in higher-level cognition. The
variability of children’s causal inferences matches the posterior distribution [38], and some evidence
from adult concept learning is also consistent with the probability matching hypothesis [20].

One important subtlety in considering probability matching is that the Monte Carlo methods do
not require that the decision rule is stochastic; it may be a deterministic function of the posterior
approximation. If the approximation is stochastic, then the decision rule will be a stochastic
function of the data. If enough samples are drawn, variability due to the Monte Carlo approximation
will eventually disappear, and decisions will appear deterministic as a function of data. It has been
argued that because sampling is costly and good decisions often do not require a high fidelity
approximation, only a small number of samples will typically be drawn, and therefore probability
matching will arise naturally even with a deterministic decision rule [39, 40].

A particularly interesting form of stochasticity arises in multistable perception, where conflicting
interpretations of sensory data alternately dominate the percept. The stochastic dynamics under-
lying multistable perception have been the subject of extensive study, and are characterized by a
richly varied phenomenology [41]. The most prominent example is binocular rivalry, where di↵erent
images are presented to each eye, resulting in one image dominating the percept at a time [42].
Gershman et al. [43] proposed a probabilistic model of binocular rivalry that used Gibbs sampling
to approximate the posterior. They showed that this model could explain not only switching be-
havior, but also traveling waves [44], the contrast-dependence of dominance durations [45], and the
conditions under which fused percepts will be observed [46, 47]. In related work, Moreno-Bote et
al. [48] showed how an attractor neural network implementing another form of MCMC (Langevin
Monte Carlo) could account for multistable perception of drifting gratings.

While stochasticity is a hallmark of Monte Carlo methods, it can also arise from other algorithms.
For example, stochastic optimization uses noise to explore the hypothesis space, but is not forming
an approximation of the posterior. Randomness in the initialization of otherwise deterministic
algorithms can also produce stochasticity that is not meaningfully related to approximate inference.
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In some cases, apparent stochasticity may even be an illusion; Beck et al. [49] have argued that
behavioral variability may be explained by suboptimal, deterministic inference algorithms. Thus,
interpretations of noise in terms of Monte Carlo sampling must be made with caution, an issue we
explore further below.

3.2 Dynamics and resource constraints

Particle filtering and MCMC exhibit conceptually di↵erent dynamics. Whereas particle filtering
involves multiple samples evolving as new data are collected, MCMC involves an individual sample
evolving over time given a fixed data set. Both forms of dynamics are constrained by the structure
of the probabilistic model. For example, Gershman et al. [43] showed how variations of the
underlying image model shaped the time course of binocular rivalry: altering spatial coupling of
neighboring nodes in the image increased the propagation time of traveling waves, consistent with
the data of Wilson et al. [44]. Similarly, the dynamics of particle filtering reflect the transition
structure of the probabilistic model. In multiple object tracking, for example, the set of represented
hypotheses (object identities) evolve in accordance with assumptions about object motion. When
these assumptions are violated, memory is impaired [50].

The number of samples in particle filtering can be used as a proxy for cognitive resource availability:
more resources translate to more samples. This form of explanation has been invoked to explain
failures of change detection [51], object tracking [50], category learning [52], and word segmenta-
tion [53]. Resource constraints can interact with across-trial dynamics; for example, the correct
hypotheses may not be represented in the ensemble if it is disfavored by data early in the sequence
and is therefore killed o↵ by resampling. This gives rise to “garden path” e↵ects in linguistics,
where sentences like “the horse raced past the barn fell” are di�cult to comprehend because the
correct parse is disfavored by the early data [54].

4 Neural implementations of probabilistic inference

We now turn to the question of how the brain might implement the approximate inference schemes
described above. We begin with a generic treatment of neural probability coding, and then con-
sider how sampling and variational algorithms could produce such codes in a biologically plausible
manner.

4.1 Coding and computation

There currently exist two (not necessarily mutually exclusive) hypotheses about the neural im-
plementation of probabilistic inference. The core distinctions between them concern how neurons
represent probability distributions and how cortical circuits approximate probabilistic inference.
Curiously, most (if not all) of the proposed neural implementations of probabilistic inference share
a common overall network structure. This is because networks used to implement inference mimic
the structure of the associated generative model. Figure 1 depicts this relationship. On the left
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Observations�

Generative model�

Latent 
variables�

Inference network�

rZ�

rA� rB�

rX� rY�Z�

A� B�

X� Y�

Inputs�

Populations 
of neurons�

Figure 1: Illustration of probabilistic inference with neurons. (Left) Generative model:
unshaded nodes represent latent variables, shaded nodes represent observed variables, and arrows
represent probabilistic dependencies. (Right) Inference network: nodes represent neural populations
and arrows represent pathways between populations.

is a generic directed graphical model. Here, nodes represent variables and arrows encode condi-
tional independence relationships. For example, the arrows from A and B to Y indicate that Y
is conditionally independent of all other variables given A and B. On the right is the associated
network for probabilistic inference. Here, a node is to be thought of as containing a population
neurons that represent marginal posterior distributions over the associated latent variable in the
generative model. Arrows going into a particular node tell us that in order to update the beliefs
about the associated latent variable we need information from the population of neurons that is at
the source of those the arrows. This relationship between generative models and inference networks
is most strongly associated with message passing algorithms for probabilistic inference on directed
graphical models, but is also a generic property of the vast majority of the approximate methods
used for performing probabilistic inference.

So while the structure of approximate probabilistic inference algorithms remains the same, what
di↵ers between competing hypotheses for neural implementations of probabilistic inference is (1)
the means by which probability distributions are represented and (2) the specific mathematical
details of the computations performed by the neural circuity. For example, consider a simple cue
combination or evidence integration task depicted in Figure 2. Here, S is the position of an object
while A and V are noisy representations of that position given either auditory or visual information.
In the neural network on the right, node rS represents a population of neurons used to represent
a probability distribution over position, and nodes rA and rV represent populations of neurons
encoding auditory and visual information (respectively) about position. For simplicity we will
assume that the sensory neurons (rA and rV ) encode a Gaussian likelihood over position so that

8



Observations�

Generative model�

Latent 
variable�

Inference network�

rS�

rA� rV�

S�
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representation of 
p(S|A,V)�

Figure 2: Multisensory cue combination. (Left) Generative model. S represents object position,
A represents auditory information about object position, and V represents visual information about
object position. (Right) Inference network.

as a function of the position S of the object we have

A|S ⇠ N (µA,�
2

A), (12)

V |S ⇠ N (µV ,�
2

V ). (13)

When this is the case, Bayes rule implies that the posterior over S given visual and auditory
information is also normally distributed and can be obtained by multiplying prior and likelihoods:

P (S|A, V ) / P (S)P (A|S)P (V |S). (14)

Now consider two neural representations of probability distributions: a labeled line probability
code [55] and a labeled line log probability code [2]. For the probability code, neural activity in
neuron i in a population rS is assumed to be proportional to the probability that the latent variable
encoded by that population takes on value Si. For the observed variables, the corresponding neuron
encodes the likelihood of the observed variables given S = Si. In the multisensory cue combination
example, this means:

P (S = Si|A, V ) / rSi (15)

P (A|S = Si) / rAi (16)

P (V |S = Si) / rVi (17)

P (S = Si) / rpriori . (18)

Since Bayes’ rule stipulates multiplication of probabilities, the network implementation of the prob-
ability code implies that the operation performed by neural circuits must also be a multiplication:

rSi = rAi r
V
i r

prior

i . (19)

In contrast, for a log probability code, neural activity in neuron i is proportional to the log likelihood
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or log probability:

logP (S = Si|A, V ) / rSi (20)

logP (A|S = Si) / rAi (21)

logP (V |S = Si) / rVi (22)

logP (S = Si) / rpriori . (23)

As previously stated, the choice of code does not change the structure of the network: Populations
representing the likelihoods in nodes A and B will drive the population pattern of activity in node
S. However, the choice of code does a↵ect the neural operations that these circuits must perform.
In the case of the log probability code, the circuit must perform a sum instead of a multiplication:

rSi = rAi + rVi + rpriori . (24)

It is worth nothing that this process could have been inverted: We could have started out by
assuming that the evidence integration or cue combination operation is implemented by neurons
that linearly combine their inputs, as has been observed in multisensory tasks such as [56] and
most famously in sequential evidence integration tasks [57, 4], and then asked what neural code
for probability distributions is consistent with that empirical observation. We would then have
concluded that neurons use a log probability code.

4.2 Sampling vs. parametric codes

The two neural representations probability distributions described above are simplified versions of
the two competing hypothesis for neural mechanisms of probabilistic inference—namely, sampling-
based (Monte Carlo) and parametric-based (variational) inference. Sampling schemes typically
assume that individual neurons can be labeled by the latent variable that that neuron represents.
For binary random variables, the spikes are often assumed to represent that random variable taking
on a value of 1, as in a Boltzmann machine [58, 59]. When dealing with continuous random variables,
it has been proposed that fluctuations in the underlying firing rate or membrane potential represent
samples [60, 61]. In much of the sampling literature, the specific details of the mechanisms by which
samples are generated are not investigated, and authors simply assume that the mechanism exists
and compare predictions from a particular sampling algorithm with observed neural responses.

There are, however, two notable exceptions. Buesing et al. [7] proposed a mapping between spikes
and samples that allows for the discrete nature of MCMC sampling to be implemented by continuous
time spiking dynamics of neurons. This was accomplished by setting a spike to be an indicator that
a particular binary latent variable took on the value of 1 at time t only if it occurred in the time
window [t � ⌧, t]. By introducing an additional latent variable (time since the last spike) for each
neuron they were able to show that this continuous time stochastic dynamical system is capable
of implementing MCMC sampling. This approach was generalized to multinomial latent variables
by Pecevski et al. [10]. Similarly, Savin and Deneve [62] mapped the naturally continuous time
dynamics of Langevin sampling onto a network of spiking neurons, using their previously published
method for reliably instantiating a continuous-time dynamical system with spiking neurons [63].
Both or these approaches are quite appealing in their generality; they can be used to approximate
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complex multivariate posteriors without assuming a parametric form of the posterior (see below).
Moreover, sampling-based schemes o↵er a natural explanation for neural variability. However, there
is currently no concrete proposal for the source of the precisely tuned noise which must be added
to neural dynamics in order to generate samples.

In contrast to sampling-based methods, parametric methods treat neural noise as a nuisance that is
e↵ectively eliminated by averaging over large populations of neurons jointly representing posterior
marginals. For example, Rao [64] proposed a neural implementation of the sum-product message
passing algorithm implemented in the log probability domain. He used an approximate expression
for the resulting log of a sum of exponentials to generate linear rate equations for approximate
inference. Beck et al. [65] proposed that neural activity is linearly related to the natural parameters
of posterior distributions. This is a generalization of the log probability code discussed above, as
it assumes that posterior marginals have an exponential family form:

P (S|⌘) = exp{⌘ · T (s)�A(⌘)}, (25)

where T (s) are the su�cient statistics of the distribution and A(⌘) is a normalizing constant. The
vector of natural parameters ⌘ is assumed to be linearly related to the firing rates of the neu-
rons that represent the posterior over S. In addition to being consistent with neural recordings,
it was shown by Beck et al. [65] that simple probabilistic computations such as those involved
coordinate transformation, auditory localization, object tracking (Kalman filtering), and cue com-
bination can all be implemented using physiologically observed circuit level operation such as linear
combination, coincidence detection, and divisive normalization. These circuit-level operations are
typically derived by determining update rules for the natural parameters of a particular Bayesian
computation.

In the same vein, Beck et al. [6] showed that when the posterior over multiple variables is ap-
proximated in a factorized form (i.e., a mean-field approximation), where each factor is in the
exponential family, then variational inference algorithms can be implemented by similar circuit-
level mechanisms. When applied to the problem of demixing odors, Beck et al. [6] demonstrated
that the update equations for learning the synaptic connections specifying each learned odor have
a simple Hebbian form. For the purposes of this chapter, the important insight o↵ered by Beck
et al. lies in the fact that complex multivariate posteriors can be approximated using the same
machinery as simple univariate posteriors by constructing a network whose structure mirrors the
factorization of the approximate posterior.

5 Conclusions and open questions

While Bayesian ideas have a long history in cognitive science, theoretical accounts are only begin-
ning to grapple with the computational complexities of their implementation [39]. Nonetheless,
some progress has been made, drawing heavily on advances in statistical machine learning. In
particular, we have shown how two influential ideas about approximate inference (sampling and
variational methods) have furnished plausible psychological hypotheses. Computational neurosci-
entists have been following a parallel path, exploring the biological implementation of sampling and
variational methods, but so far making relatively little contact with the psychological literature.
We see this is as the major frontier in the next generation of models.
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Several open questions loom large. First, can the psychological manifestations of approximate
inference (e.g., multistability, response variability, order e↵ects) be connected to the neural mani-
festations (e.g., spiking stochasticity, membrane fluctuations, network dynamics)? For example, it
is currently unknown whether variability in spiking activity is causally related to posterior proba-
bility matching [33, 38]. Second, does the brain contain a menagerie of approximation schemes, or
is there a “master algorithm” (e.g., a canonical microcircuit; [66]) that applies universally? If the
former, do di↵erent brain areas implement di↵erent approximations, or does the same area imple-
ment di↵erent approximations under di↵erent circumstances? One possibility is that the brain is
designed to flexibly exploit the strengths and weaknesses of di↵erent approximations. For example,
online approximations like particle filtering are well-suited to dynamical problems like object track-
ing, which is why some authors have proposed that such algorithms are used to make inferences
about dynamic stimuli [67, 68], whereas algorithms with internal dynamics like belief propagation
[64, 8, 9] and MCMC [43, 7, 62, 63] are better-suited to inference problems with complex static
structure, like parsing a visual image. Finally, there has been renewed interest in “amortized infer-
ence” schemes that use a single inference network to approximate multiple posteriors [69, 70, 71];
while there is some psychological evidence for this kind of approximation scheme [72], it is currently
unknown how amortization might be realized in a biologically plausible neural circuit (see [73] for
some clues).
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