
BRIEF REPORT

Uncertainty and Exploration

Samuel J. Gershman
Harvard University

In order to discover the most rewarding actions, agents must collect information about
their environment, potentially foregoing reward. The optimal solution to this “explore–
exploit” dilemma is often computationally challenging, but principled algorithmic
approximations exist. These approximations utilize uncertainty about action values in
different ways. Some random exploration algorithms scale the level of choice
stochasticity with the level of uncertainty. Other directed exploration algorithms
add a “bonus” to action values with high uncertainty. Random exploration algorithms
are sensitive to total uncertainty across actions, whereas directed exploration algo-
rithms are sensitive to relative uncertainty. This article reports a multiarmed bandit
experiment in which total and relative uncertainty were orthogonally manipulated. We
found that humans employ both exploration strategies, and that these strategies are
independently controlled by different uncertainty computations.
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Uncertainty lies at the heart of decision mak-
ing in the real world. A bee in search of nectar
and a venture capitalist in search of an invest-
ment both need to explore their options in order
to reduce their uncertainty, at the expense of
exploiting the currently best option. In the ab-
sence of uncertainty, no explore–exploit di-
lemma would exist. The question addressed
here is how humans use uncertainty to guide
exploration.

The optimal solution to the explore–exploit
dilemma is, except for some special cases (e.g.,
in foraging theory; Charnov, 1976; Stephens &
Krebs, 1986), computationally intractable, but

computer scientists have developed algorithmic
approximations that can provably approach op-
timal behavior (Sutton & Barto, 1998). Psychol-
ogists have also studied algorithmic hypotheses
about how humans balance exploration and ex-
ploitation (Cohen, McClure, & Yu, 2007; Hills
et al., 2015; Mehlhorn et al., 2015), but only
recently have the links between modern ma-
chine learning algorithms and psychological
processes been systematically investigated
(Gershman, 2018; Schulz, Konstantinidis, &
Speekenbrink, 2017; Speekenbrink & Konstan-
tinidis, 2015). Key to this synthesis is the idea
that uncertainty can guide exploration in two
qualitatively different ways: by adding random-
ness into choice behavior, or by directing
choice toward uncertain options.

The pioneering work of Wilson, Geana,
White, Ludvig, and Cohen (2014) demonstrated
that humans use both random and directed ex-
ploration in a carefully designed two-armed
bandit task. When the subject had more experi-
ence with one option (and hence less uncer-
tainty), she favored the more uncertain option,
indicating a form of directed exploration. In
addition, subjects increased the randomness in
their choices when they were more uncertain,
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spreading their choices across both high- and
low-value options. Directed and random explo-
ration strategies are dissociable, developing on
different timescales across the life span (Somer-
ville et al., 2017) and relying on different neural
substrates (Zajkowski, Kossut, & Wilson,
2017).

The directed/random distinction is closely re-
lated to the distinction between two families of
exploration algorithms that have been studied
extensively in machine learning. Directed ex-
ploration can be realized by adding uncertainty
bonuses to estimated values (Auer, Cesa-
Bianchi, & Fischer, 2002; Brafman & Tennen-
holtz, 2002; Dayan & Sejnowski, 1996; Kolter
& Ng, 2009; Srinivas, Krause, Seeger, &
Kakade, 2010). One of the most prominent ver-
sions of this approach is known as the upper
confidence bound (UCB) algorithm (Auer et al.,
2002), which chooses action at on trial t accord-
ing to:

at � argmax
k

[Qt(k) � Ut(k)], (1)

where k indexes actions and Ut(k) is the upper
confidence bound that plays the role of an un-
certainty bonus. Under a Bayesian analysis
(Srinivas et al., 2010), Qt(k) corresponds to the
posterior mean and the uncertainty bonus is
proportional to the posterior standard deviation
�t(k).

Random exploration has an even older pedi-
gree in machine learning, dating back to
Thompson’s work in the 1930s (Thompson,
1933). In what is now known as Thompson
sampling, a random value function from the
posterior is drawn and then the agent chooses
greedily with respect to the random draw. Like
UCB, Thompson sampling uses uncertainty to
promote exploration, but does so by encourag-
ing stochasticity (i.e., a form of probability
matching) rather than via a response bias.1

In psychophysical terms, uncertainty in
Thompson sampling changes the slope of the
function relating action values to choice proba-
bilities, whereas uncertainty in UCB changes
the intercept (indifference point).2 The role of
uncertainty in Thompson sampling can be un-
derstood by recognizing that sampling from a
distribution over values implies that variability
in this distribution directly translates to variabil-
ity in choices. By contrast, the role of uncer-

tainty in UCB can be understood by recognizing
that the uncertainty bonus acts in the same way
as a boost in reward, shifting choice probabili-
ties toward the more uncertain option without
altering the level of choice stochasticity.

Recognizing the dissociable (and possibly
complementary) nature of directed and random
exploration, computer scientists have also con-
structed hybrids of UCB and Thompson sam-
pling (Chapelle & Li, 2011; May, Korda, Lee,
& Leslie, 2012). A recent report (Gershman,
2018) provided the most direct evidence for
such hybrids in human decision making, dem-
onstrating that uncertainty influences both the
intercept and slope of the choice probability
function. Critically, the intercept and slope ef-
fects derive from different uncertainty compu-
tations: The intercept is governed by relative
uncertainty (the difference in posterior uncer-
tainty between the two options, defined for-
mally below), whereas the slope is governed by
total uncertainty (the sum of posterior uncer-
tainty across the options). This suggests that
experimental manipulations of these two factors
should produce dissociable effects.

Here we pursue this line of reasoning using a
two-armed bandit task, with the additional twist
that we inform subjects about the riskiness of
each arm (see Figure 1). On each trial, partici-
pants were given a choice between two arms,
labeled either as “safe” (S) or “risky” (R). The
safe arms always delivered the same reward,
whereas the risky arms delivered stochastic re-
wards (with Gaussian noise). Denoting trial
types by compound labels (e.g., “SR” denote
trials in which the left arm is safe and the right
arm is risky), we used the comparison between
preference for Arm 1 on SR and RS trials to
isolate the effects of relative uncertainty, hold-

1 The idea that uncertainty promotes choice stochasticity
is present in some theories of decision making, notably
decision field theory (Busemeyer & Townsend, 1993).
Thompson sampling differs formally in that stochasticity is
driven by posterior uncertainty (see the formal description
below), whereas in decision field theory it is driven by
payoff variance. Typically, uncertainty and payoff variance
are correlated, a fact that we exploit in our experimental
design (see also Leuker, Pachur, Hertwig, & Pleskac, 2018).

2 We have assumed here, following Gershman (2018),
that some noise is added to the values that enter into the
UCB computation. Without this assumption (or some other
sources of stochasticity), we would not be able to capture
variability in choices.

278 GERSHMAN

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.



ing total uncertainty fixed, and the comparison
between preference for Arm 1 on SS and RR
trials to isolate the effects of total uncertainty,
holding relative uncertainty fixed (see Figure 2).
By independently manipulating relative uncer-
tainty (SR vs. RS) and total uncertainty (SS vs.
RR), we can go beyond the correlational find-
ings of Gershman (2018) to causally test the
predictions of UCB and Thompson sampling. In
particular, we predicted that the SS condition
would increase the slope of the choice proba-
bility function (affecting random but not di-
rected exploration) relative to the RR condition,
whereas the RS condition would shift the inter-
cept of the choice probability function (affect-
ing directed but not random exploration) rela-
tive to the SR condition.

Materials and Method

Code and data for reproducing all analyses re-
ported in this article, as well as Javascript code for
rerunning the experiments, are available at https://
github.com/sjgershm/exploration_uncertainty.

Subjects

Forty-six subjects were recruited via the Am-
azon Mechanical Turk web service and paid
$2.00. The sample size was chosen to be com-
parable to previous studies using a similar ex-
perimental paradigm (Gershman, 2018). The
experiments were approved by the Harvard In-
stitutional Review Board.

Stimuli and Procedure

Participants played 30 two-armed bandits,
each for one block of 10 trials. On each trial,
participants chose one of the arms and received
reward feedback (points). They were instructed
to choose the “slot machine” (corresponding to
an arm) that maximizes their total points. On
each block, the mean reward �(k) for each arm
was drawn from a Gaussian with mean 0 and
variance �0

2�k� � 100. The arms were randomly
designated “safe” or “risky,” indicated by an S
or R, respectively, and these designations were
randomly resampled after a block transition.
When participants chose the risky arm, they
received stochastic rewards drawn from a
Gaussian with mean �(R) and variance �2(R) �
16. When participants chose the safe arm, they
received a reward of �(S).

The exact instructions for participants were
as follows:

In this task, you have a choice between two slot ma-
chines, represented by colored buttons. When you click
one of the buttons, you will win or lose points. Choos-
ing the same slot machine will not always give you the
same points, but one slot machine is always better than
the other. Your goal is to choose the slot machine that
will give you the most points. After making your
choice, you will receive feedback about the outcome.
Sometimes the machines are “safe” (always delivering
the same feedback), and sometimes the machines are
“risky” (delivering variable feedback). Before you
make a choice, you will get information about each
machine: “S” indicates SAFE, “R” indicates RISKY.
Note that safe/risky is independent of how rewarding a

Figure 1. Task design. (Left) On each trial, subjects choose between two options and receive
reward feedback in the form of points. Safe options are denoted by “S” and risky options are
denoted by “R.” On each block, one or both of the options may be safe or risky (Right). The
rewards for risky options are drawn from a Gaussian distribution that remains constant during
each block. The rewards for safe options are deterministic. Both the mean for the risky option
and the reward value of the safe option are drawn from a zero-mean Gaussian distribution that
is resampled at each block transition. See the online article for the color version of this figure.
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machine is: A risky machine may deliver more points
on average than a safe machine, and vice versa. You
cannot predict how good a machine is based on
whether it is safe or risky. You will play 30 games,
each with a different pair of slot machines. Each game
will consist of 10 trials.

Belief Updating Model

To derive estimates of expected value and
uncertainty, we assume that subjects approxi-
mate an ideal Bayesian learner. Given the
Gaussian distributional structure underlying our
task, the posterior over the value of arm k is
Gaussian with mean Qt(k) and variance �t

2�k�.
These sufficient statistics can be recursively up-
dated using the Kalman filtering equations:

Qt�1(at) � Qt(at) � �t[rt � Qt(at)] (2)

�t�1
2 (at) � �t

2(at) � �t�t
2(at), (3)

where at is the chosen arm, rt is the received
reward, and the learning rate �t is given by:

�t �
�t

2(at)

�t
2(at) � �2(at)

. (4)

Note that only the chosen option’s mean and
variance are updated after each trial. The initial
values were set to the prior means, Q1(k) � 0
for all k, and the initial variances were set to the
prior variance, �1

2�k� � �0
2�k�. The value of �2

was set to 16 (its true value) for risky options,
and to 0.00001 for safe options (to avoid nu-
merical issues, the variance was not set exactly
to 0). Although the Kalman filter is an idealiza-

Figure 2. Relative and total uncertainty. (Top) Illustration of how the probability of
choosing Option 1 changes as a function of the experimental condition and form of uncer-
tainty. V represents the difference between the expected value of Option 1 and the expected
value of Option 2. (Bottom) Average relative and total uncertainty in each condition.
Conditions are denoted by safe/risky compounds; for example, “SR” denotes a trial in which
Option 1 is safe and Option 2 is risky.
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tion of human learning, it has been shown to
account well for human behavior in bandit tasks
(Daw, O’Doherty, Dayan, Seymour, & Dolan,
2006; Gershman, 2018; Schulz, Konstantinidis,
& Speekenbrink, 2015; Speekenbrink & Kon-
stantinidis, 2015).

Choice Probability Analysis

Gershman (2018) showed that Thompson
sampling, UCB, and a particular hybrid of the
two imply a probit regression model of choice:

P(at � 1|w) � �(w1Vt � w2RUt � w3Vt ⁄ TUt),

(5)

where �(·) is the cumulative distribution func-
tion of the standard Gaussian distribution (mean
0 and variance 1), and the regressors are defined
as follows:

• Estimated value difference, Vt � Qt(1) �
Qt(2).

• Relative uncertainty, RUt � �t(1) � �t(2).
• Total uncertainty, TUt � ��t

2�1� � �t
2�2�.

As shown in Gershman (2018), Thompson
sampling predicts a significant positive effect of
V/TU on choice probability, but not of RU or V,
whereas UCB predicts a significant positive ef-
fect of both V and RU, but not of V/TU (Figure
2, top left). We used mixed effects estimation to
fit the coefficients (w) in the probit regression
model.

In addition to this model-based analysis, we
analyzed choices as a function of experimental
condition (i.e., RS, SR, RR, SS).

P(at � 1|w) � ���j w1
j 	tj � w2

j 	tjVt�, (6)

where 	tj � 1 if trial t is assigned to condition
j, and 0 otherwise. We refer to the w1 terms as
intercepts and the w2 terms as slopes.3

Response Time Analysis

We examined response times as an additional
source of evidence about exploration strategies.
Our hypotheses are motivated by a sequential
sampling framework, according to which the
value difference between two options drives a
stochastic accumulator until it reaches a deci-
sion threshold (Busemeyer & Townsend, 1993;

Krajbich, Armel, & Rangel, 2010; Milosav-
ljevic, Malmaud, Huth, Koch, & Rangel, 2010;
Ratcliff & Frank, 2012; Summerfield & Tset-
sos, 2012). Formally, the decision variable �t(�)
evolves over time (within a trial, index by �) as
follows:

d
t(�)

d�
� Vt � �(�), (7)

where Vt (the value difference between Options
1 and 2 defined above) is a deterministic “drift”
term, and 
(�) is a stochastic “diffusion” term.
Without loss of generality, it is conventional to
assume that 
(�) is drawn from a standard
Gaussian distribution (mean of 0 and variance
of 1). The decision variable evolves until it hits
one of two thresholds �B (corresponding to the
two options), at which point a decision is made.
If we assume, following the logic of the previ-
ous section, that both UCB and Thompson sam-
pling are implemented by a linear transforma-
tion of the value difference (see Gershman,
2018, for more details), then the decision vari-
able will evolve according to:

d
t(�)

d�
� Vt� � �(�), (8)

where Vt� � �
Vt

TU � RU, and � and  are
coefficients controlling the relative contribution
of random and directed exploration, respec-
tively. Under this model, the expected response
time is given analytically by:

�[RTt] �
B

Vt�
tanh(BVt�), (9)

where tanh is the hyperbolic tangent function.
Because the expected response time is a mono-
tonically decreasing function of Vt� , it decreases
with RU and increases with TU (see also Buse-
meyer & Townsend, 1993).

3 Note that although this analysis is “model-free” in the
sense that it does not use the computationally derived un-
certainty regressors, it is still dependent on the model-based
value estimates.
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Results

The hybrid random/directed exploration
model hypothesizes that all three computational
regressors (V, RU, V/TU) should be predictors
of choice. We therefore confirmed that fixed
effects estimates of the corresponding coeffi-
cients were significantly greater than 0—V:
t(13797) � 16.48, p � .0001; RU: t(13797) �
4.9, p � .0001; V/TU: t(13797) � 6.04, p �
.0001 (see Figure 3). Model comparison using
the Bayesian and Akaike information criteria
strongly favored this three-parameter model
over a one-parameter model with only the V
regressor, a one-parameter model with V/TU,
and a two-parameter model with V and RU (see
Table 1). This supports previous results show-
ing that humans use both random and directed
exploration strategies (Gershman, 2018; Somer-
ville et al., 2017; Wilson et al., 2014).

We next addressed the central question of the
article: Can random and directed exploration be
independently manipulated? As predicted,
changing relative uncertainty (RS vs. SR) alter
the intercept of the choice probability function
(see Figure 3): there was a significant difference
between the intercepts for the RS and SR con-
ditions, F(1, 13792) � 13.92, p � .001. Fur-
thermore, the RS intercept was significantly
greater than 0, t(13792) � 2.33, p � .02, and
the SR intercept was significantly less than 0,
t(13792) � 4.47, p � .001, indicating an uncer-

tainty-directed choice bias, as predicted by the
theory. In other words, uncertainty boosted the
value of an arm, shifting choice probability to-
ward that arm. Critically, there was no signifi-
cant effect of total uncertainty (RR versus SS,
p � .40), consistent with the hypothesis that
uncertainty-directed biases only emerge when
there is a difference in relative uncertainty.

The pattern is flipped when we inspect the
slope parameter estimates (see Figure 4): in-
creasing total uncertainty (RR vs. SS) reduced
the slope, F(1, 13792) � 20.12, p � .0001, but
relative uncertainty (RS vs. SR) did not have a
significant effect (p � .72). This finding is con-
sistent with our hypothesis that the random
component of exploration would be specifically
sensitive to changes in total uncertainty. In
other words, the decreased slope for RR indi-
cates greater choice stochasticity when total un-
certainty was higher. An alternative possibility
is that the increased level of payoff variance in
RR compared to SS causes value differences to
be more strongly driven by payoff noise. In
other words, even if subjects were not using
random exploration, they might still show a
difference in choice behavior between the RR
and SS conditions. However, this hypothesis
cannot account completely for the RR versus SS
effect, because our analysis quantifies how
choice probability differs between conditions
for the same estimated value difference. Thus,
even if the conditions differed in their effects on
value learning, this analysis controls for such
differences.

Sequential sampling models have also been
shown to jointly predict choice and response
time in reinforcement learning tasks, where the
value is dynamically updated based on experi-
ence (Frank et al., 2015; Millner, Gershman,
Nock, & den Ouden, 2018; Pedersen, Frank, &
Biele, 2017). Within the sequential sampling

Table 1
Model Comparison Results

Model BIC AIC

V 13,493 13,478
V/TU 17,262 17,247
V � RU 12,874 12,836
V � RU � V/TU 12,689 12,621

Note. BIC � Bayesian information criterion; AIC �
Akaike information criterion. Lower values indicate higher
model evidence.

Figure 3. Probit regression results: computational vari-
ables. Fixed effects parameter estimates and standard errors
for each regressor. V � estimated value difference between
arms; RU � relative uncertainty; TU � total uncertainty
(see Materials and Method section for details).
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framework, a directed exploration strategy pre-
dicts that response times should be faster for
risky choices than for safe choices on RS and
SR trials, because uncertainty acts as a bonus
added to the values (see Materials and Method
section). This prediction was confirmed in our
data, t(45) � 2.01, p � .05 (see Figure 5).

When uncertainty is equated across the arms,
directed exploration does not predict any differ-
ence in response time as a function of total
uncertainty. Random exploration strategies, in
contrast, correctly predict that total uncertainty
will act divisively on values, thereby slowing
response times when both arms are risky com-
pared to when both arms are safe, t(45) � 2.28,
p � .05 (see Figure 5).

Discussion

By separately manipulating relative and total
uncertainty, we were able to independently in-
fluence directed and random exploration, lend-
ing support to the contention that these strate-
gies coexist and jointly determine exploratory
behavior (Gershman, 2018; Wilson et al.,
2014). In particular, increasing relative uncer-
tainty by making one option riskier than the
other caused participants to shift their prefer-
ence toward the risky option in a value-
independent manner, consistent with a change
in the intercept (indifference point) of the
choice probability function. This manipulation
had no effect on the slope of the choice proba-
bility function. In contrast, increasing total un-
certainty by making both options risky de-

creased the slope relative to when both options
were safe, with no effect on the intercept. In
other words, increasing total uncertainty caused
choices to become more stochastic.

This dissociation between strategies guiding
choice behavior was mirrored by a dissociation
in response times. When one option was riskier
than the other, subjects were faster in choosing
the risky option. However, the same subjects
were slower when both options were risky com-
pared to when both options were safe. Taken
together, these findings demonstrate that risk
can have qualitatively different effects on both

Figure 4. Probit regression results: experimental variables. Fixed effects parameter esti-
mates and standard errors for each regressor (Left). Intercept coefficients (Right). Slope
coefficients.

Figure 5. Response time analysis. Log response times
(mean � within-subject standard error). “Risky” denotes
risky choices on SR and RS trials; “Safe” denotes safe
choices on SR and RS trials. SS and RR response times are
collapsed across arms.
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choice and response time, depending on the
underlying uncertainty computation (i.e., total
vs. relative). Consistent with our findings, pre-
vious work has shown that payoff variance in-
creases exploration (Lejarraga, Hertwig, &
Gonzalez, 2012; Wulff, Mergenthaler-Canseco,
& Hertwig, 2018). However, this work did not
distinguish between random and directed explo-
ration.

We note here that preference for the risky
option appears to be in opposition to what
would be predicted by theories of risk aversion,
as pointed out by previous authors (Gershman,
2018; Payzan-LeNestour & Bossaerts, 2012;
Wilson et al., 2014). This does not mean that
our subjects were not risk averse; rather, we
suspect that the imperative to explore in a mul-
tiarmed bandit task overwhelmed the tendency
to avoid risks seen in typical gambling para-
digms.

The role of uncertainty-guided exploration
has come to occupy an increasingly important
place in theories of reinforcement learning
(Gershman & Niv, 2015; Knox, Otto, Stone, &
Love, 2011; Navarro, Newell, & Schulze, 2016;
Payzan-LeNestour & Bossaerts, 2011; Pearson,
Hayden, Raghavachari, & Platt, 2009; Schulz et
al., 2015; Speekenbrink & Konstantinidis,
2015; Zhang & Yu, 2013), superseding earlier
models of exploratory choice based on a fixed
source of decision noise, as in 
-greedy and
softmax policies (e.g., Daw et al., 2006). This
shift has been accompanied by a deeper under-
standing of how reinforcement learning circuits
in the basal ganglia compute, represent, and
transmit uncertainty to downstream decision-
making circuits (Gershman, 2017; Lak, No-
moto, Keramati, Sakagami, & Kepecs, 2017;
Starkweather, Babayan, Uchida, & Gershman,
2017). Despite this progress, we are only begin-
ning to understand how these circuits imple-
ment dissociable channels regulating directed
and random exploration (Warren et al., 2017;
Zajkowski et al., 2017). Furthermore, a number
of inconsistencies exist in the literature; for
example, some studies do not find evidence for
uncertainty bonuses in exploration (Daw et al.,
2006; Riefer, Prior, Blair, Pavey, & Love,
2017). Resolving these inconsistencies will re-
quire a more complete picture of the different
factors governing directed and random explora-
tion, including individual differences, internal

states (e.g., stress, cognitive load), and task
structure.
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