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Abstract
Two views of Pavlovian conditioning have dominated the theoretical discourse. The classical associative view holds that
associations are learned based on temporal contiguity between stimuli, and conditioned responses directly reflect associative
strength. The representational view, exemplified by Rate Estimation Theory (Gallistel & Gibbon, Psychological Review,
107(2), 289–344 2000), holds that animals learn the structure of the stimulus distribution, fromwhich ameasure of contingency
between stimuli is derived and used to generate conditioned responses. Unlike contiguity, contingency is a relative measure,
comparing the rate of reinforcement in the presence of a stimulus to the background rate. This turns out to be crucial for
explaining the effects of manipulating the background rate while holding the stimulus-conditional rate constant (i.e., changing
contingency without changing contiguity). It has also been argued that contiguity theories face irremediable conceptual
difficulties stemming from the coercion of continuous time into discrete bins. This paper makes two contributions to the
debate. First, it shows that Rate Estimation Theory faces its own computational and conceptual problems. Second, it shows
how to fix these problemswhile retaining the core of the theory. Surprisingly, this leads to the insight that rates can be estimated
using an algorithm closely resembling a classical associative theory (the Rescorla-Wagner model). The key difference lies in
the response rule rather than in the learning rule.

Keywords Associative learning · Pavlovian conditioning · Bayesian inference

Introduction

The concept of association has played a central role in both
the psychology and neurobiology of learning, particularly
as applied to Pavlovian conditioning. In a typical Pavlo-
vian delay conditioningprotocol, a conditioned stimulus (CS,
such as a tone) is presented for some duration, after which an
unconditioned stimulus (US, such as a food pellet) is deliv-
ered. With repeated pairings, the animal comes to produce
a conditioned response (CR) to the CS (e.g., anticipatory
head entries into the feeder trough). This is commonly con-
sidered a paradigmatic example of associative learning—a
theory-laden descriptor of both the experimental protocol
and the underlying psychological/neurobiological process. It
implies that the animal produces a CR because it has formed
an association between the CS and the US, realized neurally
via synaptic plasticity.
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The idea that associations underlie conditioned respond-
ing is both deeply entrenched and deeply problematic, as
reviewed in the next section. An important alternative to the
associative view, championed by Gallistel and his colleagues
(Gallistel, 1990; Gallistel & Gibbon, 2000), is a representa-
tional view of learning, according to which animals acquire
and use facts about the structure of the stimulus distribution.
In the context of Pavlovian conditioning, this view posits that
animals estimate conditional rates (i.e., the number of USs
per unit of continuous time contributed by a particular stim-
ulus). In the model of Gallistel and Gibbon (2000), a CR is
generated when the CS rate exceeds the background rate by
some threshold. More recent work has conceptualized the
decision process in information-theoretic terms, where the
mutual information between the CS and the US formalizes
a notion of temporal contingency (Balsam et al., 2006; Bal-
sam & Gallistel, 2009; Ward et al., 2012; Gallistel et al.,
2014, 2019; Gallistel & Latham, 2023; Kalmbach et al.,
2019). These models have successfully explained a wealth
of quantitative data on conditioning (but see Bouton & Sun-
say, 2003; Harris et al., 2019; Austen & Sanderson, 2020, for
some empirical challenges). They have also overcome some
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of the conceptual challenges facing both association-based
models and prior definitions of contingency.

Despite their success, there are several important theo-
retical issues that need to be settled. One issue is how to
estimate the rates in a way that is both computationally plau-
sible and mathematically defensible. A second issue is how
to more rigorously relate the quantitative empirical laws of
conditioning to the predictions of the model. In this paper,
we address these two issues in a unified way, starting with
a new analysis of the rate estimation problem that yields a
simple error-driven learning algorithm. We then show how
the resulting rate estimates, when combined with a decision
rule, give rise to an important quantitative empirical law: the
timescale invariance of learning, as explained in the next sec-
tion. Finally, we quantitatively assess the model predictions
on several datasets.

From Contiguity to Contingency

In most associative theories of learning, temporal contiguity
between stimuli is a necessary condition for the formation of
an association. For this to bewell-defined, we need to specify
what counts as temporally contiguous—what is the critical
interstimulus interval? At first glance, there does seem to be a
critical interval, which differs across experimental protocols
(see Rescorla, 1988). For a given experimental protocol (see
Fig. 1 for an illustration), there is a particular CS-US interval
which produces the fastest CR acquisition, where acquisition
speed is typically measured as the inverse number of rein-
forcements until the CR rate meets an acquisition criterion. It
is important to note, however, that this assumes a fixed inter-
trial interval. If the intertrial interval is rescaled to maintain
a fixed ratio with the interstimulus interval, then the acquisi-
tion speed is constant across different interstimulus intervals,
a phenomenon known as timescale invariance (Gibbon et al.,
1977; Gallistel & Gibbon, 2000),1 Put another way, there is
no critical interstimulus interval. This fact seems devastating
for the claim that temporal contiguity is a necessary condition
for association formation and hence conditioned responding.

One possible remedy is to invoke cue competition. In addi-
tion to theCS,we can posit a constant “background” stimulus
which also forms an association with the US. The CR is
determined by the combination of CS and background asso-
ciations. The CS and background stimulus also compete with
one another during learning, such that credit for the US is
split between the CS and background stimulus. The intertrial
interval can then be viewed as an extinction period for the

1 Some studies have shown that timescale invariance breaks under some
circumstances (Lattal, 1999; Holland, 2000) but as pointed out byWard
et al. (2012), these results should be interpreted as caution, because their
dependent variable was not reinforcements to acquisition.

background stimulus, weakening its association and thereby
allowing theCS to takemore credit for theUS.Unfortunately,
this won’t (without further assumptions) solve the problem
of timescale invariance; the CS association is strengthened
and the background association is weakened, but these two
changes cancel each other out in the CR, which combines the
CS and background associative strengths.

The Rescorla-Wagner Model

To make the preceding point concrete, let’s look at the
most influential model of associative learning, the Rescorla-
Wagner model (Rescorla & Wagner, 1972). This model
operates in discrete time, so we need to divide continuous
time into bins of some size, which we index by n (we will
return to the issue of discrete vs. continuous time shortly).We
use r(n) ∈ {0, 1} to denote the US delivered at time n, and
r̂(n) to denote the model’s prediction of this US. The predic-
tion is a linear combination of stimulus associative strengths
wi (n) and the stimulus presence xi (n) ∈ {0, 1} for stimulus
i:

r̂(n) =
∑

i

wi (n)xi (n). (1)

We include in the set of stimuli a “background” stimu-
lus B which is constantly present; implicitly, xB(n) = 1 for
all n. The CR is typically assumed to be a monotonic func-
tion of the US prediction,.2 though it should be noted that
non-associative factors (e.g., habituation) can also affect the
CR (see, for example, Reiss & Wagner, 1972). Once r(n)

is observed, the associative strength is updated based on the
prediction error signal δ(n) = r(n) − r̂(n):

wi (n + 1) = wi (n) + αxi (n)δ(n), (2)

where α ∈ [0, 1] is a learning rate.3 We will study this model
in the simple setting where there is a single cue (which we
denote by i) along with the background stimulus b. Using
this simple model, we examine the effects of changing the
interstimulus and intertrial intervals on the US prediction
(and by extension the CR). If we define the acquisition crite-
rion as some fraction of the asymptotic US prediction, r̂(∞),

2 Rescorla andWagner preferred to remain agnostic about the mapping
from associations to behavior. However, as discussed in Miller et al.
(1995), monotonicity has been the operational assumption in nearly all
applications of the model. More recent work has investigated a variety
of monotonic response functions (Thein et al., 2008; Holmes et al.,
2019; Ghirlanda, 2022).
3 In their original work, Rescorla andWagner presented a slightly more
complex model, where the learning rate is decomposed into stimulus-
specific and reinforcement-specific components.Wewon’t discuss these
complexities, except briefly when addressing the relative influence of
context and CS on learning.
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Fig. 1 Conditioning protocols. (Top) standard Pavlovian delay con-
ditioning. (Bottom) conditioning where reinforcements are generated
according to a Poisson process. Boxes represent periods during which
the conditioned stimulus (CS) is present. Stars represent instanta-

neous unconditioned stimulus (US) delivery. The interstimulus interval
between CS onset and US delivery is denoted by T, and the intertrial
interval between US delivery and the next CS onset is denoted by I. The
cycle time C is the sum of these two intervals

then acquisition speed will be a monotonic function of r̂(∞).
We can thus focus our analysis on the asymptotics of the
Rescorla-Wagner model.

For the single cue setting, the asymptotic weights for the
background and CS can be found analytically (Chapman &
Robbins, 1990; Gallistel, 1990; Danks, 2003):

wB(∞) = R̄ − R̄CS

C − T
(3)

wCS(∞) = R̄CS

T
− wB(∞), (4)

whereT is the interstimulus (CS-US) interval,C is theUS-US
interval (the sum of the interstimulus and intertrial intervals,
also known as the cycle time), R̄CS is the average number
of reinforcements per trial during the CS, and R̄ is the aver-
age number of total reinforcements per trial (including the
intertrial interval). Technically, the solution depends on the
timediscretization,where each timestepn increments timeby
�t ; since the discretization only changes the US prediction
by a scale factor that doesn’t depend on any of the experi-
mental parameters, we implicitly set it to 1. However, time
discretization will come back to bite later.

In a standard delay conditioning protocol, R̄CS = R̄ = 1,
so that wCS(∞) = 1/T and wB(∞) = 0. This conforms
to the intuition that the CS should receive all of the credit
since the US only appears during the CS. Critically, r̂(∞) =
wCS(∞)+wB(∞) = 1/T , which means that the asymptotic
US prediction is not timescale invariant.

More generally, r̂(∞) = R̄CS/T for the single CS set-
ting. In other words, the asymptotic US prediction will
always report the CS-conditional reinforcement rate. This
means that the Rescorla-Wagner model will be insensitive
to any manipulation of CS-US contingency that leaves the
CS-conditional reinforcement rate intact. Several experi-
mental protocols have been used to show that in fact the
CR can be increased or decreased by changes in the back-
ground reinforcement rate while holding the CS-conditional
rate constant (see Escobar & Miller, 2004, for a review).
For example, adding unsignaled US deliveries during the

intertrial interval (Rescorla, 1968; Gamzu&Williams, 1971;
Lindblom & Jenkins, 1981), prior to conditioning (Randich
& LoLordo, 1979; Balsam & Schwartz, 1981; Overmier et
al., 1979), or after conditioning (Rescorla, 1973; Overmier et
al., 1979), all have the effect of decreasing the CR rate. It can
also be increased by lengthening the intertrial interval (i.e.,
spacing; Terrace et al., 1975; Gibbon et al., 1977; Sunsay &
Bouton, 2008), pre-exposing an animal to the experimental
context (Lattal & Abel, 2001), or extinguishing the context
following conditioning (Yin et al., 1993;Miguez et al., 2011).

At first glance, it might seem that even if the asymptotic
US prediction is invariant to these manipulations, the speed
of learning should be affected. Intuitively, increasing the ITI
should effectively act as an extinction phase for the back-
ground, thereby increasing the positive prediction error when
theUS is delivered during theCS.While this is true, the back-
ground associative strength is also reinforced by the same
prediction error, and this compensates for the extinction dur-
ing the ITI. As shown in the left panel of Fig. 2, doubling the
ITI has virtually no effect on the learning curve. The same
line of reasoning explains why contingency degradation (US
delivery during the ITI) has no effect on the learning curve
(Fig. 2, right panel).

In these simulations, we assumed equal learning rates for
the context and CS. However, Rescorla and Wagner (1972)
assumed that the learning rate for context is smaller. Figure3
shows that this does not solve the problem. The learning
curves for different ITIs are still perfectly overlapping, and
the learning curves for different levels of contingency are
slightly separated in the wrong direction (i.e., faster learning
in the degraded contingency condition).

A knowledgeable reader might at this point object: didn’t
Rescorla and Wagner successfully simulate contingency
degradation in their original work? Yes and no. They did
indeed simulate contingency degradation, but they only
showed what happens to the associative strength of the CS,
not the summed associative strengths. This would be fine
if the response model only took into account the CS asso-
ciative strength. However, doing so leads to other problems.
For example, Rescorla (2000) showed that CS and context
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Fig. 2 The Rescorla-Wagner model cannot explain spacing and con-
tingency degradation effects. Each plot shows the US prediction r̂ as
a function of the training trial. The learning rates for context and CS
were both set to 0.1. (Left) Learning curves are invariant to changing the

intertrial interval (ITI). (Right) Learning curves are invariant to deliv-
ering a US during the ITI (contingency degradation). The “Contingent”
curve shows results for the standard delay conditioning protocol with
reinforcements delivered only at CS offset

Fig. 3 The Rescorla-Wagner model cannot explain spacing and con-
tingency degradation effects, even with different learning rates for the
context and CS. Each plot shows the US prediction r̂ as a function of the
training trial. The learning rate for the context was set to 0.01 and the
learning rate for the CSwas set to 0.1. (Left) Learning curves are invari-

ant to changing the intertrial interval (ITI). (Right) Learning curves are
invariant to delivering a US during the ITI (contingency degradation).
The “Contingent” curve shows results for the standard delay condition-
ing protocol with reinforcements delivered only at CS offset
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responding were similar after training with a random control
procedure, where the US delivery rate was the same in the
presence and absence of the CS, recapitulating prior results
(Rescorla, 1968). Critically, testing the CS in a novel context
produced a higher rate of responding to the CS compared to
context alone. Since the CS is the same in both contexts, a
model which bases responding only on the CS associative
strength would have no means of explaining such context-
dependency. At a more conceptual level, such a model raises
questions about how to explain context responding; does con-
text only drive responding in the absence of the CS but not
in the presence of the CS? Answering this question would
seem to require a more complex response rule.

All of these observations suggest that temporal contiguity
—the degree to which the CS and US co-occur in time—is
inadequate as a principle of Pavlovian responding (i.e., the
conditioned response to a CS cannot be predicted by tempo-
ral contiguity alone). On the other hand, it is unclear whether
temporal contiguity is inadequate as a principle of Pavlo-
vian learning (i.e., contiguity may be sufficient to predict
what information animals extract from their experience). To
appreciate the difference between these two claims, consider
the class of models that generate CRs based on the relative
strength of the CS-US relationship and a comparator, such as
the background-US relationship (Miller & Escobar, 2001).
Rate Estimation Theory (RET; reviewed in the next sec-
tion) falls into this class, as does the sometimes-competing
retrieval model (Stout & Miller, 2007; Ghirlanda & Ibadul-
layev, 2015) and Rescorla’s semi-formal contingency model
(Rescorla, 1967). The stimulus relationships are variously
interpreted by these models as rates, associations, or proba-
bilities; the next section discusses the relationships between
these quantities. We have already seen that the Rescorla-
Wagner model, which is quintessentially associative, can be
interpreted as estimating the CS-conditional reinforcement
rate up to a constant determined by the discretization of
time, which is identical to the CS-conditional reinforcement
probability. Regardless of how the stimulus relationships are
interpreted or how they are learned, the critical feature of
these models is their relative response rule, which stipu-
lates that some form of contingency generates conditioned
responding. Intuitively, if the US rate during the CS matches
its rate during the background, then the CS tells the animal
nothing new about the US rate, even if the US reliably occurs
in the presence of the CS. If the US rate increases upon the
appearance of the CS, then it is natural to say that the US
is contingent on the CS. These intuitions are captured by
relative response rules.

What Is Contingency?

What exactly does contingency mean, and are different mod-
els talking about the same thing when they use this term? In

modal logic, a proposition is designated as contingent if it
is possible but not necessarily true; there must be at least
one “possible world” in which the proposition is true. We
then say that event A is contingent on event B if B occurs
in all the possible worlds in which A occurs. This defini-
tion is closely related to counterfactual theories of causation
(Lewis, 1973), according to which B causally depends on A
if and only if: (i) if B were to occur, then A would occur
(sufficiency), and (ii) if B were to not occur, then A would
not occur (necessity). Pearl (2000) developed a probabilistic
theory of counterfactual dependence for random variables.
Probabilistic counterfactuals have played an important role
in modern psychological theories of causal judgment (Ger-
stenberg, 2024).

We can connect these ideas to animal learning theory by
showing (under some assumptions) that theRescorla-Wagner
model estimates a particular probabilistic counterfactual, the
probability that the CS is both necessary and sufficient for
producing the US. In particular, if the CS is excitatory (it
never reduces the probability of the US) and there are no
hidden confounders (i.e., latent variables that might cause
both the CS and the US),4 then the probability of necessity
and sufficiency is given by:

�P = P(r = 1|xCS = 1) − P(r = 1|xCS = 0), (5)

wherewe have dropped the timestep index for the CS.We use
the notation�P to draw attention to the fact that this equation
is identical to the definition of contingency used extensively
in the literature on human causal judgment (Jenkins, 1965),
and has also been used to analyze Pavlovian condition-
ing (Gibbon et al., 1974). Inspection of Eq.4 reveals that
the asymptotic cue weight learned by the Rescorla-Wagner
model in the single cue setting is �P = wCS(∞), a fact also
noted by Chapman and Robbins (1990). This further implies
that�P can be computed by contrasting the US prediction in
the presence and absence of the US—i.e., a relative response
rule. We have thus come full circle, linking the Rescorla-
Wagner model to a rigorous causal definition of contingency
that coincides with a particular relative response rule.

It is important to note that �P is not timescale invari-
ant: multiplying both T and C by a constant will not yield
the same value of �P . There is a related problem (Gallistel,
2021): Recall that using probabilities to define contingency
for Pavlovian conditioning requires us to pick a time dis-
cretization, �t . This seems rather innocuous, but it isn’t.
If �t becomes infinitesimally small, we get the following

4 See Pearl (2000), Chapter 9, for details. Pearl refers to the excitatory
requirement as monotonicity and the no confounding requirement as
exogeneity.
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expression for �P:

lim
�t→0

R̄CS

T /�t
− R̄ − R̄CS

(C − T )/�t
= 0, (6)

where division by �t translates continuous time into a num-
ber of discrete timesteps. Thus, the definition implies that the
strength of the CR will be independent of the experimental
parameters, and in fact, no conditioned responding should
occur at all in this limit. Alternatively, one could make the
discretization coarser, but then one runs the risk of having
more than one US occur in a single time bin, violating the
assumption (implicit in the above treatment) that the distri-
butions are defined over binary events.

A tempting solution to both these problems is to use the
ratio between conditional probabilities rather than the dif-
ference. This eliminates the time discretization factor, and it
satisfies timescale invariance. However, recall that wB(∞)

is 0 for the delay conditioning protocol. This means that the
ratio is ill-defined.

The nub of the problem, as pointed out repeatedly by Gal-
listel, is that Pavlovian conditioning (like many naturalistic
learning events) occurs in continuous time. Shoehorning it
into a discrete-time probability distribution has disastrous
consequences. A better alternative, considered next, is a
continuous-time treatment.

Rate Estimation Theory

The critical conceptual step undertaken by RET (Gal-
listel, 1990; Gallistel & Gibbon, 2000) is the replace-
ment of discrete timesteps (n) with continuous time (t).
Some events, such as US deliveries (reinforcements), are
well-characterized as point processes: they occur near-
instantaneously (and for our purposes, we model them as
instantaneous) at particular points in time. Other events, such
as a typical CS, are interval events: they endure for some
period of time. RET frames the computational problem fac-
ing an animal as one of predicting the US patterns from the
CS patterns and using these predictions to decide when to
respond. RET makes a set of structured assumptions about
the CS-US relationshipwhich reduces the problem to estima-
tion ofCS-conditionalUS rates. In the following subsections,
we describe the problem and assumptions, an algorithmic
solution proposed by Gallistel (1990) for solving the prob-
lem, and how it addresses the empirical issues raised earlier.
This will lead us into a discussion of RET’s limitations—the
starting point for a different algorithmic solution.

Problem Statement

We consider an animal that observes a point process of rein-
forcements, r(t), where t indexes time (illustrated in Fig. 1).
We impute to the animal the following generative model:

• The reinforcement process can be additively decomposed
into component processes, each ofwhich is excited by the
presence of a stimulus:

r(t) =
∑

i

ri (t), (7)

where i indexes stimuli.
• Each component ri is generated by a Poisson process

with intensity

r̄i (t) = E[ri (t)|xi (t)] = λi xi (t), (8)

where λi is the reinforcement rate in the presence of
stimulus i, and xi (t) = 1 when the stimulus is present
(0 otherwise).5 This implies that ri (t) = 0 whenever
xi (t) = 0.

These two assumptions together imply that r(t) follows a
Poisson process with intensity

r̄(t) = E[r(t)|x(t)] =
∑

i

λi xi (t). (9)

The animal observes the stimulus process x(t) and the
reinforcement process r(t), but not the underlying compo-
nents. The learning problem facing the animal is to estimate
the rates for each component.

An Algorithmic Solution

Gallistel (1990) devised a clever algorithmic solution to the
rate estimation problem. The key idea is to take advantage
of rate additivity (Eq.9), turning rate estimation into a linear
system identification problem. Specifically, rate additivity
implies the following relation:

E

[
R̃i (t)

Ni (t)

]
=

∑

j

λ jE

[
Ni j (t)

Ni (t)

]
, (10)

where R̃i (t) = ∫ t
τ=0 xi (τ )r(τ )dτ is the total number of rein-

forcements observed in the presence of stimulus i, Ni (t) =
5 More generally, stimuli are allowed to have continuous intensities.
However, we will not need to make use of continuous intensities in this
paper.
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∫ t
τ=0 xi (τ )dτ is the cumulative record of stimulus i, and
Ni j (t) = ∫ t

τ=0 xi (τ )x j (τ )dτ is the cumulative pairwise
record of stimulus i and j (i.e., the total amount of time during
which they were presented together).

Gallistel refers to the quantity ui (t) = Ri (t)/Ni (t) as the
“uncorrected” rate estimate for stimulus i . Its expectation
equals the true rate λi only when stimulus i is consistently
presented alone, so that Ni j = 0 for i �= j (which essentially
never happens since we assume a constant background stim-
ulus). The uncorrected rate estimate needs to be corrected
for the influence of other stimuli on the observed reinforce-
ment process. Since both the uncorrected rate estimate and
the cumulative pairwise records are observable by the animal,
standard linear algebra can be used to estimate the corrected
rates:

λ̂(t) = A(t)−1 · u(t), (11)

where λ̂ is a column vector containing the corrected rate
estimates, u(t) is a column vector containing the uncorrected
rate estimates, andA(t) is amatrix containing the normalized
cumulative pairwise records, Ai j (t) = Ni j (t)/Ni (t).

While mathematically sound, there are several drawbacks
to this approach. First, it requires tracking co-occurrence
statistics for all stimuli, a memory demand (space complex-
ity in the jargon of computer science) that is quadratic in the
number of stimuli. Second, it requires tracking these statis-
tics over a long enough time period that A and u match their
expectations. Third, the algorithm has no way of tracking
uncertainty in the estimates after a finite observation period,
which is needed to determine the reliability of future predic-
tions. Finally, the linear systemneeds to be solved repeatedly,
which has a time complexity that is between quadratic and
cubic in the number of stimuli, depending on the implemen-
tation. What’s needed is an algorithm that can operate in
real time, with space and time complexity that doesn’t scale
super-linearly with the number of stimuli. Ideally, the algo-
rithm should also track estimation uncertainty.

The Decision Rule

To produce conditioned behavior, RET assumes that the rate
estimates λ̂ are translated into conditioned responses based
on a comparison of the CS and background rate estimates.
Specifically, Gallistel and Gibbon (2000) proposed that an
animal responds to the CS whenever

λ̂CS(t) + λ̂B(t)

λ̂B(t)
> β, (12)

where β is a threshold parameter.
Equation12 can be given an information-theoretic inter-

pretation.Under the assumptions of themodel, the distribution

over the time to the next reinforcement, d, is an exponential
distribution with mean 1/(λCS+λB) if the CS is present, and
1/λB if the CS is absent. We can express the model’s uncer-
tainty about d (in the absence of the CS) using the differential
entropy of the exponential distribution:

H [d|xCS = 0] = 1 + log(λB). (13)

The differential entropy conditional on the CS is defined
similarly:

H [d|xCS = 1] = 1 + log(λCS + λB). (14)

The difference between Eqs. 13 and 14 expresses the
“information gain” due to observing the CS (Lindley,
1956)—i.e., the degree to which uncertainty about the time
to next reinforcement is reduced by the appearance of the
CS:

�H = H [d|xCS = 1] − H [d|xCS = 0] = log
λCS + λB

λB
.

(15)

We can see from this expression that it is equivalent to the
log transformation of the decision variable in Eq.12, substi-
tuting the rate estimates for the true rates. This derivation
is similar to the one given by Balsam et al. (2006), except
that they use the entropy of the marginal distribution H [d]
instead of the conditional distribution H [d|xCS = 0]. This
entails separately estimating the US rate while ignoring the
CS completely. They refer to this as the contextual rate of
reinforcement; this is equivalent to the background rate of
reinforcement, λB, for a model in which only the background
stimulus occurs.6 In the treatment given here, only a single
model is learned, rather than separate models with and with-
out the CS.

Equation15 is closely related to Bayesian updating; it can
be understood as the Kullback–Leibler divergence (relative
entropy) between the posterior distribution (after the appear-
ance of the CS) and prior distribution (before the appearance
of the CS) over the time to next reinforcement. The expec-
tation of Eq.15 with respect to the CS distribution, p(xCS),
yields the mutual information between xCS and d. Normaliz-
ing Eq.15 by the entropy yields the measure of contingency
proposed by Gallistel and Latham (2023).

Note that the information gain defined above reflects
uncertainty only about the time to the next reinforcement
given a set of rates; it does not reflect uncertainty about

6 The contextual rate of reinforcement corresponds to the uncorrected
rate estimate for the background stimulus. So in the linear system
approach to rate estimation, it is already computed as an intermediate
quantity.
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unknown rates. Recently, Gallistel and Latham (2023) have
formulated a decision variable that takes into account rate
uncertainty (more on this later).

The relative response rule formalized by information
gain plays an important role in explaining the empirical
phenomena that are so problematic for classical models
of associative learning like the Rescorla-Wagner model,
which assumes that conditioned responding directly reflects
associative strength. As discussed above, manipulations
like contingency degradation and US preexposure reduce
conditioned responding without affecting the CS-US con-
tiguity (and hence associative strength). These phenomena,
which increase λ̂B(t), are naturally explained by the relative
response rule. It is also at the heart of how RET explains
timescale invariance.

Explaining Timescale Invariance

Gallistel and Gibbon (2000) derived timescale invariance
from RET as follows. Recall that we are considering the
standard Pavlovian delay conditioning setting, where the US
always follows the CS after a fixed delay. Because of rate
additivity, we have λCS + λB = 1/T , where T is the CS-US
interval. This follows from the fact that in delay conditioning
exactly 1 reinforcement occurs during the CS-US interval.
Gallistel and Gibbon further assumed that λB = 1/(RI ),
where I is the intertrial interval and R is the number of trials
(equivalent here to the number of reinforcements). In other
words, the background reinforcement rate is assumed to be
the reciprocal of the total background exposure alone. Note
that this assumption is not derived from RET—it is essen-
tially ad hoc. With this assumption in place, along with the
assumption that the rate estimates have accurately recovered
the true estimates (λ̂ = λ), RET predicts that a conditioned
response will be produced when

RI

T
> β. (16)

Rearranging, the number of reinforcements to acquisi-
tion (i.e., the transition point between not responding and
responding) is given by:

R∗ = β

(
I

T

)−1

. (17)

We thus recover the important empirical law that trials
(reinforcements) to acquisition (R∗) is linearly related to the
ratio of interstimulus and intertrial intervals on a logarith-
mic scale, such that rescaling both intervals by a constant
leaves the acquisition speed unchanged (Gibbon et al., 1977;
Gibbon & Balsam, 1981; Gallistel & Gibbon, 2000; Har-
ris & Gallistel, 2024). Note that in some formulations of

timescale invariance, the law is a function of C/T , a proto-
col’s informativeness (Balsam&Gallistel, 2009), rather than
I/T . For example, Harris and Gallistel (2024) describe the
law as R∗ = β(CT −1)−1. Because C

T −1 = I
T , these laws are

equivalent. We will revisit the functional form of timescale
invariance in a later section.

While the derivation of timescale invariance from RET
is an elegant and satisfying result, we need to acknowledge
two limitations. First, as already mentioned, it relies on an
ad hoc assumption about the background rate. Second, it
does not take into account the animal’s uncertainty about
the rates, and in fact, assumes that the rates have been per-
fectly estimated. Gallistel and Latham (2023) developed one
method for dealing with this issue, but this relies on other
ad hoc assumptions. In particular, their decision rule is not
derived from first principles, but designed based on some
intuitive desiderata. Furthermore, they do no present an ana-
lytical derivation of timescale invariance from their decision
rule. Thus, the problem appears to remain unsolved.

Summary

This section has reviewed how RET addresses some of the
fundamental problems with classical associative learning
theory. First, it avoids the pathologies of discrete time by for-
mulating the learning problem in continuous time. Second,
it explains a wide range of challenging findings by using a
relative response rule, which compares the CS-conditional
and background rates of reinforcement. The information-
theoretic version of this model provides a formal definition
of temporal contingency.

Several general issues vex RET in its existing forms.
First, the algorithm for estimating rates is computationally
impractical. Second, the derivation of timescale invariance
involves some questionable assumptions and does not take
into account the animal’s uncertainty about rates. We next
turn to a new approach which addresses these issues.

ANew Approach to the Rate Estimation
Problem

Our goal in this section is to propose a new version of
RET which retains its essential idea (that animals are esti-
mating conditional rates of reinforcement) but replaces its
algorithmic machinery. In doing so, we remedy some of the
shortcomings of the theory from a mathematical and com-
putational perspective. The new approach also allows us to
draw a connection between rate estimation and error-driven
learning models. Finally, we show analytically how an infor-
mation gain decision rule gives rise to timescale invariance.
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Maximum Likelihood Estimation

Let’s start with a simpler problem: rate estimation when the
components are observed. We will shortly see how to finesse
the credit assignment problem with multiple hidden compo-
nents into approximately this form.

Suppose at time t the animal has an estimate λ̂i (t). The
maximum likelihood estimate of the rate can be obtained in
continuous time using a closed-form, recursive update:

dλ̂i (t)

dt
= xi (t)[ri (t) − λ̂i (t)]

Ni (t)
, (18)

where, as above, Ni (t) is the cumulative record of stimulus
i. The update equation can be derived by first expressing
the maximum likelihood estimator recursively at two update
times (t0 followed by t):

λ̂i (t) = Ri (t)

Ni (t)
= λ̂i (t0) + Ri (t) − Ri (t0) − λ̂i (t0)

Ni (t)
, (19)

where Ri (t) = ∫ t
0 xi (τ )ri (τ )dτ is the cumulative record of

reinforcements for component i. Taking the continuous-time
limit t − t0 → 0, we obtain Eq.18.

Estimation when the Components Are Unobserved

Let’s now return to the original credit assignment problem.
Because of rate additivity, we can use our rate estimates to
obtain an estimate of the components:

ri (t) ≈ δ(t) + λ̂i (t)xi (t), (20)

where

δ(t) = r(t) −
∑

j

λ̂ j (t)x j (t) (21)

is the global prediction error. This is a stochastic approx-
imation of the following equality that holds when λ̂ = λ:

E[ri (t)] = E[δ(t)] + λi xi (t), (22)

where E[δ(t)] = 0 and the expectation is taken over real-
izations of the Poisson process. Plugging the approximation
into Eq.18 yields:

dλ̂i (t)

dt
≈ xi (t)[δ(t) + λ̂i (t)xi (t) − λ̂i (t)]

Ni (t)

= xi (t)δ(t)

Ni (t)
, (23)

wherewe have used the assumption that xi (t) ∈ {0, 1}, which
means that λ̂i (t)xi (t) − λ̂i (t) = 0 when xi (t) = 1. Equa-
tion23 is remarkably similar to the Rescorla-Wagner update,
but defined in continuous time, with learning rate 1/Ni (t).
Rather than updating associative strengths, it updates rate
estimates.7

There are several ambiguities in this algorithm that need
to be resolved. First, it leaves open how the rate estimates
are initialized. It turns out that this ambiguity can be norma-
tively resolved by looking at the problem through a Bayesian
lens. Another ambiguity is that δ(t) is a function of the entire
stimulus history, not just a single stimulus, and consequently,
it is not clear whether the learning rate should be 1/Ni (t),
which is taken from the fully observable casewhere we could
track the reinforcement records separately for each stimulus.
We will try to resolve this issue in the next section. Finally,
there is an ambiguity about when updating should happen;
presumably, it is happening intermittently, but we lack strong
empirical constraints on exactly which events induce updat-
ing. In the simulations reported below, it is assumed (for
convenience) that updating happens at regular 500 ms inter-
vals.

Bayesian Estimation

Eq.23 can, with little modification, accommodate Bayesian
estimation. The standard Bayesian analysis for Poisson pro-
cesses (see Gelman et al., 2013) uses a Gamma distribution
over rates, which is the conjugate prior (so that the pos-
terior is also a Gamma distribution). Formally, let λi ∼
Gamma(r0, n0) with “shape” parameter r0 > 0 and “inverse
scale” parameter n0 > 0. The notation was chosen to make
transparent a particular interpretation of these parameters: the
shape parameter can be interpreted as the effective number of
prior reinforcements, and the inverse scale parameter can be
interpreted as the effective observation period. Accordingly,
the rates are initialized as λ̂i (0) = r0/n0 and n0 is added to
the cumulative stimulus record so that the update is given by:

dλ̂i (t)

dt
= xi (t)δ(t)

N ′
i (t)

, (24)

where N ′
i (t) = Ni (t) + n0.

We now need to address the ambiguity (identified in the
previous section) of how to set the learning rate. At one
extreme, we can use 1/N ′

i (t), as we’ve done in Eq.24, which
assumes independent learning rates for each stimulus based
on its individual stimulus record. The other extreme would
be to use 1/t , which assumes a shared maximal observa-

7 Another way to arrive at a similar result is to assume a squared error
loss function and then update the rate estimates using stochastic gradient
descent.
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tion period for all stimuli. As a compromise, we will adopt
the following formula: N ′

i (t) = ηi t + n0. This is a shared
learning rate for all stimuli, but decremented by a parameter
ηi ∈ [Ni (t)/t, 1] to reflect the fact that the effective observa-
tion period is somewhere in between the fully independent
and fully shared cases. In practice, we fix ηi to a constant
value across stimuli.

The rate estimates can be understood as the posterior
means (or more precisely an approximation of the posterior
means, when using the results from the preceding section).
The Bayesian estimates approximate maximum likelihood
estimates in the limit r0 → 0, n0 → 0. Importantly, the
Bayesian setup resolves the ambiguity about initial condi-
tions left open by maximum likelihood estimation.

One consequence of Bayesian estimation is sensitivity to
sample size (or duration). Intuitively, an animal should be
more confident if it has observed the process for longer.
In contrast, maximum likelihood estimation will yield the
same rate estimates for the same empirical rates Ri (t)/Ni (t)
regardless of how long the process has been observed. To
see this, we represent the Bayesian estimate in the following
form:

λ̂i (t) = ω
Ri (t)

Ni (t)
+ (1 − ω)

r0
n0

, (25)

where

ω = 1 − n0
N ′
i (t)

(26)

is the weight on the empirical rates. Because the posterior
mean rate is a convex combination of the empirical and prior
rates, weighted inversely by sample size, it will be pulled
towards the prior mean rate r0/n0 when the sample size is
small. At the other extreme, it will converge to the maximum
likelihood estimate when the sample size is large. Thus, the
point estimate will reflect uncertainty about the rates even
though it does not explicitly represent uncertainty.

It is also possible to obtain an explicit representation
of uncertainty using only the representations that we have
already posited. The posterior variance is given by:

Ri (t) + r0
[Ni (t) + n0]2 = λ̂i (t)

N ′
i (t)

. (27)

However, we will not make use of this quantity in what
follows.

In this section, we have derived a simple, approximately
Bayesian estimation procedure.More sophisticatedBayesian
algorithms, such as particle filtering (Daw&Courville, 2008;
Gershman et al., 2010) and assumed density filtering (Daw
et al., 2008), have been proposed to explain Pavlovian condi-
tioning, albeit in discrete time andwith different probabilistic

assumptions. An interesting avenue for future work will be
to understand how thesemore sophisticated algorithms could
be put to work for RET.

Deriving Timescale Invariance

Given the learning algorithm described above, we can now
examine the relationship between reinforcements to acqui-
sition (R∗) and the informativness of a Pavlovian protocol
(C/T ). Plugging Eq.25 into Eq.12 yields:

1 + ωRCS(t)/NCS(t) + (1 − ω)r0/n0
ωRB(t)/t + (1 − ω)r0/n0

> β. (28)

In the standarddelay conditioningprotocol, RCS(t)/NCS(t)
≈ 1/T and RB(t)/t ≈ 0. The approximation will typ-
ically be accurate for large t. Putting this together with
ω = 1 − n0/(ηt + n0) and t = RC , we can solve for the
reinforcements to acquisition:

R∗ ≈ r0(β − 2)

η

(
C

T

)−1

. (29)

We thus obtain the law of timescale invariance, where
number of reinforcements to acquisition is inversely propor-
tional to informativeness on the log scale. Because the term
multiplying informativeness does not depend on the experi-
mental protocol,we can treat it as a constant, k = r0(β−2)/η,
which we will fit into experimental data in the next section.

Note that the derived law does not depend on n0 at all,
while r0 only enters as a scale factor. This means that the
choice of the prior parameter values does not fundamentally
change this aspect of themodel predictions.Wewill notmake
strong claims about how to set these values.

Model Validation: Simulations and Data
Analysis

Because the theory relies on several approximations, it is
important that we validate it using simulations and data anal-
ysis. For all simulations, we used the following parameters:
r0 = 0.1, n0 = 1, η = 0.7.

First, we show that the approximate learning algorithm
correctly estimates rates when they are generated from a
stimulus-dependent superposition of Poisson processes, as
assumed by the theory. Figure4 plots the proportional esti-
mation error, |λ̂i − λi |/λi , over learning for the case where
the background rate is 0.5, the CS rate is 1.5, the interstimu-
lus interval is 2, and the intertrial interval is 5. The algorithm
accurately learns both rates in a realistic number of trials; the
learning curve begins to asymptote after approximately 75
trials (5000s).
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Fig. 4 Estimation error.
Reinforcements are generated
according to the sum of CS and
background Poisson processes.
The proportional estimation
error for the rates decreases to
near 0 over the course of
learning

Next,weverified that themodel produces timescale invari-
ance in a standardPavlovian delay conditioningprotocol. The
left panel of Fig. 5 shows the simulated log-transformed deci-

sion variable, log λ̂CS+λ̂B

λ̂B
, over the course of training, for 3

different interstimulus intervals and a fixed intertrial interval
of 48 s. This produces slower learning for longer interstim-
ulus intervals. Data from a pigeon autoshaping experiment
(Gibbon et al., 1977), showing the time of acquisition for
each condition, is superimposed on the curves.8 The deci-
sion variable curve intersects these points at roughly the
same value across conditions, consistent with the use of a
fixed threshold (β). The right panel of Fig. 5 shows the same
thing but now for conditions where the intertrial interval is
rescaled separately for each condition to maintain a fixed
ratio with the interstimulus interval. In this case, all of the
curves superimpose—the trajectory of the decision variable
is timescale invariant. The empirical acquisition times still
intersect these curves at roughly the same value, indicating
that the decision threshold has not changed relative to the
fixed intertrial interval case. The critical difference is that
now these acquisition times cluster together due to timescale
invariance.

Finally, we quantitatively evaluate the law derived in the
previous section, R∗ = k/(C/T ), and compare it to a
slightly different lawproposedbyHarris andGallistel (2024),
R∗ = k/(C/T−1).Aswe’ve alreadypointedout, this second
law is equivalent to R∗ = k/(I/T ). We fit the k param-

8 The criterion used in the Gibbon et al. analyses (an absolute measure
of responding) is problematic as ameasure of acquisition speed because
it is potentially confounded with asymptotic rates of responding. This
issue does not apply to the other datasets, where relative measures of
responding were used.

eter for both laws to several datasets (Gibbon & Balsam,
1981; Balsam et al., 2024; Harris & Gallistel, 2024) by first
log-transforming both sides and then minimizing summed
squared error (i.e., maximum likelihood estimation under
a Gaussian noise model). We then computed the Bayesian
information criterion (BIC) approximation of the marginal
likelihood (Bishop, 2006):

log P(data|M) ≈ −1

2
BIC(M), (30)

whereM indexes models and “data” refers to the set of mea-
sured reinforcements to acquisition. We converted this into
a posterior probability (assuming a uniform prior over mod-
els):

P(M1|data) = P(data|M1)

P(data|M2) + P(data|M1)
. (31)

Figure6 shows the curve fits for each dataset.Although the
models make very similar predictions, the Bayesian model
comparison decisively favored the C/T law rather than the
I/T law (all posterior probabilities were greater than 0.99).
This result thus confirms that the predictions of the model
are empirically well-grounded.

Conclusion

All theories of learning make claims about both learn-
ing (what information is extracted from sensory inputs for
storage in memory) and performance (how learned informa-
tion is mapped to behavior). Classical associative theories,
exemplified by the Rescorla-Wagner model, claim that learn-
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Fig. 5 Timescale invariance of delay conditioning. Each plot shows the
simulated log-transformed decision variable, log(λ̂CS + λ̂B)− log(λ̂B),
as a function of trial in a standard Pavlovian delay conditioning pro-
tocol. The colored dots show trials (i.e., reinforcements) to acquisition
from pigeon autoshaping experiments (Gibbon et al., 1977), as analyzed

in Gallistel and Gibbon (2000). The dots have been superimposed on
the curves to facilitate comparison. (Left) The intertrial interval (ITI)
is fixed at 48 s, while the interstimulus interval (ISI) varies across con-
ditions. (Right) The ITI is rescaled to maintain a fixed ratio with the
ISI

ing is association formation and performance (conditioned
responding in a Pavlovian context) is a read-out of associative
strength.9 Modern representational theories, exemplified by
RET, claim that learning is rate estimation and performance
is a read-out of contingency between stimuli. It would appear
that there is little common ground between these theories, but
that appearance is misleading. This paper has shown that a
learning algorithm closely resembling the Rescorla-Wagner
model can be used to estimate rates—a computationally
practical alternative to the algorithmic solution proposed by
Gallistel (1990).

A critical difference between the theories concerns perfor-
mance. As recognized by a number of different theoretical
traditions, not all of them representational in the manner
of RET (see, for example, Miller & Matzel, 1988; Bou-
ton, 1993; Stout & Miller, 2007), conditioned responding is
fundamentally comparative in nature, influenced by CS and
US properties that go beyond their direct association. RET
formalizes this idea by positing that conditioned responses
are generated when the stimulus-conditional rate estimate
exceeds the background rate estimate by some threshold.
Another contribution of this paper is to place this proposal
on firmer theoretical footing, showing how a probabilis-

9 See Honey et al. (2020) for an example of an associative theory that
makesmore complex assumptions about themapping from associations
to behavior.

tic approach to rate estimation, in combination with an
information-gain decision rule, can (approximately) yield
timescale invariance, a fundamental empirical law of Pavlo-
vian delay conditioning.

The model makes a number of predictions that could
be tested in future experiments. First, changing the prior
should affect the number of trials to acquisition (though
not timescale invariance). An animal exposed to multiple
different conditioning protocols may come to develop an
informative prior by tuning the r0 and n0 parameters. For
example, if the protocols tend to have a high total number of
reinforcements, then r0 should be higher, which (according
to Eq.29) should slow learning down. Intuitively, the ani-
mal should expect higher rates of reinforcement both during
and between CS presentations, which will push the decision
variable closer to unity. Second, the total amount of prior
experience,which should affectn0, does not enter intoEq.29;
this implies that it should have no effect on learning speed.

One reasonwhy contiguity-based theories like theRescorla-
Wagner model (and its descendants) have had such staying
power is that they fit snuglywithmodern neurobiological the-
ories of learning based on Hebbian synaptic plasticity. From
Gallistel’s viewpoint, this is a fundamental error, because
both of these theories are irredeemably flawed (Gallistel &
Matzel, 2013).While there are many reasons to endorse such
a viewpoint (see also Gershman, 2023), we shouldn’t throw
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Fig. 6 Informativeness predicts
learning speed. Each panel
shows a measure of learning
speed (number of
reinforcements prior to the
satisfaction of a learning
criterion) as a function of
informativeness (the ratio of the
average US-US interval to the
average CS-US interval) on a
logarithmic scale. The learning
criterion is defined differently
across the studies. Gibbon and
Balsam (1981) assume learning
has occurred when the animal
produces a conditioned response
on 3/4 consecutive trials.
Balsam et al. (2024) and Harris
and Gallistel (2024) use a more
complex response parsing
algorithm combined with a
statistical threshold for deciding
when the conditional response
rate exceeds the unconditional
response rate

the baby out with the bathwater. The fact that rate estimation
can be reduced to a form of error-driven learning suggests
that it could be implemented with the machinery thought to
exist in the dopamine system. Considerable evidence sup-
ports the hypothesis that dopamine reports reward prediction
errors (Montague et al., 1996; Glimcher, 2011; Watabe-
Uchida et al., 2017), though this hypothesis has had its own
share of controversy (Gershman et al., 2024). The rate esti-
mates might be implemented as synaptic strengths (Austen
et al., 2021, 2022), or as cell-intrinsic molecular codes (Gal-
listel, 2017). Which of these possibilities is most plausible
will require additional linking assumptions and experimental
tests. The important takeaway is that we can begin to build
bridges between representational and algorithmic theories of
learning—without invoking the concept of association.
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