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Explaining dopamine through prediction 
errors and beyond

Samuel J. Gershman    1,2  , John A. Assad3, Sandeep Robert Datta    3, 
Scott W. Linderman    4, Bernardo L. Sabatini    2,3,5, Naoshige Uchida    6 & 
Linda Wilbrecht    7

The most influential account of phasic dopamine holds that it reports 
reward prediction errors (RPEs). The RPE-based interpretation of dopamine 
signaling is, in its original form, probably too simple and fails to explain 
all the properties of phasic dopamine observed in behaving animals. This 
Perspective helps to resolve some of the conflicting interpretations of 
dopamine that currently exist in the literature. We focus on the following 
three empirical challenges to the RPE theory of dopamine: why does 
dopamine (1) ramp up as animals approach rewards, (2) respond to sensory 
and motor features and (3) influence action selection? We argue that the 
prediction error concept, once it has been suitably modified and generalized 
based on an analysis of each computational problem, answers each 
challenge. Nonetheless, there are a number of additional empirical findings 
that appear to demand fundamentally different theoretical explanations 
beyond encoding RPE. Therefore, looking forward, we discuss the prospects 
for a unifying theory that respects the diversity of dopamine signaling and 
function as well as the complex circuitry that both underlies and responds to 
dopaminergic transmission.

An important turning point in the study of dopamine was the applica-
tion of engineering concepts from reinforcement learning (RL) theory 
(Box 1). This theory formalized the computational problem that needed 
to be solved (predicting future reward) and an algorithm (temporal 
difference learning) for solving it. The biological plausibility of this 
algorithm was first indicated by data showing that the phasic firing 
of dopamine neurons resembled the reward prediction error (RPE) 
signal used by the learning algorithm to update reward predictions1,2.

Subsequent work tested the RPE hypothesis of dopamine quan-
titatively3–5, validated it causally by showing that perturbations of 
dopamine affect learning6,7 and identified cellular mechanisms by 
which the error computation and downstream plasticity modulation 
might be implemented8,9. These lines of work have been thoroughly 

reviewed elsewhere10,11. Our focus here is on empirical data that appear 
to challenge the RPE hypothesis and to what extent does it stand up to 
these challenges.

Answering this question is tricky because the RPE hypothesis is 
not really one model but rather a family of models that share some key 
ideas. RL theory allows us to define the underlying assumptions about 
the environment and model architecture in different ways while still 
adhering to the framework of temporal difference learning. We could 
try to search through the space of viable models to identify those that 
match all of the empirical data. However, doing so would forfeit some 
of the explanatory thrust that comes with a normative framework—
by understanding why nature may have selected one architecture 
over another, we can reveal deeper principles about brain function. 
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Why does dopamine ramp up as animals approach 
reward?
In a seminal experiment, details in ref. 12 showed that extracellular 
dopamine concentration in the striatum slowly ramps up as rats 
approach the reward location in T-maze. This was initially interpreted 
as problematic for the RPE hypothesis because it was not clear why the 
RPE should exhibit a ramp12–14. By contrast, it was easy to see how a ramp 
would be consistent with a value signal, which necessarily increases 
as a reward is approached. This value interpretation was reinforced 
by subsequent studies suggesting that dopamine ramps covary with 
reward rate and response latency, a behavioral proxy for motivation15–17. 
Dopamine ramps also anticipate (and causally control) the timing of 
reward-related movements18,19, suggesting that they may have a role in 
action evaluation rather than prediction error signaling.

Dopamine ramps may or may not be consistent with the RPE 
hypothesis, depending on the shape of the value function. To under-
stand this, note that when the animal is approaching reward (hence 
rt = 0) and the discount factor is close to 1, the RPE is approximately 
the time derivative of value—δt ≈ ̂Vt+1 − ̂Vt . This means that the RPE 
will ramp whenever the value function approximation is convex (its 
slope is increasing with proximity to reward)20. More generally, the RPE 
will ramp for discount factors below 1 when the value function approxi-
mation is ‘convex enough’ to compensate for temporal discounting. 
One contributor to convexity is the function approximator; for exam-
ple, if the features being used to approximate the value function are 
more temporally imprecise farther away from the reward, thereby 
creating a distance-dependent ‘blur’ of the value function. Another 
contributor to convexity is state uncertainty, as we describe below.

The time derivative view shows that, in principle, RPEs can ramp, 
but it does not show that this is in fact the underlying explanation of 
dopamine ramps. In a series of studies, Kim et al. used virtual reality to 
carefully separate the predictions of value and RPE accounts, showing 
repeatedly that the dynamics of dopamine were more consistent with 
the RPE account21. For example, virtually teleporting a mouse over 
varying distances to the same location on a track should result in the 
same value signal but different RPEs, because longer distances should 
generate larger RPEs, as seen in the experimental data (Fig. 1). These 
findings generalized across measurements of calcium in dopamine 
neuron cell bodies and axons projecting to the ventral striatum, as 
well as measurements of spiking activity in optogenetically identified 
dopamine neurons. Finally, quantitative model comparison strongly 
favored the RPE account.

Despite this empirical support for the RPE account, the studies 
discussed in ref. 21 did not address a lingering puzzle—why do ramps 
mainly appear in spatial navigation tasks and not in Pavlovian condi-
tioning tasks? A key difference between these tasks is the continual 
acquisition of sensory feedback during spatial navigation but not 
during the interstimulus interval of a Pavlovian conditioning task. 
Because timekeeping in the brain is noisy, an animal’s subjective esti-
mate of objective time will become increasingly uncertain as time 
elapses in the absence of sensory feedback. If τ  is the noisy internal 
timekeeping signal and p(t|τ) is the posterior probability distribution 
over objective time given the timekeeping signal (the ‘uncertainty 
kernel’, that is, the distribution of actual times that are likely given the 
animal’s estimation), then the optimal value estimate is an average of 
value estimates at each hypothetical objective time weighted by  
its probability:

̂Vτ = ∑
t
p(t|τ) ̂Vt = E( ̂Vt|τ).

In a Pavlovian task, the true value function, Vt , is a convex and 
increasing function of time because as time elapses, the reward draws 
nearer. If the approximation ̂Vt  is convex as well, Jensen’s inequality 
implies that ̂Vτ ≥ ̂Vt. This means that ̂Vτ  will tend to overestimate the 

Answering the ‘why’ question requires us to analyze the computational 
rationale of RL algorithms and their neural implementation.

In the rest of this Perspective, we consider several recent empirical 
challenges to the RPE hypothesis, which have led to alternative hypoth-
eses about the function of dopamine. We argue that each challenge 
can be met by suitably modifying the RPE hypothesis. Notably, each of 
these modifications is motivated by a computational rationale rather 
than ad hoc data fitting. We also highlight how these modifications 
have led to new predictions that have been tested experimentally. 
Finally, we consider several empirical challenges that have not yet been 
met by the RPE hypothesis and how new models attempt to address 
these challenges with the aid of new measurement technologies and 
analysis methods.

Box 1

Brief review of RL concepts
The goal of an RL agent is commonly taken to be the maximization 
of cumulative future reward, or value:

Vt = Eπ(rt + γrt+1 + γ2rt+2 +…),

where π(a|s) is a policy mapping the agent’s state s to a probability 
distribution over action a, rt is the reward received at time t, γ is a 
temporal discount factor governing how far into the future the 
agent cares about accumulating rewards and Eπ(⋅) is an expectation 
with respect to the policy as well as any randomness in state 
transitions and rewards. Note that Vt is a short-hand for V(st); that is, 
value is a state-dependent variable (as is rt).

When state transitions and rewards only depend on the current 
state and action, the environment is referred to as a Markov 
decision process. In this case, the value function can be expressed 
recursively (the Bellman equation) as

Vt = Eπ (rt + γVt+1) .

An agent who has learned an estimate of the value, ̂Vt, can use 
the Bellman equation to measure the inconsistency in values 
between consecutive time points as

δt = rt + γ ̂Vt+1 − ̂Vt.

This is the temporal difference error, which constitutes the 
formal version of the RPE hypothesis, namely that phasic dopamine 
reports δt.

The temporal difference error specifies how the value estimate 
should be updated based on reward feedback. Assume that the 
value function is governed by a set of modifiable parameters (w). 
These parameters should be updated to reduce error:

∆w = αδt ∇w ̂Vt,

where α is a learning rate and ∇w ̂Vt is the gradient of the value 
estimate with respect to the parameters. A common assumption is 
that the value estimate is linear.

̂Vt = ∑
d
wd fd(st),

where fd(st) is a feature function defined over states. In this case, the 
gradient is equal to the vector of features—∇w ̂Vt = f(st). Intuitively, 
the parameters correspond to feature weights, which are increased 
when errors are positive and decreased when errors are negative.
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true value Vt. However, the true value can still be learned asymptotically 
by temporal difference learning (with a sufficiently powerful function 
approximator), provided the uncertainty kernel is known and the value 
estimate ̂Vτ does not change abruptly over short intervals. This stability 
condition is satisfied by Pavlovian conditioning tasks but is violated 
by spatial navigation tasks due to the sensory feedback that updates 
the uncertainty kernel and thus the value estimate. As a consequence, 
temporal difference learning will produce biased value estimates even 
as the RPEs asymptotically go to 0.

The analysis in ref. 22 showed that the bias could be corrected by 
modifying the error-driven learning rule to decay value estimates in 
proportion to the informativeness of sensory feedback. This correc-
tion drives the bias to zero but can produce asymptotically nonzero 
RPEs (Fig. 2). In particular, spatial navigation tasks typically produce a 
ramping profile of RPEs. The value decay model provides a normative 
foundation for similar mechanisms previously proposed to account for 
ramping23, as well as behavioral data from humans and rodents24–26. In 
Pavlovian tasks, there is no sensory feedback, and therefore the decay 
term is 0 (that is, no ramping), explaining why ramps do not typically 
occur in Pavlovian tasks. In these tasks, there is no bias that needs to 
be corrected.

An important feature of bias correction is that the RPEs converge 
to a steady state that is proportional to value, where the constant of 
proportionality depends on the informativeness of sensory feedback. 
This sheds light on conflicting interpretations of dopamine in the 
literature. The value interpretation of dopamine ramps may in fact be 
consistent (at least asymptotically) with the RPE account. The value 
decay model adds nuance to this unification by restricting the condi-
tions under which RPEs resemble value signals—when sensory feedback 
is relatively uninformative (for example, in Pavlovian tasks), RPEs no 
longer look like value signals, instead converging to 0.

According to the value decay model, the shape of ramps depends 
on the temporal profile of sensory feedback—ramps can be increasing, 
decreasing, flat or even nonmonotonic. A study reported in ref. 22 
manipulated the temporal profile by gradually darkening the visual 
scene. Consistent with model predictions, this produced a dopamine 
bump rather than a ramp. The key idea was that darkening initially 
increases the convexity of the value function approximation and then 
later causes it to become concave (due to the blurring of prereward 
and postreward values). This result illustrates how understanding 
the computational rationale of ramping can yield new and nontrivial 
predictions.

Alternative models for dopamine ramps have also been pro-
posed27,28. Hamid et al. proposed an architecture in which different 
dorsal striatum subregions implement ‘experts’ that predict future 
reward28. Dopamine transmission in each subregion encodes the 
accumulated evidence for the accuracy of the corresponding expert’s 

predictions, thereby mediating credit assignment. The dorsomedial 
striatum was posited as an action-outcome predictor based on the 
distance to reward, and accordingly, dopamine in this region was inter-
preted as an evidence accumulator for the controllability of reward. 
This model explained why dopamine in the dorsomedial striatum 
ramped up in an instrumental task (high controllability) but ramped 
down in a Pavlovian task (low controllability).

By contrast, dopamine signals originating in the ventral tegmen-
tal area and their projections to the ventral striatum do not depend 
on action-outcome controllability as long as sensory cues indicate 
the distance to a goal21,29. In the absence of such cues, the same dopa-
mine signals depend on controllability29. These results suggest that 
mesolimbic dopamine signals use multiple sources of information to 
determine progress toward a goal, which could be compatible with sev-
eral theoretical accounts. A preprint from ref. 29 argues that the rapid 
appearance of ramps probably reflects the use of an internal model to 
compute goal progress rather than temporal difference learning, which 
requires multiple trajectories to propagate RPEs from the goal toward 
earlier predictive cues30.

Why does dopamine respond to sensory features?
It has long been known that dopamine signaling increases in response to 
new or surprising stimuli, independent of their motivational value31–34. 
There have been a number of theoretical efforts to reconcile these 
observations with the RPE hypothesis. Kakade and Dayan argued that 
novelty responses might reflect an exploration bonus added to the RPE, 
possibly due to the optimistic initialization of value estimates35. In the 
setting of threat learning, value estimates may also be initialized pes-
simistically to discourage exploration of potentially dangerous states. 
Evidence for this kind of novelty penalty has been shown in studies 
of dopamine projections to the tail of the striatum36,37. An elevated 
response to new stimuli has also been reported in the ventral tegmental 
area (which projects to the ventral striatum) and the substantia nigra 
pars compacta (which projects to the dorsal striatum)38. One caveat 
for interpreting these studies is that some apparent novelty responses 
could reflect generalization across stimuli in the environment (par-
ticularly in rich environments where stimuli tend to be paired with 
reward)39,40, rather than a novelty bonus or penalty per se. Further work 
is needed to disentangle these possibilities.

Another possibility is that dopamine responses reflect an intrinsic 
preference for information signaled by stimuli, such that RPEs are 
elevated when the animal receives more information than expected41,42. 
This may explain the recent finding that some dopamine neurons do 
not respond to new stimuli after exposure to many other new stimuli43.

None of these models make sense of more recent data indicating 
a role for phasic dopamine signals in learning sensory predictions.  
For example, rats can learn an association between two neutral stimuli 

Position

Standard
Teleport (long)
Teleport (short)
Pause (5 s)

Value

Time from teleport/pause (s)

Va
lu

e

Start Goal

Va
lu

e

RP
E

∆F
/F

 (G
C

aM
P)

 (z
)

0 0

0 0

0–2 2 4

2

Time (s)

RPE

T/P

a b c

T/P

T/P

Fig. 1 | Dopamine ramps reflect RPE, not value. a, Experimental design used in 
ref. 21. Mice in a virtual linear track were exposed to the following four different 
conditions: pausing for 5 s at a particular position on the track, teleporting to 
that position from a short distance away, teleporting from a long distance away 
or arriving at the position following a ‘standard’ (constant speed) sequence of 
positions. b, If dopamine reports value, then its response at the probed position 

should be the same across conditions. By contrast, if dopamine reports RPE, 
then its response should be greatest after the long teleport, which produces 
the largest change in value. c, The RPE hypothesis was supported by fiber 
photometry measurements of calcium signals in dopamine axons projecting to 
the ventral striatum. Reproduced with permission from ref. 21,Cell Press.
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(A and B), which later allows them to generalize conditioned responses 
to A after pairing a reward with B, an effect known as sensory precon-
ditioning. Inhibiting dopamine neurons during the A–B precondition-
ing phase eliminates this effect, while activating them strengthens 
it44. Rats are also sensitive to changes in the identity of reinforcers 
(for example, the flavor of food pellets) during learning. If A is paired 
with reward and then subsequently paired with reward in compound 
with another stimulus B, the new stimulus fails to elicit conditioned 
responding (the classic Kamin blocking effect), but this blocking effect 
is attenuated if the reinforcer is changed to one with equal incentive 
value, a phenomenon known as identity unblocking. Inhibiting dopa-
mine neurons during the compound reinforcement phase eliminates 
identity unblocking, again supporting the view that phasic dopamine 
has a causal role in learning sensory predictions45. Electrophysiologi-
cal recordings paint a consistent picture—dopamine neuron spiking 
is elicited by surprising changes in sensory features of reinforcers46.

One way to understand these findings is to posit that dopamine is 
a learning mechanism for a form of model-based RL47. On this account, 
dopamine signals update an internal state transition and reward model, 
which then guides behavior through mental simulation and planning. 
Alternatively, dopamine responses have been conceptualized as a form 
of ‘generalized’ prediction error. According to this hypothesis, dopa-
mine performs the same error computation for reward and sensory 
features48. The computational rationale for this hypothesis comes 
from the successor representation model (Box 2), which offers an 
alternative algorithm for estimating values49,50. The essential idea 
is that the brain learns a ‘predictive map’ of expectations about the 
frequency of sensory features in the near future (possibly represented 
in the hippocampus51). The predictive map is analogous to the value 
function (a discounted sum of future events) but applied to arbitrary 
sensory features.

The generalized prediction error hypothesis represents a sub-
stantial departure from the RPE hypothesis in that the error signal 
is vector-valued rather than scalar. This opens the door to partially 
explaining the diverse tuning profiles of dopamine neurons52–55. It also 

raises the question of how the error vector is encoded in the popula-
tion. One possibility is a kind of labeled-line code where anatomically 
segregated pathways convey different parts of the error vector to 
distinct targets. A number of studies support this hypothesis, showing 
that striatal dorsal/ventral, medial/lateral and rostral/caudal targets 
receive different information from dopamine signals36,37,56–61 (Box 3). 
Increases in dopamine in some of these areas are time-locked to both 
positive and negative or aversive events and may encode prediction 
errors with different purposes. For example, dopamine transmitted 
to the tail of the striatum has been proposed to carry a ‘threat predic-
tion error’ that is suppressed when rodents explore a nonthreatening 
new object37. Stronger novelty responses in this dopamine projection 
were inversely correlated with object exploration, and ablating the 
projection promoted object exploration. This example is particularly 
interesting because it suggests a way in which the generalized predic-
tion error hypothesis might be convergent with the exploration bonus 
hypothesis proposed in ref. 35.

Although there is some evidence for large-scale anatomical seg-
regation of different error signals, there do not seem to be enough 
labeled lines to support a sufficiently rich generalized prediction error. 
Another possibility is that the error vector is mixed at the population 
level, necessitating a downstream ‘demixing’ process. Supporting this 
hypothesis is evidence that reinforcer identity can be decoded from 
ensembles of dopamine neurons but not from single neurons62 (Fig. 3). 
Notably, identity is decodable only early during a block of trials fol-
lowing an identity change. This is consistent with the hypothesis that 
identity information is conveyed by an error signal that diminishes 
over the course of learning. The apparently distributed nature of iden-
tity information raises important questions about how downstream 
systems decode and use this information. It also raises the question 
of why reward magnitude can be decoded from individual neurons 
but identity cannot. We conjecture that reward magnitude should be 
privileged in any distributed representation because it is particularly 
relevant for value estimation; single neuron decodability may reflect 
the robust encoding of magnitude information.
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Fig. 2 | The role of state uncertainty in ramping. a, A standard temporal 
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conditions where state uncertainty is dynamically resolved by sensory feedback. 
b, Despite systematic overestimation of value, the RPE can still converge to 0.  

c, Value overestimation can be corrected by decaying values in proportion to the 
informativeness of sensory feedback. d, The correction induces a ramping RPE. 
Reproduced with permission from ref. 22, Cell Press.
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Lee et al. proposed a different way of understanding dopamine 
heterogeneity, which retains the vector idea but not the notion of 
generalized prediction error—the scalar RPE can be disassembled into 
multiple feature-specific channels and then additively reassembled by 
its targets63. This idea is motivated by the topography of projections 
from midbrain to striatal and cortical targets, as noted earlier in our dis-
cussion of labeled-line codes. Strictly speaking, only reward-predictive 
features should elicit dopamine responses according to this account; 
however, in ref. 63, it has been shown that when the function approxi-
mator is a deep neural network, reward-irrelevant feature selectivity 
‘leaks’ into dopamine responses due to the distributed nature of the 
state representation. More work is required to determine whether this 
kind of model can explain the full breadth of findings related to sensory 
feature coding by dopamine neurons.

Why does dopamine respond to motor features?
In addition to encoding sensory features, dopamine neurons encode 
motor-related variables such as initiation, vigor and kinematics52,64–66. 
At least some aspects of this motor encoding are not well-explained 
by the RPE hypothesis67. A possible account might be the one already 
given above for understanding sensory encoding—dopamine neurons 
signal generalized prediction errors for motor features. This would 

make sense if we assume that the learned predictive representation is 
used for action selection, in which case it would need some mechanism 
for encoding motor features. However, some studies find that activ-
ity in dopamine projections to the dorsal striatum does not reliably 
distinguish between movement types64,68, suggesting a fairly coarse 
feature encoding. This is problematic if one assumes that the encoded 
features are being used downstream for action selection. To some 
extent, this coarse representation may be refined by interaction with 
specific glutamate signals impinging on striatal neurons and/or local 
filtering of signals at the level of individual glutamate and dopamine 
axon terminals69,70. Synaptic-level resolution in vivo imaging methods 
will be needed to resolve this issue.

Box 2

The successor representation
The value function can be decomposed into an inner product 
between a predictive map (the successor representation, M) and the 
reward function (R):

Vt = ∑
s
Mt(s)R(s),

where s denotes the state, t denotes time and M is defined as the 
expected discounted state occupancy:

Mt(s) = Eπ(It(s) + γIt+1(s) + γ2It+2(s) + …)

and It(s) = 1 if st = s (0 otherwise). Intuitively, the successor 
representation encodes how often each state will be visited in the 
near future, where the effective time horizon for prediction is 
determined by the discount factor γ.

Like the value function, the successor representation obeys a 
Bellman equation in Markovian environments:

Mt(s) = Eπ (It(s) + γMt+1(s))

Consequently, an estimate M̂t(s) can be updated using temporal 
difference learning:

∆M̂t(s) = αδt(s),

where α is again a learning rate, and the prediction error is 
vector-valued (that is, one value for each possible state):

δt(s) = It(s) + γM̂t+1(s) − M̂t(s).

This ‘tabular’ approximation can be straightforwardly extended 
to the function approximation setting (as in Box 1). In essence, the 
update is the same computation as described in Box 1 for scalar 
RPEs, but now applied to state occupancy.

Box 3

Origins of functional diversity
Dopamine has a diversity of effects on different parts of the brain101. 
This diversity could arise from differences in signal content, 
differences in downstream computation or both. Here we discuss 
recent insights into the functional specificity of different dopamine 
projections.

Hughes et al. analyzed the activity of dopamine neurons in 
the ventral tegmental area while head-fixed mice were given a 
reward every 10 s102. The researchers identified three populations 
of dopamine neurons that encoded distinct components of the 
‘impulse vector’ (forces exerted by the animals). One population 
increased firing for backward movement and decreased firing 
for forward movement at the time of reward delivery; a second 
population exhibited the opposite pattern; a third population was 
similar to the second population but more spread out over time, 
with little phasic modulation at the time of reward.

Using a cued reward-seeking task, a study in ref. 103 identified 
separate populations of dopamine neurons in the ventral tegmental 
area with topographically organized selectivity—neurons in the 
lateral division (projecting to the lateral shell of the ventral striatum) 
resembled classical RPE neurons, whereas neurons in the medial 
division (projecting to the medial shell of the ventral striatum) 
exhibited sustained activity between cue presentation and reward 
delivery, suggesting a representation of motivational state.

These examples illustrate cases in which functional specificity 
arises from differences in signal content. The same signals may 
also mediate different consequences depending on their targets. 
Notably, striatal and prefrontal neurons expressing D1 receptors 
(D1Rs) versus D2 receptors (D2Rs) respond differently to dopamine 
inputs. In the striatum, neurons expressing D1Rs promote action via 
the direct pathway, whereas neurons expressing D2Rs inhibit action 
via the indirect pathway104. In the prefrontal cortex, D1R-expressing 
neurons promote memory maintenance, whereas D2R-expressing 
neurons promote memory updating105.

Recent data have highlighted ways in which cell-type specificity 
and projection specificity interact to produce functional diversity. 
For example, a septal-hypothalamic pathway mediating aggression 
is modulated by a population of dopamine neurons projecting from 
the ventral tegmental area to D2R-expressing neurons in the lateral 
septum106. Optogenetic activation of these dopamine neurons 
can evoke aggressive behavior, but this effect is prevented by D2R 
antagonism in the lateral septum. Another example is the encoding 
of information about reward distributions through the opponency 
of neurons expressing D1Rs versus D2Rs in the striatum, which may 
interact with the functional differences of projections from distinct 
populations of dopamine neurons107,108.
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Another complicating factor is that motor control in the brain is 
fundamentally distributed—multiple regions apart from the basal gan-
glia, such as the motor cortex and cerebellum, exert semi-independent 
control over motor behavior. This observation poses a challenge for 
learning algorithms that update parameters in a particular region based 
on the aggregate policy—the RPE used to update parameters is shared 
across all of these regions, resulting in a credit assignment problem. 
If the basal ganglia promote action A but action B is selected due to 
the influence of other regions, the basal ganglia parameters may be 
incorrectly assigned credit or blame.

‘Off-policy’ algorithms such as Q-learning can finesse this problem 
by learning about a policy that is different from the one generating 
behavior. When suitably parametrized, Q-learning can be applied to 
the continuous action spaces typical in motor control problems71. 
Critically, the teaching signal for updating depends on both the clas-
sical RPE and an ‘action surprise’ signal (the deviation of the sampled 
action from the highest-probability action). Because this action sur-
prise signal is nonspecific (it can be evoked by any low-probability 
action), it can explain the finding that motor-evoked dopamine signals 
do not distinguish between movement types. It can also explain why 
dopamine responses to lever-pressing decrease with practice64, as 
actions become more reliable and hence less surprising. Recent data 
have provided direct evidence for action prediction errors in dopamine 
projections to the tail of the striatum72. These signals were evoked 
when animals took familiar actions in response to an unfamiliar cue 
and were not modulated by reward value. Optogenetic stimulation of 
these projections at the time of choice induced a contralateral choice 
bias (consonant with earlier pharmacological studies) without modu-
lating other movement parameters. Notably, stimulation at the time of 
outcome did not induce a choice bias, indicating that the signals were 
not conveying a traditional RPE.

What is the role of dopamine in action selection 
and motivation?
The RPE hypothesis posits that dopamine functions as a learning sig-
nal. Although this signal can influence action selection via updating 
of action values or policy parameters following reinforcement, the 

original hypothesis does not provide any role for dopamine in the action 
selection process itself. Nonetheless, studies have indicated such a role.

Acute optogenetic manipulations of dopamine at the time of 
action selection can alter an animal’s behavior, including movement 
choice68,73,74, vigor15, initiation18 and kinematics75. It should be noted, 
however, that some data argue against a role for phasic dopamine in 
real-time control of action selection. In particular, one study found that 
the effects of optogenetic manipulations were temporally restricted to 
the postreward period76. Another study found that optogenetic activa-
tion of dopamine axons caused a reduction in motivation77.

Some RL models treat the learning and action selection functions 
of dopamine as separate channels, possibly implemented by phasic and 
tonic activity, respectively78,79. These channels must be linked—tonic 
activity is a time integral of phasic activity. Mathematically, it is possible 
to reconcile this constraint with the dual-channel hypothesis, under 
the assumption that tonic dopamine reports an estimate of the average 
reward and phasic dopamine reports an RPE that is referenced to the 
average reward80 (Box 4). Critically, the estimate of average reward is 
simply an accumulator of the RPE. This is closely related to the average 
reward model of dopamine proposed in ref. 81, but has the advantage 
that the two channels are mutually consistent.

Average reward has a special role in action selection by calibrating 
the optimal level of effort. For example, an animal in an operant condition-
ing task with a fixed ratio schedule can earn more rewards by responding 
more frequently, but this incurs a physical effort cost. A higher average 
reward (for example, due to a higher ratio) means that the animal can 
earn more rewards for the same amount of effort and therefore should 
respond more frequently. This is indeed what happens with normal rats, 
but not with dopamine-depleted rats82, a finding that is well-explained by 
an average reward model of tonic dopamine83 and is consistent with other 
motivational deficits reported in dopamine-depleted animals84. In light of 
the average reward model, one possibility is that the motivational effects 
of optogenetic manipulations may be mediated by transient changes 
in tonic dopamine levels. Indeed, recent data suggest that interactions 
between tonic and phasic channels may be complex85.

Some models have directly incorporated phasic dopamine into 
the action selection process86,87. For example, the influential opponent 
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actor learning model86,88 assumes that phasic dopamine levels influ-
ence action selection by binding to striatal D1 (Go) receptors on direct 
pathway neurons and D2 (NoGo) receptors on indirect pathway neu-
rons, with increases and decreases (or pauses) in dopamine and dif-
ferent binding affinities determining asymmetries in Go versus NoGo 
behavior. These models raise the question of why, from a normative 
perspective, the same dopamine signal should participate in both 
learning and action selection.

One attempt to resolve this question posits that dopamine has a 
role in goal-directed action planning89. RPEs, on this account, provide 
a directive signal for policy optimization, unifying planning, habit 
formation and learning. The key idea is that the same RPE signal can be 
reduced by improving value estimates (learning) in ventral striatum and 
improving the policy (planning and habit formation) in dorsal striatum. 
Positive RPEs delivered to dorsal striatum are hypothesized to drive 

increases in action intensity (vigor) via dopamine projections to striatal 
neurons expressing D1Rs. When action intensity is too high, resulting in 
forfeited reward, the ensuing negative RPE drives a decrease in action 
intensity (which could potentially happen at fast timescales, in addi-
tion to slower trial-by-trial adjustments). This account explains why 
vigor is modulated by acute manipulations of dopamine at the time 
of action—positive RPEs indicate that more reward can be earned by 
adopting higher action intensity15.

Beyond RPEs
We have focused on explanations of dopamine function within an RL 
framework, showing that a suitably generalized concept of prediction 
error can explain a wide range of findings about dopamine. However, 
recent studies have presented data that might fundamentally chal-
lenge the prediction error hypothesis and suggest alternative theories.

Building on a sophisticated model of Pavlovian conditioning90, 
studies in refs. 91,92 argued that dopamine conveys a ‘perceived sali-
ency’ signal to the ventral striatum (nucleus accumbens). Perceived 
saliency is formally defined as the product of stimulus saliency (a 
physical property of the stimulus such as its intensity relative to the 
background) and attentional value (a cognitive property that depends 
on stimulus novelty). Because perceived saliency can be higher for both 
appetitive and aversive stimuli, this account can explain dopamine 
responses to both stimulus types. Dopamine release in the ventral 
striatum also shows a transient increase when an expected aversive 
stimulus is omitted91. One might be tempted to reason that this is a 
positive RPE evoked by a ‘safety’ outcome, but this would be incorrect 
because an even larger response is evoked by the expected aversive 
stimulus itself. This finding also rules out an ‘unsigned RPE’ hypoth-
esis, under the assumption that receipt and omission responses have 
similar magnitudes. By contrast, the perceived saliency hypothesis can 
capture this finding by virtue of the fact that the absence of a predicted 
stimulus (regardless of its valence) is perceived as new, thereby driving 
an increase in attentional value. Although this study poses a strong 
challenge to the RPE hypothesis, one complicating factor is that the 
training history of the animals may have affected the generalization of 
value across cues (see our earlier discussion of novelty). Furthermore, 
the dopamine signals were mainly recorded from the medial portion 
of the ventral striatum. The prevalence of perceived saliency signals 
in other parts of the striatum remains to be examined.

Perceived saliency can also explain why dopamine initially 
responds to new neutral stimuli, why this response declines across 
repeated presentations and why this form of stimulus pre-exposure 
retards subsequent stimulus-outcome learning (the latent inhibition 
effect)92. Although some aspects of these findings might be explained 
by the hypothesis that RPEs are normalized by uncertainty93,94, which 
decreases over the course of stimulus pre-exposure, in combination 
with the hypothesis that dopamine encodes a novelty bonus35, there are 
other aspects that are more difficult to explain in this way. Optogenetic 
manipulations of dopamine during pre-exposure bidirectionally affect 
subsequent learning, accelerating learning when excited and retarding 
learning when inhibited. Notably, these manipulations do not affect the 
conditioned response on the first learning trial, indicating that initial 
outcome expectations were the same across conditions. By contrast, 
a basic prediction of the RPE hypothesis (either normalized or unnor-
malized) is that increases in RPE during stimulus presentation should 
increase later outcome expectations.

Another alternative hypothesis is that dopamine signals retro-
spective inferences about ‘meaningful’ causal targets—stimuli that are 
likely causes of reward outcomes95. This hypothesis can explain many 
phenomena that were previously explained by the RPE hypothesis, 
such as dopamine responses to reward magnitude and probability, 
blocking, unblocking, overexpectation and conditioned inhibition. It 
can also explain new phenomena that appear to be inconsistent with 
the RPE hypothesis. For example, the RPE hypothesis predicts that 

Box 4

Linking phasic and tonic 
dopamine through average 
reward RL
The dual-channel hypothesis posits that phasic dopamine encodes 
RPEs and tonic dopamine encodes average reward. This can be 
formalized as follows, using the definition of differential value 
instead of discounted value:

Vt = Eπ (rt − ρ+Vt+1)

ρ = lim
T→∞

1
T

T

∑
t=1

Eπ(rt),

where ρ is the asymptotic average reward over time. Wan et al.80 
proved that differential values can be estimated using a temporal 
difference learning algorithm:

∆ ̂Vt(s) = αδt

∆ρ̂t = ηαδt,

where ρ̂t is an estimate of the average reward, η > 0 is a step-size 
parameter, α is a learning rate and δt is the average reward RPE:

δt = rt − ρ̂t + ̂Vt+1(s) − ̂Vt(s)

Note that, although individual RPEs may decrease toward 0 
over the course of learning, the same is not necessarily true of 
the accumulated RPE (the estimate of average reward)—if there 
are initial positive RPEs, the accumulator will increase and then 
asymptote as RPEs go to 0. Critically, the same RPE is used to 
update both channels, making the model consistent with the 
physiological constraint that the same dopamine signal determines 
tonic and phasic activity at different timescales.

The average reward model formalizes the longstanding idea that 
tonic dopamine activity can exert an antagonistic effect on phasic 
activity through the action of autoreceptors109. The model predicts 
that as the reward rate increases, the amplitude of phasic responses 
to unexpected rewards should become progressively smaller81, as 
observed experimentally110.
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uncued rewards should initially evoke a large dopamine response 
that decreases across repeated rewards due to the acquisition of a 
context-outcome association. By contrast, a study in ref. 95 reports 
that the dopamine release in the ventral striatum actually increases 
across repeated rewards. The causal inference hypothesis explains this 
finding as the result of learning that the local reward rate (at the time of 
reward receipt) is higher than the background reward rate. Dopamine 
is hypothesized to reflect the difference between these two rates, a 
key computation in the identification of meaningful causal targets. 
Although this is an intriguing hypothesis, more modeling and experi-
mental work is needed to assess whether the evidence truly falsifies the 
RPE hypothesis. Recent work has challenged some of the claims made 
by the retrospective inference account96.

A third alternative hypothesis is that dopamine sets an adaptive 
learning rate. A study in ref. 97 has shown that licking behavior in a trace 
conditioning paradigm is well-explained by an RL model that adapts 
its learning rate based on the strength of learned sensory weights and 
the change in the behavioral policy at the time of reward. Intuitively, 
the adjustment of the policy parameters is greater when sensory infor-
mation and changes in the current policy yield reward (and hence are 
likely to be useful for performance optimization). This model makes 
a distinction between ‘preparatory’ behavior that controls the deliv-
ery of rewards and ‘reactive’ behavior that controls the collection of 
rewards after their delivery. These two forms of behavior are both 
optimized for performance and linked by the same adaptive learning 
rate, which is putatively reported by mesolimbic dopamine. This model 
can capture the emergence of differences in ventral striatal dopamine 
levels in response to expected and unexpected rewards late in training 
(a canonical signature of RPEs), but, critically, it can also capture the 
dissociable trajectories of cue and reward responses early in training, 
which appear to conflict with the predictions of the RPE hypothesis65. 
Only a few studies have tested these predictions early during training, 

and the results are mixed. One recent study reported dopamine dynam-
ics that conform to the predictions of the RPE hypothesis; namely, a 
gradual translocation of the dopamine response from rewards to cues30.

This brief survey of alternative theories suggests that a complete 
theory of dopamine will require computational concepts that go 
beyond RPEs. Although no model exists that can capture the diverse 
range of empirical phenomena, in Fig. 4, we sketch what an integrative 
theory might look like.

Exploiting new methods to test theories of 
dopamine
This perspective has focused on a theory-driven approach to under-
standing dopamine. At the same time, testing existing theories and 
developing new ones depends strongly on our ability to measure rel-
evant brain signals and extract information from them. Several tech-
nological and analytical advances have already yielded discoveries 
with important implications for computational theories of dopamine.

Real-time monitoring of protein kinase A (PKA) in striatal spiny 
projection neurons has revealed differential sensitivity to increases and 
decreases of dopamine in neurons that express D1Rs and D2Rs, respec-
tively98. This finding provided a direct link between plasticity-related 
signaling and RL algorithms that apply dichotomous update rules for 
positive and negative prediction errors86. Notably, it would have been 
impossible to establish this link without the invention of fluorescent 
indicators for dynamically measuring PKA99. However, these findings 
introduce new mysteries, as phasic changes in DA concentration alter 
PKA signaling of >10 s, raising the question of how such prolonged 
changes can be useful for temporally precise credit assignment.

Another example is the study of spontaneous natural behaviors, 
which has been enabled by the recent development of tools for extract-
ing low-dimensional descriptions of high-dimensional movement pat-
terns. One such algorithm, MoSeq, extracts a time series of behavioral 
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‘syllables’ corresponding to short movement sequences such as turn-
ing, rearing and darting100. To understand how structured naturalistic 
behavioral policies emerge, Markowitz et al. used MoSeq in combina-
tion with photometric recordings of striatal dopamine transmission 
and closed-loop optogenetic stimulation of dopamine neuron axons68. 
Dopamine transmission had multiple effects on syllables: (1) control of 
syllable stochasticity, (2) reinforcement of syllable expression and (3) 
modulation of syllable speed. These discoveries would not have been 
possible without the availability of data-driven methods for analyzing 
naturalistic behavior.

Conclusions
Explaining the function of dopamine requires a mosaic of different 
mechanisms operating in different brain systems, at different time-
scales and in different contexts. Nonetheless, we have argued that a 
relatively small set of computational principles can explain a remark-
ably wide range of empirical facts about dopamine. Notably, this syn-
thesis revises some fundamental concepts. Prediction errors are not 
limited to rewards; they sometimes need to be corrected (via value 
decay), and they have a central role not only in learning but also in 
action selection, motivation and vigor. We have also pointed out ways 
in which this synthesis falls short—dopamine may also signal or control 
salience, causal inferences, precision and learning rate. An integrative 
theory should incorporate these diverse mechanisms.
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