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A B S T R A C T

When humans and other animals make repeated choices, they tend to repeat previously chosen actions in-
dependently of their reward history. This paper locates the origin of perseveration in a trade-off between two
computational goals: maximizing rewards and minimizing the complexity of the action policy. We develop an
information-theoretic formalization of policy complexity and show how optimizing the trade-off leads to per-
severation. Analysis of two data sets reveals that people attain close to optimal trade-offs. Parameter estimation
and model comparison supports the claim that perseveration quantitatively agrees with the theoretically pre-
dicted functional form (a softmax function with a frequency-dependent action bias).

1. Introduction

In his pioneering work on animal intelligence, Thorndike (1911)
formulated several “laws” of learning. The most famous of these, the
law of effect, stated that an action yielding a reward will become more
likely to be repeated in the future. The lesser-known law of exercise
stated that simply producing an action will make it more likely to be
repeated in the future (and concomitantly, an action will become less
likely to be repeated if it's not produced). The law of exercise implies a
form of perseveration: with sufficient frequency of repetition, an action
will be selected even if it no longer yields the highest reward among the
possible choices. The law of exercise thus captures a key signature of
habit, whereby repetition causes behavior to become “autonomous”
from the agent's goals (Dickinson, 1985; Miller et al., 2019; Wood &
Rünger, 2016).

Although these laws do not exhaustively determine action selection,
they are supported by many studies of humans and other animals. For
example, Lau and Glimcher (2005) found that monkeys performing a
two-alternative forced choice task were influenced by the recent history
of both rewards and choices, a finding that also extends to human
subjects (e.g., Seymour et al., 2012). Under time pressure, people will
frequently repeat previous actions despite intending to choose an al-
ternative action (Betsch et al., 2004). Reaction times are also facilitated
for response repetitions in serial choice reaction tasks (e.g., Bertelson,
1965; Rabbitt & Vyas, 1974). In everyday life, past actions predicts
future actions (e.g., product choices in the supermarket; Riefer et al.,
2017), even after controlling for other predictors such as conscious
intentions and beliefs about social norms (Ouellette & Wood, 1998).

While perseveration has been ubiquitously documented, a basic

puzzle is why it occurs at all. If the goal is to maximize reward, an
agent's actions should be entirely predictable from its reward history; in
other words, the law of exercise should be completely dominated by the
law of effect. If anything, the need to explore actions in order to gain
information about their consequences should induce a tendency against
repeating past actions (Riefer et al., 2017; Schulz & Gershman, 2019).

A common theme in the psychology of habit is the idea that per-
severation is somehow less effortful (Wood & Rünger, 2016). Some
reinforcement learning models have conceptualized effort in terms of
computational complexity; habits arise from action selection based on a
look-up table of cached reward expectations, which demands less effort
compared to goal-directed action selection based on planning with an
internal model of the task (Daw, 2018). Consistent with this con-
ceptualization, taxing cognitive resources (for example, by having
subjects perform a secondary task or increasing the difficulty of plan-
ning) results in greater reliance on habit (Gershman, Markman, & Otto,
2014; Kool, Gershman, & Cushman, 2018; Otto, Gershman, et al.,
2013). The problem with this view of habit, as pointed out by Miller
et al. (2019), is that it does not exactly correspond to Thorndike's law of
exercise: caching reward expectations in a look-up table does not by
itself produce a bias to repeat actions. Rather, this form of caching can
be viewed as implementing Thorndike's law of effect.

Miller et al. (2019) propose an alternative model that explicitly
formalizes the law of exercise, whereby taking an action increases its
habit strength independently from reward. While this model succeeds
as a descriptive account of habitual action selection, it does not provide
a computational rationale for perseveration. Thinking about this ra-
tionale in terms of computational complexity seems unpromising, since
it's not obvious why looking up a cached habit value would be less
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cognitively expensive than looking up a cached reward expectation,
and the latter is obviously more useful from the perspective of reward
maximization.

A different approach to this question rests upon a distinction be-
tween computational and statistical complexity. Whereas computational
(or time) complexity measures how much thinking is required to per-
form a task, statistical (or sample) complexity measures how much
learning is required. Effort, in this case, corresponds to the difficulty of
learning. Is it possible that habits are less statistically complex? In fact,
Filipowicz et al. (2020) have shown that learning cached reward ex-
pectations is not necessarily more statistically complex than learning an
internal model for planning (they did not directly address the perse-
verative notion of habit).

In this paper, we explore a different computational rationale for
perseveration, based on the notion of policy complexity (Lerch & Sims,
2018; McNamee et al., 2016; Parush et al., 2011; Still & Precup, 2012;
Tishby & Polani, 2011). In the language of reinforcement learning
theory, a policy π(a| s) is a probabilistic mapping from states to actions
(Sutton & Barto, 2018), where a state corresponds to the information
about the environment that is needed for reward prediction. To im-
plement a policy computationally, we would need to describe it in some
programming language, and the description length of that program
(e.g., in bits or nats) imposes a demand on memory resources. In-
tuitively, if a policy can be “compressed” to a short description length,
it will be easier to remember, much in the same way that the benefits of
compression have been studied in memory for symbolic and visual
stimuli (Brady et al., 2009; Mathy & Feldman, 2012; Nassar et al.,
2018). As we will formalize later, it turns out that perseveration arises
naturally from the imperative to reduce policy complexity. Persevera-
tion is, in essence, a form of policy compression.

Policy complexity is conceptually different from computational
complexity; one could have a policy with low policy complexity and
high computational complexity, or vice versa. For example, finding the
shortest path between two distant cities might require an expensive
optimization (high computational complexity), but the optimal path
itself might be very simple, like staying on one highway for most of the
trip (low policy complexity). In contrast, finding the shortest path be-
tween two locations in the same city might be cheap (low computa-
tional complexity), but the optimal path might be tortuous (high policy
complexity), as anyone who has tried to get around Boston by car
knows well.

The question addressed here is how people negotiate the trade-off
between reward and policy complexity. The mathematical toolbox for
answering this question comes from the branch of information theory
known as rate distortion theory (Berger, 1971). The next section reviews
the elementary concepts as they apply to policy optimization. Rate
distortion theory allows us to derive the optimal trade-off function,
which reveals that perseveration will occur for any resource-bounded
agent. Since both reward and policy complexity are experimentally
measurable, we can evaluate the degree to which choice data conform
to the optimal trade-off function. Furthermore, by fitting parametrized
policies to the choice data, we can evaluate how well the data match
the theoretically predicted form of perseveration.

Before proceeding, it is important to distinguish the definition of
perseveration used here from other notions of perseveration. The defi-
nition of perseveration as state-independence of the policy used here is
not the same as the definition of perseveration as the tendency to repeat
the same action regardless of state. For example, an agent whose policy
is a uniform distribution for all states would be classified as perse-
verative, even though the probability of action repetition is low. The
state-independence definition of perseveration comports with the in
which perseveration is understood in rule-switching tasks, such as the
Wisconsin card sorting test (Berg, 1948) or the dimensional change card
sort task (Zelazo, 2006). In these tasks, perseveration (or inflexibility) is
defined by the degree of adherence to a previous rule that is no longer
valid. Importantly, this form of rule adherence is not simply a repetition

of earlier actions but rather a repetition of an entire task set (i.e., a
policy). Thus, here we have construed Thorndike's Law of Exercise as
referring to the exercise of policies rather than individual actions.

2. Methods

All code and data for reproducing the analyses described below is
available at https://github.com/sjgershm/reward-complexity.

2.1. Theoretical framework

Rate distortion theory addresses the interface between information
theory and statistical decision theory (see Sims, 2016, for an accessible
introduction written for cognitive psychologists). Here we will adopt
somewhat non-standard terminology, following Parush et al. (2011), in
order to draw a clearer connection with the issues raised in the In-
troduction. We will assume that an agent either learns or has direct
access to a value function Q(s,a) that defines the expected reward in
state s after taking action a. Each state is visited with probability P(s),
and an action is chosen according to a policy π(a| s). Recalling the
navigation example from the Introduction, states would correspond to
physical locations, and actions would correspond to driving directions.

In the language of information theory, we can think of the state
distribution as a source and the policy as a noisy channel, mapping
messages (states) to codewords (the internal representation), which are
in turn mapped to output signals (actions). The average codeword
length (or rate) necessary to encode a policy with arbitrarily small error
is equal to the mutual information between states and actions:

∑ ∑=I S A P s π a s π a s
P a

( ; ) ( ) ( | ) log ( | )
( )

,π

s a (1)

where P(a) = ∑sP(s)π(a| s) is the marginal probability of choosing ac-
tion a (i.e., the policy averaged across states). Because the mutual in-
formation quantifies the degree of probabilistic dependency between
states and actions, we will refer to it as the policy complexity. Intuitively,
policies are more complex to the extent that the policy is state-depen-
dent (e.g., driving is more complex when you have to pay attention to
your current location). If the policy is the same in every state, then the
policy complexity is minimized (mutual information is equal to 0).

The communication channel formulation is useful because it lets us
see why compression makes sense. Real-world environments involve a
huge number of states and actions (think of each direction you could
drive at each location in a city), so a resource-limited system can't af-
ford to represent all of them in a giant look-up table. This goes against
the conventional wisdom that look-up tables are computationally cheap
(e.g., Kool, Cushman, & Gershman, 2018); although they require little
thinking (low computational complexity), they require a large number
of bits (high policy complexity). Previous applications of rate distortion
theory to psychology have used this insight to explain the factors in-
fluencing confusability in memory, on the assumption that items cannot
be stored in a look-up table due to resource constraints (Sims, 2016;
Sims et al., 2012).

Exactly how much to compress depends on the amount of reward
that can be achieved for a given policy complexity. Let us denote the
average reward by:

∑ ∑=V P s π a s Q s a( ) ( | ) ( , ).π

s a (2)

We can now formulate the optimization problem:

=∗π Vargmax
π

π
(3)

=I S A Csubject to ( ; ) ,π (4)

where C denotes the channel capacity—the maximum achievable policy
complexity. Intuitively, the goal is to earn as much reward as possible,
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subject to the constraint that the policy complexity cannot exceed the
capacity limit. We have left implicit two other necessary constraints
(action probabilities must be non-negative and sum to 1). This con-
strained optimization problem can be rewritten in a Lagrangian form:

∑ ∑= − + ⎛

⎝
⎜ − ⎞

⎠
⎟

∗π βV I S A λ s π a sargmax ( ; ) ( ) ( | ) 1
π

π π

s a (5)

with Lagrange multipliers β and λ(s). The optimal policy π∗ has the
following form (Parush et al., 2011; Still & Precup, 2012; Tishby &
Polani, 2011):

∝ +∗ ∗π a s βQ s a P a( | ) exp[ ( , ) log ( )]. (6)

A number of recognizable components now come into view. The
optimal policy is a softmax function, used ubiquitously in the re-
inforcement learning literature for both simulating artificial agents and
modeling biological agents. The Lagrange multiplier β plays the role of
the “inverse temperature” parameter, which regulates the exploration-
exploitation trade-off via the amount of stochasticity in the policy
(Sutton & Barto, 2018). When β is close to 0, the policy will be near-
uniform, and as β increases, the policy will become increasingly con-
centrated on the action with maximum value. However, note that the
derivation of the optimal policy makes no reference to exploration (see
Still & Precup, 2012). Rather, β reflects the resource constraint—more
precisely, its inverse is the partial derivative of the value with respect to
the policy complexity:

=−β dV
dI S A( ; )

.
π

π
1

(7)

This means that the inverse temperature for the optimal policy will
be lower (choice stochasticity higher) when varying the policy com-
plexity has a greater effect on reward (see also Ortega & Braun, 2013;
Zénon et al., 2019).

Another important property of Eq. (6) is the logP∗(a) term, which
arises from the need for policy compression due to the capacity con-
straint. This implies that frequently chosen actions should bias the
policy (i.e., produce perseveration), in accordance with Thorndike's law
of exercise. We will empirically evaluate the specific functional form of
perseveration implemented by Eq. (6), as described below.

The perseveration term implicitly depends on the optimal policy,
since

∑=∗ ∗P a P s π a s( ) ( ) ( | ).
s (8)

Thus, to find the optimal policy, we can use a variation of the classic

Blahut-Arimoto algorithm (Arimoto, 1972; Blahut, 1972), alternating
between updating the policy according to Eq. (6) and updating the
marginal action distribution according to Eq. (8). By performing this
optimization for a range of β values, we can construct a reward-com-
plexity curve that characterizes the optimal policy for a given resource
constraint. That is, for a given resource constraint, the point on the
reward-complexity curve yields the highest reward with the least
amount of perseveration. The slope of each point on the reward-com-
plexity curve is given by β−1. The reward-complexity curve is always
concave, which means that β monotonically increases with policy
complexity.

2.2. Why mutual information measures perseveration

Although not immediately obvious, the mutual information between
states and actions provides an intuitive measure of perseveration.
Consider an agent that adopts the same action policy regardless of what
state it's in. Mathematically, this implies that = 1π a s

P a
( | )

( ) , or equivalently

=log 0π a s
P a
( | )

( ) . This policy produces a high-level of perseveration, be-
cause an agent will tend to continue taking the same actions even after
the state has changed. If the agent adopts a state-dependent policy, and
hence perseverates less, then the log probability ratio will on average be
greater than 0. Thus, the average log probability ratio is monotonically
related to the degree of perseveration. This quantity is in fact just the
mutual information. It is lower-bounded by 0 (maximum perseveration)
and upper-bounded by the entropy of the marginal action distribution

Nlog , where N is the number of actions. This upper bound is achieved
by an agent that deterministically selects actions in each state such that
the marginal distribution over actions is uniform.

It is important to note that mutual information is a theory-agnostic
measure of perseveration in the sense that it makes no assumption
about how agents negotiate the reward-complexity trade-off, or indeed
about how they make decisions at all. Thus, although it is identical to
policy complexity (a theory-based concept), we can always interpret the
complexity axis of reward-complexity plots as a measure of perse-
veration regardless of whether actions are influenced by policy com-
plexity.

2.3. Data sets

We evaluated the predictions of the theory developed in the pre-
vious section using two data sets. The first data set, reported in Collins
(2018), consists of 91 subjects performing a reinforcement learning task
in which the set size (the number of distinct stimuli, corresponding to

Fig. 1. Schematic of experimental tasks. (A) In Collins (2018), subjects saw a single stimulus on each trial and then chose between 3 actions. Each stimulus
corresponded to a state with a single rewarded action. The number of stimuli was varied across blocks. (B) In Steyvers et al. (2019), subjects viewed a display
containing leaves moving coherently in one of 4 cardinal directions. The leaves also pointed in one of four cardinal directions. On some trials (indicated by orange
leaf color) subjects made a motion direction judgment, and on other trials (indicated by green leaf color) subjects made a pointing direction judgment. Feedback was
provided after each judgment. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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states) varied across blocks (Fig. 1A). On each trial, subjects saw a
single stimulus, chose an action and received reward feedback. Each
stimulus was associated with a single rewarded action. The experiment
consisted of a learning and test phase (with no reward feedback), but
here we only analyze the learning phase data. Each subject completed
14 blocks, half with set size 3 and half with set size 6. Each stimulus
appeared 12–14 times in a block. No stimulus was repeated across
blocks.

The second data set, reported in Steyvers et al. (2019), consists of
1000 subjects playing the task-switching game “Ebb and flow” on the
Lumosity platform (Fig. 1B). On each trial, subjects viewed moving
leaves on a display and reported either the motion or pointing direction
of the leaves. In this case, the state corresponds to a tuple (task, motion
direction, pointing direction), defining 32 distinct states. Subjects
played between 371 and 5227 trials, with a median of 2735 trials (99%
of subjects played over 1000 trials, so the task can be considered well-
practiced for most subjects).

2.4. Mutual information estimation

To construct the empirical reward-complexity curve, one needs to
estimate two quantities: average reward and the mutual information
between states and actions. Estimation of average reward is straight-
forward, but estimation of mutual information is notoriously tricky (see
Paninski, 2003). We used the Hutter estimator, which computes the
posterior expected value of the mutual information under a Dirichlet
prior (Hutter, 2002). We chose a symmetric Dirichlet prior with a
concentration parameter α=0.1, which exhibits reasonably good per-
formance when the joint distribution is sparse (Archer et al., 2013).1

The sparsity assumption is likely to hold true in the data sets analyzed
here because there is a single rewarded action in each state. As shown
in the Results, this produced empirical reward-complexity curves that
mostly satisfied the theoretical bound.

Parameter estimation and model comparison.
To quantitatively evaluate the theory, we fit models of the following

form:

∝ +π a s βQ s a τ P a( | ) exp[ ( , ) log ( )], (9)

where Q s a( , ) is an estimate of the expected reward and τ is a choice
perseveration parameter. In model M1, we fit both β and τ as free
parameters. Previous models incorporating a perseveration parameter
typically treated it as a purely descriptive device, soaking up a large
source of variance (e.g., Gershman, 2016; Lau & Glimcher, 2005;
Seymour et al., 2012). These earlier models did not typically place
constraints on the parameter value, and nor have we in this paper.
Critically, the rate distortion framework does make predictions about
the parameter value, namely that it should equal 1 when β is allowed to
vary. Accordingly, in model M2 we fit only β, and forced τ to equal 1
(corresponding to the optimal policy in Eq. (6)). Maximum likelihood
parameter estimates were obtained using unconstrained optimization
with 5 random initializations to avoid local maxima.

Model comparison was performed using a Bayesian random effects
procedure (Rigoux et al., 2014). In brief, this procedure estimates the
population-level frequency of each model, along with the probability
that an individual subject's data were generated by each model. We
report the log model evidence favoring M2 over M1 for each subject, as
well as the protected exceedance probability, which measures the
probability that M2 is more likely in the population than M1, taking
into account the probability of spurious differences due to randomness.

The procedure to obtain Q s a( , ) and P(a) for each trial was slightly
different for the two data sets. For the Collins (2018) data set, the Q-
values were initialized to 0, learning was modeled using a standard
delta rule:

 = −ΔQ s a α r Q s a( , ) [ ( , )], (10)

where α is a learning rate parameter (which was fitted to the data)
and r is the received reward. The marginal action probability P(a) was
estimated using a 5-trial moving average (truncated at boundaries be-
tween blocks).

For the Steyvers et al. (2019) data set, we assumed that subjects had
full knowledge of Q(s,a) and simply hard-coded it into the policy. As
with the Collins data set, the marginal action probability was estimated
using a 5-trial moving average. Since there was no discrete block
structure, no truncation of the moving average was applied.

3. Results

To briefly recapitulate the key points from the theoretical frame-
work: if there are a limited number of bits available to encode a policy
(the capacity constraint), then the reward-maximizing policy subject to
this constraint will be compressed, ignoring some state information.2

Compression implies perseveration, in the sense that actions will be
selected in proportion to their frequency of past selection (a form of
Thorndike's Law of Exercise). If the perseveration lies on the reward-
complexity curve, we can describe it as achieving an optimal trade-off
between reward and policy complexity under a particular capacity
constraint, which may vary across individuals. The two main goals of
this section are (1) to evaluate whether individuals do in fact lie near
the reward-complexity curve, and (2) to evaluate whether action se-
lection follows the specific parametric model dictated by the optimal
resource-constrained policy.

Figs. 2 and 3 show the reward-complexity curves for the two data
sets, with the empirical data superimposed. As predicted by the theory,
reward generally increases monotonically with policy complexity, with
values close to the optimal trade-off curve. Fig. 2 also shows that policy
complexity is higher for larger set sizes, resulting in lower average re-
ward. In general, subjects are performing well above chance in both
data sets, indicating that any perseveration we identify using mutual
information is not simply the result of random responding.

To quantify the agreement between theory and data, we used in-
terpolation to identify the predicted average reward for each measured
policy complexity value. These predictions were significantly correlated
with the empirical average reward (r = 0.91 for the Collins data set,
r = 0.96 for the Steyvers data set, both p < 0.00001). Despite this
quantitative agreement, the data also indicate a salient deviation from
the optimal reward-complexity curve: subjects with low policy com-
plexity achieve lower average reward than would be predicted by the
optimal policy. We quantified this by computing the correlation be-
tween the bias (how far a subject is from the theoretical curve) and
policy complexity, finding a significant negative correlation for both
data sets each measured policy complexity value (r = − 0.55 for the
Collins data set, r = − 0.81 for the Steyvers data set, both
p < 0.00001).

We next sought to evaluate the functional form of the policy de-
scribed by Eq. (6) (a more flexible parametrization is examined in the
Appendix). As described in the Methods, we fit two models to the choice
data: M1, which fits the degree of choice perseveration as a free para-
meter to each subject separately, and M2, which forces the parameter to
equal 1 (in accordance with the theory). The distributions of estimates

1 Selecting values larger than 0.1 resulted in some points lying above the
reward-complexity curve, which is theoretically impossible and therefore in-
dicates bias in the estimator. Different values of α do not significantly alter the
shape of the empirical reward-complexity curve; the main effect is to shift the
entire curve along the complexity axis.

2 Technically, compression will only be necessary if capacity constraint is
lower than the number of bits needed to encode the optimal unconstrained
policy. Here we are dealing with the case where the unconstrained policy is
unachievable under the capacity constraint.
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for this parameter are shown in the left panels of Fig. 4, revealing that
they are concentrated around 1 (89% of the parameter estimates were
between 0.5 and 1.5 for the Collins data set, and 96% in the Steyvers
data set).3 This conclusion was further validated by random-effects
Bayesian model selection, which strongly favored model M2 over M1
(protected exceedance probability greater than 0.99 for both data sets).
M2 was favored for almost all subjects, as shown in the right panels of
Fig. 4. Taken together, these results show that the resource-constrained
optimal policy provides a good quantitative model of perseveration in
these data sets.

Although M2 was favored on aggregate, the relative evidence for
M2 over M1 for individual subjects was negatively correlated with each
subject's bias (r = − 0.30 for the Collins data set, r = − 0.25 for the

Steyvers data set, both p < 0.01). This indicates that deviations from
optimality might be partly explicable in terms of Eq. (9). Indeed, the
estimated τ parameter was negatively correlated with bias (r = − 0.55
for the Collins data set, r = − 0.09 for the Steyvers data set, both
p < 0.01). Thus, subjects with higher bias tended to have higher levels
of perseveration, consistent with the empirical reward-complexity
curves shown in Figs. 2 and 3.

To ensure that our parameter estimation results are not a spurious
consequence of the model structure (e.g., due to identifiability issues),
we simulated data from Eq. (9) applied to the experimental design from
the Steyvers study. The inverse temperature and choice perseveration
parameters were sampled uniformly from the range [0,5]. We then fit
the model to these simulated data using the same procedure that we
applied to the experimental data. Fig. 5 shows a tight correlation be-
tween the true and recovered choice perseveration parameter estimates
(r = 0.94), indicating that this parameter is indeed recoverable, bol-
stering our confidence in the analyses of parameter estimates for the
experimental data.

4. Discussion

The idea that many aspects of cognition can be explained in terms of
resource-bounded rationality has gained wide currency (Gershman
et al., 2015; Lieder & Griffiths, 2019). The precise nature of the resource
constraints and their implications is a matter of ongoing research. We
contribute to this line of thought by applying rate distortion theory to a
fundamental puzzle in psychology: why do humans and other animals
perseverate? The answer provided here is that perseveration is a natural
consequence of limitations on policy complexity. If the number of bits
available to encode a policy is finite, then a resource-rational agent will
exhibit perseveration. We showed empirically, using two data sets, that
subjects or task conditions with different degrees of policy complexity
yield predictable levels of reward attainment in accordance with the
optimal reward-complexity trade-off. Our analyses also showed that the
functional form of perseveration was quantitatively consistent with rate
distortion theory. Nonetheless, there was a systematic deviation from
the optimal trade-off function for subjects with low policy complexity.

Why was the deviation from optimality higher for low complexity
subjects? Our data do not provide a definitive answer. One possibility is
that optimization of the resource-constrained objective function is itself
resource-constrained, such that people who can devote fewer bits to
encoding their policy also have fewer computational resources to find
the optimal solution. This would be consistent with evidence that
working memory capacity predicts the deployment of computationally
expensive planning algorithms (Gershman et al., 2014; Otto, Raio,
et al., 2013; Schad et al., 2014). Another possibility is that low com-
plexity subjects are not optimizing a resource-constrained objective
function at all, instead relying on heuristics that are computationally
cheap but sub-optimal (Gigerenzer & Gaissmaier, 2011). Teasing apart
these hypotheses will require new experiments to measure individual
differences in various cognitive capacities, as well as more explicit
hypotheses about heuristics that quantitatively predict the deviation
from optimality.

In the Introduction, we highlighted a distinction between statistical
complexity (the amount of data needed to learn a policy) and policy
complexity (the number of bits needed to encode a policy). However,
these concepts are connected, because simpler policies are more easily
learned. This follows from the general principle that compression implies
learning (Blum & Langford, 2003), which can be formalized in a number
of ways. For example, in the setting where Q(s,a) = 1 if a ∈ {0,1} is
correct and 0 otherwise, the policy can be viewed as a binary classifier
and the rewards can be viewed as labels (the standard supervised
learning problem). Roughly speaking, if the number of bits required to
describe the policy is much less than the number of samples, then we
can guarantee accurate generalization to new samples (Blumer et al.,
1987). The connection between compression and learning explains why
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Fig. 2. The reward-complexity trade-off, applied to data from Collins (2018).
Each solid line shows the optimal trade-off function for a particular set size
(Ns = 3 or 6). The circles show data from different blocks of trials, aggregated
across subjects. Complexity is measured in nats.
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Fig. 3. Reward-complexity trade-off, applied to data from Steyvers et al.
(2019). The solid line shows the optimal trade-off function, and the circles
correspond to individual subjects. Complexity is measured in nats.

3 These parameter estimates also confirm that there was an appreciable level
of perseveration in the data set. If subjects did not exhibit a tendency to choose
actions based on their past frequency, the choice perseveration parameter
would be equal to 0.
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the mutual information between states and actions can be used to
measure both statistical complexity (see Filipowicz et al., 2020) and
policy complexity.

The theoretical framework of rate distortion theory is highly

abstract. We have made very few assumptions about the underlying
cognitive mechanisms that produce a particular point on the reward-
complexity curve. This contrasts with the modeling that was previously
applied to the same data sets (Collins, 2018; Steyvers et al., 2019),
which explored detailed mechanistic hypotheses. These different ap-
proaches have different advantages and disadvantages. Ultimately, we
would like detailed mechanistic theories of cognition of the sort de-
veloped by Collins, Steyvers, and their colleagues. At the same time, the
search for general principles can be usefully pursued at a more abstract
level of the sort developed here. This has the advantage of allowing us
to make general claims about the nature of cognition that transcend
particular mechanistic implementations.

One important source of data for mechanistic implementations of
decision making is response time. Of particular relevance is recent work
by Urai et al. (2019), who studied the relationship between response
time and choice-history bias in perceptual decision making—the robust
finding that decisions are biased towards repetition across trials, even
when the perceptual evidence is uncorrelated (Braun et al., 2018; Fründ
et al., 2014; Howarth & Bulmer, 1956; Verplanck et al., 1952). Using a
sequential sampling model, Urai and colleagues argued that choice
history alters the rate of evidence accumulation, such that evidence in
favor of previous choices is weighted more strongly (a form of con-
firmation bias; see also (Abrahamyan et al., 2016; Talluri et al., 2018).
One interpretation of this finding is that the locus of policy compression
in perceptual decision tasks originates at the level of attention to sti-
mulus information rather than at the level of the policy. More generally,
policy compression could arise from any process along the sensory-to-
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Fig. 4. (A,B) Histogram of maximum likelihood estimates for the choice perseveration parameter. (C,D) Log posterior odds in favor of M2 (the optimal trade-off
model) for each subject, sorted by increasing evidence. An evidence of 0 indicates equal support for M1 and M2. The top panels show the results for the data from
Collins (2018); the bottom panels show the results for the data from Steyvers et al. (2019).
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motor mapping that reduces mutual information. It is a task for future
work to catalogue and disentangle the effects of these processes.

Rate distortion theory holds promise as a vehicle for general prin-
ciples because it unifies two frameworks (information theory and sta-
tistical decision theory) that already by themselves have broad ex-
planatory reach. Rate distortion theory has been successfully applied to
many different cognitive phenomena, ranging from working memory
(Sims, 2016; Sims et al., 2012) and absolute identification (Sims, 2018)
to language (Zaslavsky et al., 2018) and motor control (Schach et al.,
2018). A complete theory in these domains will eventually use me-
chanistic models to constrain the rate distortion analysis.
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Appendix: more flexible quantification of perseveration

The model reported in the main results uses a parametric form that is determined by the rate distortion analysis. Here we examine a more flexible
parametrization, inspired by the lagged regression analyses applied by Lau and Glimcher (2005) to monkey choice behavior:

∑ ∑∝ ⎡

⎣
⎢ + = ⎤

⎦
⎥

= =
−π a s β r β a a( | ) exp ( ) ,t t

k

K

k
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t k
k

K

k
a

t t k
1

,
1 (11)

where  ⋅ =( ) 1 if its argument is true (0 otherwise) and r )t k, denotes the reward received k visits to state st prior to trial t after taking action at. The
βr coefficients capture the effect of reward history over the last K visits to the current state, and the βa coefficients capture the effect of choice history
over the last K consecutive trials. The structure of the lagged regression model was designed to mirror the functional form analyzed in the main text,
but allowing a more flexible influence of reward and choice history.

The maximum likelihood coefficients are shown in Fig. 6. Reward history exerts a strong effect on choice that decays roughly exponentially over
time. Choice history also has a significant (p < 0.05) positive effect, indicating perseveration, at least for lag 1 in low-performing subjects (con-
sistent with the finding, reported in the main text, that perseveration is more pronounced in low-performing subjects). Interestingly, for the Steyvers
data set the choice history coefficients become negative for longer lags, a property that is not captured by the rate distortion analysis. Negative
coefficients have previously been reported in other studies (e.g., Lau & Glimcher, 2005). Note, however, that the Collins data set produces only
positive choice history coefficients, so this effect is not a general characteristic of the data sets analyzed here.
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Fig. 6. (A,B) Regression coefficients for reward history, where “trials back” indicates the number of visits to the same state prior to a choice. (C,D) Regression
coefficients for choice history, where “trials back” indicates the number of consecutive trials prior to a choice. The top panels show the results for the data from
Collins (2018); the bottom panels show the results for the data from Steyvers et al. (2019). Results are plotted separately for low- and high-performing subjects (based
on a median split of accuracy). Error bars show 95% confidence intervals.
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