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The Successor Representation: Its Computational Logic
and Neural Substrates
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Reinforcement learning is the process by which an agent learns to predict long-term future reward. We now understand a great deal about
the brain’s reinforcement learning algorithms, but we know considerably less about the representations of states and actions over which
these algorithms operate. A useful starting point is asking what kinds of representations we would want the brain to have, given the
constraints on its computational architecture. Following this logic leads to the idea of the successor representation, which encodes states
of the environment in terms of their predictive relationships with other states. Recent behavioral and neural studies have provided
evidence for the successor representation, and computational studies have explored ways to extend the original idea. This paper reviews
progress on these fronts, organizing them within a broader framework for understanding how the brain negotiates tradeoffs between
efficiency and flexibility for reinforcement learning.
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Introduction
Reinforcement learning, the problem of predicting and maximiz-
ing future reward, is hard in part because the number of possible
futures is enormous, too big to search through exhaustively. A
prospective student choosing between colleges cannot consider
all possible career paths she might follow. She could try to learn
from experience, picking a college and exploring the conse-
quences, but she probably cannot do that enough times to find
the optimal college. She could plan forward, at each decision
point mentally choosing the option that seems most promising
(“First I’ll go to City University, then I’ll major in chemistry, then
I’ll get a job at a pharmaceutical company, etc.”), or she could
plan backward, starting from her goal (e.g., being rich, famous,
etc.). But planning could go wrong if you explore the wrong path
(if only I had majored in computer science instead of chemistry!).
Yet another approach is to again imagine the goal state, but in-
stead of planning a path to the goal, only consider how often the
goal is achieved from a particular starting point (e.g., how many
students who attend City University go on to become pharma-
ceutical chemists?). If she can access such statistics, then the pro-
spective student could efficiently identify the best college.

As this example illustrates, the success of reinforcement learn-
ing algorithms hinges crucially on their representation of the
environment. A very flexible representation, such as knowing
how often each state transitions to every other state (e.g., the

probability of getting a pharmaceutical job after graduating with
a chemistry degree), can be highly accurate, but is computation-
ally cumbersome—planning requires significant mental effort.
On the other hand, a very inflexible representation, such as the
summary of how good each college is based on past experience, is
efficient (no planning required) but may be useless if the envi-
ronment changes (e.g., the pharmaceutical industry crashes). A
predictive summary statistic like how many students get jobs as
chemists can be both flexible and efficient under certain circum-
stances (e.g., knowing that students at City University get jobs as
chemists is useful if chemistry salaries suddenly increase).

Different representations clearly have different strengths and
weaknesses. Computational models can help us to understand
these tradeoffs in terms of general principles, guiding us toward
answering a fundamental question: what makes a representation
useful for reinforcement learning? This question is timely for the
neuroscientific study of reinforcement learning, which has un-
covered a rich and sometimes unruly menagerie of algorithms
and representations. One lesson from these discoveries is that
reinforcement learning is not one thing, but rather multiple
things; a set of semi-dissociable “systems” that each can solve the
reinforcement learning problem independently (Dolan and
Dayan, 2013; Kool et al., 2018). These systems make different
tradeoffs between computational efficiency and flexibility (Fig.
1), as elaborated in the next section. By formalizing this tradeoff
space, we can clarify what makes a “good” representation for a
given computational architecture.

Within this general framework, we will focus on a recently
revived idea about how to balance efficiency and flexibility,
known as the successor representation (SR; Dayan, 1993). The ba-
sic idea is to build a “predictive map” of the environment that
summarizes the long-range predictive relationships between
states of the environment. We will show how this predictive map,
when used as the representation for reinforcement learning, is
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optimal for a particular computational ar-
chitecture (linear function approxima-
tion). Recent experiments have begun to
suggest that the SR may constitute part of
a separate system for reinforcement learn-
ing, with implications for how we under-
stand the functions of the hippocampus
and dopamine.

An efficiency-flexibility tradeoff for
reinforcement learning
Reinforcement learning is concerned with
the estimation of value, the total reward
an agent expects to earn in the future, with
short-term rewards weighed more highly
than long-term rewards. Formally, value
is defined as the expected discounted fu-
ture return (Sutton and Barto, 1998):

V�s� � ��r0 � �r1 � �2r2 � . . .

�s0 � s�, (1)

where s denotes the state of the environ-
ment, rt denotes the reward received at
time t, and � is a discount factor that cap-
tures a preference for proximal rewards.
The expectation �[�] represents an aver-
age over randomness in state transitions and rewards (i.e., tran-
sitions and rewards may be probabilistic, causing randomness in
the sequence of experienced rewards). For simplicity of exposi-
tion, we have chosen to omit actions, though our treatment ex-
tends straightforwardly to handle actions (Russek et al., 2017).

To render the reinforcement learning problem tractable, it is
common to make the additional assumption that transitions and
rewards are governed by a Markov process, which means that
rewards and state transitions depend only on the current state,
regardless of the antecedent history. Formally, this corresponds
to the assumption that �[rt] � R(st) and P(st�1�st) � T(st, st�1),
where R is referred to as the reward function and T is referred to as
the transition function. Under this assumption, tractable algo-
rithms can be derived for value function estimation, as described
in detail by Sutton and Barto (1998).

Model-based algorithms, such as value iteration and Monte
Carlo tree search, learn the underlying “model” (i.e., the reward
function R and the transition function T), and use this model to
compute an estimate of the value function by iterative computa-
tion. For example, value iteration repeatedly iterates the follow-
ing update:

V̂�s�4 R�s� � ��
s�

T�s,s��V̂�s��, (2)

which will eventually converge to the true value function. Intui-
tively, value iteration starts with a guess about the value function,
and iteratively refines this guess by enforcing consistency be-
tween the values of adjacent states. This architecture is computa-
tionally expensive, because value estimation must iterate over the
entire state space each time the model is updated. The advantage
of such an architecture lies in its flexibility: local changes in the
environment lead to local changes in the model, and thus an
agent endowed with a model requires only a small amount of
experience to adapt to such changes.

Model-based algorithms represent one extreme in the tradeoff
between computational efficiency and representational flexibility

(Fig. 1). On the other extreme are model-free algorithms, such as
temporal difference learning, which directly estimate the value
function V from experienced transitions and rewards, without
learning a model. In the most frugal computational architecture,
the estimated value function Ṽ is represented by a lookup table
storing the estimates for each state. However, a lookup table strat-
egy may fail when the number of states is large and experience is
sparse. To allow for some generalization across states, a linear
function approximation architecture assigns value as a weighted
combination of state features (Fig. 2):

V̂�s� � �
d

wdfd�s�, (3)

where wd is the weight for feature d and fd(s) is the activation of
feature d. The temporal difference learning rule for updating the
weights takes the following form:

	wd 
 fd�st��t, (4)

where

�t � rt � �V̂�st�1� � V̂�st� (5)

is the temporal difference error. If the value function has been
overestimated, �t will be negative and hence the weights for active
features [fd(st) � 0] will be decreased, whereas if the value func-
tion has been underestimated, �t will be positive and the weights
for active features will be increased. Notice that temporal differ-
ence learning “bootstraps” its value estimates, using one estimate
to improve another estimate. This is computationally efficient,
but also causes inflexibility: a local change in the transition or
reward functions will produce nonlocal changes in the value
function, such that the entire value function needs to be relearned
by temporal difference updates whenever the environment
changes. In the absence of a model, this necessitates direct expe-
rience of state transitions and rewards.

Figure 1. Schematic of how different reinforcement learning systems balance the efficiency-flexibility tradeoff. The efficiency
axis represents the degree to which the computational architecture requires costly versus cheap computation. The flexibility axis
represents the degree to which the architecture supports flexible adaptation to changes in the environment: how much new data
needs to be gathered in order for value estimates to converge to the right answer. Not all of the algorithms listed in this figure are
discussed in the text; see Gershman and Daw (2017) for a treatment of episodic reinforcement learning and Dayan et al. (2006) for
a treatment of Pavlovian reinforcement learning.
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The linear function approximation architecture described
above has been widely used in neural models of reinforcement
learning (Schultz et al., 1997; Daw and Touretzky, 2002; Ludvig et
al., 2008; Gershman, 2017a), but it will fail for value functions
that are nonlinear. This has prompted some models to adopt a
nonlinear function approximation architecture (Schmajuk and
DiCarlo, 1992; Mondragón et al., 2017), a strategy that has
proven successful in some machine learning applications (Mnih
et al., 2015). Even with nonlinear architectures, model-free algo-
rithms are typically computationally cheaper than model-based
architectures. The cost of this frugality is inflexibility: the values
at different states are coupled together, which means that local
changes in the environment will lead to nonlocal changes in the
value function, and thus a model-free agent will have to revisit
many states to update their values. Function approximation can
sometimes mitigate this problem by enabling generalization
across states, but it can also sometimes exacerbate the problem by
aliasing states that have distinct values.

It is important to recognize that the appropriate choice of
function approximation architecture depends strongly on the
choice of representation. For example, it is well known that linear
architectures cannot solve “exclusive-or” problems (known as
“negative patterning” in the animal learning literature), such as
learning that I like broccoli and ice cream but not broccoli ice
cream, when the features are elemental (i.e., 1 feature for broccoli
and 1 for ice cream). However, adding a conjunctive feature that
encodes broccoli ice cream will allow a linear architecture to solve
the problem. More generally, many machine learning algorithms
attempt to solve complex nonlinear problems by mapping the
inputs into a new feature space in which linear methods will work
well (Schölkopf and Smola, 2002; Bengio, 2009). This perspective
has also permeated computational neuroscience, informing our
understanding of object recognition (DiCarlo and Cox, 2007)
and motor control (Sussillo and Abbott, 2009).

We can also flip this around and ask: for a given choice of
function approximation architecture, what is the optimal repre-
sentation? Linear architectures are often viewed as a reasonable
starting point, given their analytical tractability, computational
simplicity, and semi-biological plausibility (Poggio and Bizzi,
2004). This leads us directly to the SR.

The computational logic of the successor representation
Although above we differentiated between the relative merits of
linear versus nonlinear architectures, it turns out that any value

function can be represented as a linear combination of “predic-
tive” features (Dayan, 1993):

V�s� � �
s�

M�s,s�� R�s��, (6)

where M(s, s�) is the SR, defined as the discounted occupancy of
state s�, averaged over trajectories initiated in state s. The SR can
intuitively be thought of as a predictive map that encodes each
state in terms of the other states that will be visited in the near
future. It is “optimal” in the sense that a linear function approx-
imation architecture can exactly represent the value function if
the features correspond to the SR; i.e., fd(s) � M(s,d), where d
indexes states.

The SR is defined analogously to the value function; instead of
cumulating rewards (as in the value function), the SR cumulates
state occupancies. There also exists an analogy between learning
algorithms. In temporal difference learning, the value estimate is
updated using a reward prediction error (the discrepancy be-
tween observed and expected reward). A temporal difference
learning algorithm can also be derived for the SR, where the error
signal is the discrepancy between observed and expected state
occupancy (Russek et al., 2017):

�t�s�� � ��st � s�� � �M̂�st�1, s�� � M̂�st, s��, (7)

where �[�] � 1 if its argument is true, and 0 otherwise. Intuitively,
this learning rule states that the expected occupancy for states
that are visited more frequently than expected (positive predic-
tion error) should be increased, whereas the expected occupancy
for states that are visited less frequently than expected (negative
prediction error) should be decreased. Notice that unlike the
temporal difference error for value learning, the temporal differ-
ence error for SR learning is vector-valued, with one error for
each successor state. It is also possible to define a linear function
approximator for the SR, in which case there is one error for each
feature (Gardner et al., 2018).

In terms of the efficiency-flexibility tradeoff, the SR lies some-
where in between model-based and model-free algorithms. On
the one hand, it has comparable efficiency to model-free rein-
forcement learning with linear function approximation. On the
other hand, it has some of the flexibility of a model-based algo-
rithm, in the sense that changes in the reward function will im-
mediately propagate to all the state values, because the reward
function has been factored out of the expectation over future

Figure 2. Illustration of how different reinforcement learning systems compute value in a simple maze with three states (s1, s2, s3). The reward value associated with each state is denoted by R(s),
and its value estimate is denoted by Ṽ(s). Transition probabilities are denoted by T(s, s�) and the successor representation is denoted by M(s, s�). The parameter � denotes the discount factor. The
model-free value function estimate is assumed (for illustration) to be a linear function of x and y spatial coordinates, where wx denotes the weight for the x-coordinate.
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trajectories, which means that an agent
does not need to average over states to up-
date V(s) when only R(s) changes. Note,
however, that this is not true of changes
in the transition function: the SR is ef-
fectively a compiled form of the state
transition statistics, much in the same
way that the value function is a com-
piled form of the reward statistics. It is
this compilation that confers both effi-
ciency and inflexibility.

We next turn to the behavioral and
neural evidence that the brain computes
the SR and uses it for reinforcement
learning.

Behavioral evidence
Animals and humans are capable of “goal-
directed” behavior, nimbly adapting to
changes in the environment or their inter-
nal states as they pursue their goals. For
example, Adams (1982) showed that rats
trained to press a lever for sucrose subse-
quently ceased lever pressing in an extinc-
tion test after the sucrose was separately
paired with illness (thereby devaluing the
sucrose reinforcer) in the absence of the
lever. It is critical that the rats did not have
the opportunity to relearn the value of le-
ver pressing after the devaluation treat-
ment, thus ruling out a purely model-free
account of behavior. Similarly, the obser-
vation that animals can learn under a va-
riety of circumstances without direct
reinforcement, such as latent learning
(Tolman, 1948), is difficult to reconcile
with model-free learning. Rather, these
experimental phenomena have been in-
terpreted as evidence for model-based
control (Daw et al., 2005). However, they
are not, as it turns out, strongly diagnostic
of model-based control: they can be alter-
natively explained by SR-based accounts
(Russek et al., 2017).

Take, for example, latent learning, in
which an animal is placed in a maze for
several days without any reward, and then
subsequently trained to navigate to a re-
warded location in the maze. The key
finding, first reported by Tolman (1948),
is that animals are faster at learning in the rewarded phase if they
were first pretrained without reward. The SR provides a natural
account for this finding (Russek et al., 2017), because the SR can
be learned during pretraining without direct reinforcement.
Then, during the training phase, the reward function is updated
and combined with the SR to compute values. Importantly, the
reward function (unlike the value function) can be learned lo-
cally, and hence is more quickly learnable.

As noted in the previous section, the SR predicts a distinctive
pattern of behavioral flexibility, with greater sensitivity to
changes in reward structure than to changes in transition struc-
ture. Changes in reward structure are propagated immediately to
the values, because the reward predictions are represented explic-

itly and locally (i.e., 1 reward prediction for each state). In con-
trast, changes in transition structure will only propagate
gradually, because the SR discards the local transition structure: it
does not represent the fact that one state follows another with
some probability, only that one state will tend to occur sometime
in the future more frequently than another. This means that the
entire SR must be relearned when the transition structure
changes. Momennejad et al. (2017) exploited this fact to design a
highly diagnostic test of whether human reinforcement learn-
ing follows the predictions of an SR-based learning algorithm
(Fig. 3).

The basic logic is the same as devaluation studies that have
been used to study the goal-directedness of behavior in rodents

Figure 3. Top, Schematic of the experimental design used by Momennejad et al. (2017). Circles denote states and arrows
denote transitions. The experiment consisted of three phases: learning, relearning, and test (in extinction). At the end of Phase 1
(learning) and Phase 3 (test), participants provided a continuous valued rating indicating which of the two starting states they
preferred. Bottom, Revaluation score denotes the change in preference rating after versus before the relearning phase. Revaluation
was significantly greater in the reward devaluation condition compared with the transition devaluation condition. Adapted from
Momennejad et al. (2017).
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(Dickinson, 1985) and humans (Valentin et al., 2007; Gershman
et al., 2014). In the first phase, subjects first learned two chains of
states (with different starting states) that lead to different
amounts of reward. This differential reward was registered in
subjects’ preference for the starting state leading to the more
rewarding terminal state. In the second phase, the task is altered,
either by changing the reward structure (reward devaluation) or
by changing the transition structure (transition devaluation).
Both forms of devaluation alter the values of the initial states such
that a reward-maximizing agent would reverse the preference
learned in the first phase. Critically, subjects only experienced
these changes starting in the intermediate states of each chain.
This cripples temporal difference learning algorithms, which re-
quire unbroken sequences of states to learn correct values (but
see Gershman et al., 2014). In the third phase, subjects were once
again asked to choose between one of the starting states. Revalu-
ation was measured as the difference in preference between the
last and first phase (higher values indicating larger revaluation).

Based on the hypothesis that humans learn the SR with a
temporal difference update rule, Momennejad et al. (2017) pre-
dicted, and confirmed, that revaluation would be greater in the
reward devaluation condition compared with the transition de-
valuation condition (i.e., subjects reversed their preference more
frequently in the reward revaluation condition), despite both
changes having equivalent effects on the values of the starting
states. The SR is able to rapidly adjust values in response to re-
ward changes, thanks to the way in which the value function is
parsed into predictive state and reward components. But this
rapid adjustment is not enjoyed by the SR, under the assumption
that it is updated using temporal difference learning. Interest-
ingly, however, subjects were able to exhibit some zero-shot re-
valuation in the transition devaluation condition, despite the fact
that temporal difference learning of the SR predicts that no reval-
uation should occur. Model comparison suggested that subjects
were using a combination of SR-based and model-based strate-
gies, whereby the SR provides an initial estimate of the value
function, which is then refined by model-based computation.
This kind of “cooperative” interplay between reinforcement
learning systems has been observed in a number of experiments,
realized in a variety of ways (for review, see Kool et al., 2018).

Neural evidence
Consider what the SR looks like in an
open field with uniformly distributed re-
wards (Fig. 4). Because the agent is equally
like to go in any direction, the SR for a
given state (corresponding to a spatial lo-
cation) will be radially symmetric over
space, with a width that depends on the
discount factor � (larger values of � trans-
late to larger widths). If we now imagine a
collection of neurons encoding this spa-
tial function for each state, then the re-
sulting population code will closely
resemble classical place fields observed
in the hippocampus (Stachenfeld et al.,
2017).

Although the SR looks like a purely
spatial code in the simple setting of ran-
dom foraging, it takes on richer character-
istics in more complex environments. For
example, adding impassable barriers to
the open field causes the SR to distort
around the barrier (Stachenfeld et al.,

2017), consistent with experimental observations (Muller and
Kubie, 1987; Skaggs and McNaughton, 1998; Alvernhe et al.,
2011). The SR can also explain why place cells become skewed
opposite the direction of travel over the course of repeated tra-
versals (Mehta et al., 2000). As the predictive representation is
learned across a reliable state sequence, upcoming states become
predictable further in advance. Place cells are also sensitive to
nonspatial factors: place fields tend to cluster around rewarded
locations (Hollup et al., 2001), which arises in the SR model
because the animal tends to visit those states more frequently.
Brain imaging studies in humans recapitulate these observations,
indicating an important role for hippocampus in predictive rep-
resentation (Schapiro et al., 2016; Garvert et al., 2017).

The SR model provides a bridge between these neural obser-
vations and animal learning data. For example, a well known
finding in the contextual fear conditioning literature is the facili-
tatory effect of pre-exposure to a context (Fanselow, 2010). From
the perspective of the SR, this is essentially a kind of latent learn-
ing: the animal develops a predictive representation that can then
be used to generalize fear from one location in the conditioning
apparatus to all others (Fig. 5). Importantly, hippocampal lesions
cause a sharp reduction in the pre-exposure effect, consistent
with the SR model’s interpretation that this region encodes the
predictive map.

An important question concerns how the SR is learned. What
seems to be required, if we are to take the temporal difference
learning story seriously, is a vector-valued error signal that con-
veys state (or sensory feature) prediction errors. One recent pro-
posal argues that the phasic firing of midbrain dopamine neurons
provides the necessary error signal (Gardner et al., 2018). This
might seem heterodox for the conventional interpretation of
phasic dopamine, according to which the firing rate conveys the
temporal difference error for value updating (Eq. 5). However, a
number of recent studies seem to contradict the “pure reward”
interpretation of dopamine: (1) dopamine neurons respond to
sensory prediction errors (Takahashi et al., 2017), (2) dopamine
transients are necessary for learning driven by these errors
(Chang et al., 2017), and (3) dopamine transients are both suffi-
cient and necessary for learning stimulus–stimulus associations
(Sharpe et al., 2017). Using simulations, Gardner et al. (2018)

Figure 4. Place field corresponding to a single column of the successor representation. Left, States are organized into a two-
dimensional spatial layout, where each state corresponds to a single (x, y) coordinate. Each state has can be represented in terms
of the expected occupancy of all other states. These predictive representations can then be organized into a matrix (right), where
each row corresponds to the successor representation of a particular state. A place cell’s firing field corresponds to a single column
of the matrix. Thus, the successor representation is encoded by the population of place cells. Approximately radially symmetric
fields arise from random foraging in an open field.
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showed that all of these findings could be accounted for under the
assumption that dopamine signals temporal difference errors for
the SR.

Moving outside the temporal difference learning framework,
it is also possible to learn the successor representation using bio-
logically plausible plasticity rules, as shown by Brea et al., (2016).
In particular, spike-timing-dependent plasticity can give rise to a
form of prospective coding in which dendrites learn to anticipate
future somatic spiking. Brea et al. (2016) showed that such pro-
spective coding is mathematically equivalent to the SR, and is
consistent with a number of neurophysiological observations.
For example, in monkeys performing a delayed paired-associate
task, some prefrontal neurons appear to ramp in anticipation of a
predictable stimulus (Rainer et al., 1999).

Conclusions and future directions
What makes a good representation for reinforcement learning?
There is no single answer to this question, because the goodness
of a representation depends on the computational architecture in
which it participates. To better understand this interplay, we an-
alyzed different representational choices in terms of the tradeoff
between efficiency (computational cost) and flexibility (how
quickly the system adapts to changes in the environment). The
brain appears to make use of multiple reinforcement learning
systems that occupy different positions within this space (Kool et
al., 2018). Importantly, each gain in efficiency is accompanied by
a reduction in flexibility (Fig. 1).

For a linear function approximation architecture, we showed
that the correct representation is the SR, in the sense that a per-
fectly learned SR will allow exact value computation. The SR
occupies an intermediate position in the efficiency-flexibility
space, with efficiency comparable to linear model-free methods
and flexibility comparable to model-based methods. This and
other computational properties have led to a recent resurgence of
interest in the SR for machine learning (Kulkarni et al., 2016;
Barreto et al., 2017; Zhang et al., 2017).

The research program reviewed in this paper is still in its in-
fancy, and many questions remain. Here we highlight a few of
these questions.

First, we have suggested that dopamine conveys a vector-
valued signal for updating the SR (Gardner et al., 2018). This is
completely speculative at this point, because no one has system-

atically investigated whether dopamine signals are vector-valued,
except in limited and indirect ways. Ensemble recordings of do-
pamine neurons will be useful for a more decisive test of this
hypothesis.

Second, the SR is unlikely to be a self-contained reinforcement
learning system; empirical (Momennejad et al., 2017) and theo-
retical (Russek et al., 2017) arguments indicate that it interacts
with both model-based and model-free computations. The na-
ture of these interactions is still unclear, however. Once we have a
more systematic mapping of computations onto brain structures,
we may have better purchase on this question. For example,
Momennejad et al. (2017) presented evidence suggesting that
model-based computations incrementally refine an initial SR-
based estimate of the value function. If this is true, then we should
expect to see SR-related neural signals early on, which are later
superseded by model-based neural signals. Another possibility is
that the model-based system plans to some depth and then uses
the SR to compute a heuristic value function (Keramati et al.,
2016). Yet another possibility is that the SR provides an efficient
search space for model-based planning, which can be imple-
mented using attractor dynamics (Corneil and Gerstner, 2015).

Third, we have assumed that the value function approxima-
tion, at least the one that interfaces with the SR, is linear. Is that a
reasonable assumption? This question is intrinsically hard to an-
swer, because we do not know how to directly analyze the func-
tion approximation architecture used by a neural circuit. Most
biologically realistic neural circuits are of course nonlinear, but
the question is whether a linear model is a useful abstraction. As
we learn more about the circuit computations underlying rein-
forcement learning, our assumptions about representation may
change in tandem.

Fourth, we have assumed that the brain knows what state it is
in, and moreover has some representation of the entire state
space. But in reality we often have uncertainty about the under-
lying state (the state inference problem), and may also have un-
certainty about the state space itself (the state discovery
problem). These problems raise the question of how to think
about the SR under state uncertainty. Some theories posit that the
brain forms a posterior distribution over hidden states condi-
tional on sensory data (Daw et al., 2006; Gershman et al., 2010;
Rao, 2010; Soto et al., 2014; Babayan et al., 2018; Starkweather et
al., 2018), in which case the SR would need to be defined over the

Figure 5. Left, Fear-related freezing response in rats following fear conditioning is stronger if the animal is pre-exposed to the conditioning environment. This effect is much weaker following
hippocampal lesions. Adapted from Fanselow (2010). Right, Exploring the environment allows the hippocampus to learn a predictive representation, which can then be used to generalize value
across states. Adapted from Stachenfeld et al. (2017).
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continuous space of probability distributions. Although this is a
well defined problem mathematically, it is an open question how
the brain accomplishes this in a computationally tractable way.

Fifth, if the hippocampus encodes the SR, then we can make
predictions about how it should respond to the transition and
reward manipulations in revaluation experiments (Momennejad
et al., 2017). Specifically, we would expect that when reward
changes, the firing rates of hippocampal neurons should respond
only once the animal’s policy begins to change, because the ani-
mal will only observe changes in state occupancy when it alters its
policy. In contrast, transition changes should cause hippocampal
neurons to respond immediately (before any policy change) be-
cause of the altered state occupancy statistics.

Finally, a separate line of research has implicated the SR in
memory (Gershman, 2017b). In particular, the SR is closely re-
lated to mathematical models of item– context associations (Ger-
shman et al., 2012), and the temporal difference learning
algorithm offers a new way of thinking about how these associa-
tions are updated (Smith et al., 2013; Manns et al., 2015). Pres-
ently, it is unclear whether memory and reinforcement learning
rely on a common neural substrate, although the shared depen-
dence on the hippocampus suggests this as a plausible conjecture.

References
Adams CD (1982) Variations in the sensitivity of instrumental responding

to reinforcer devaluation. Q J Exp Psychol 34:77–98. CrossRef
Alvernhe A, Save E, Poucet B (2011) Local remapping of place cell firing in

the tolman detour task. Eur J Neurosci 33:1696 –1705. CrossRef Medline
Babayan BM, Uchida N, Gershman SJ (2018) Belief state representation in

the dopamine system. Nat Commun 9:1891. CrossRef Medline
Barreto A, Dabney W, Munos R, Hunt JJ, Schaul T, Van Hasselt H, Silver D

(2017) Successor features for transfer in reinforcement learning. In: Ad-
vances in neural information processing systems, pp 4056 – 4066. Cam-
bridge, MA: MIT.

Bengio Y (2009) Learning deep architectures for AI. Found Trends Mach
Learn 2:1–127. CrossRef

Brea J, Gaál AT, Urbanczik R, Senn W (2016) Prospective coding by spiking
neurons. PLoS Comput Biol 12:e1005003. CrossRef Medline

Chang CY, Gardner M, Di Tillio MG, Schoenbaum G (2017) Optogenetic
blockade of dopamine transients prevents learning induced by changes in
reward features. Curr Biol 27:3480 –3486.e3. CrossRef Medline

Corneil DS, Gerstner W (2015) Attractor network dynamics enable preplay
and rapid path planning in maze-like environments. In: Advances in neu-
ral information processing systems, pp 1684 –1692. Cambridge, MA:
MIT.

Daw ND, Touretzky DS (2002) Long-term reward prediction in TD models
of the dopamine system. Neural Comput 14:2567–2583. CrossRef
Medline

Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between
prefrontal and dorsolateral striatal systems for behavioral control. Nat
Neurosci 8:1704 –1711. CrossRef Medline

Daw ND, Courville AC, Touretzky DS (2006) Representation and timing
in theories of the dopamine system. Neural Comput 18:1637–1677.
CrossRef Medline

Dayan P (1993) Improving generalization for temporal difference learning:
the successor representation. Neural Comput 5:613– 624. CrossRef

Dayan P, Niv Y, Seymour B, Daw ND (2006) The misbehavior of value and
the discipline of the will. Neural Netw 19:1153–1160. CrossRef Medline

DiCarlo JJ, Cox DD (2007) Untangling invariant object recognition. Trends
Cogn Sci 11:333–341. CrossRef Medline

Dickinson A (1985) Actions and habits: the development of behavioural
autonomy. Phil Trans R Soc Lond B Biol Sci 308:67–78. CrossRef

Dolan RJ, Dayan P (2013) Goals and habits in the brain. Neuron 80:312–
325. CrossRef Medline

Fanselow MS (2010) From contextual fear to a dynamic view of memory
systems. Trends Cogn Sci 14:7–15. CrossRef Medline

Gardner MPH, Schoenbaum, Gershman SJ (2018) Rethinking dopamine
prediction errors. bioRxiv 239731. CrossRef

Garvert MM, Dolan RJ, Behrens TE (2017) A map of abstract relational

knowledge in the human hippocampal– entorhinal cortex. eLife 6:e17086.
CrossRef Medline

Gershman SJ (2017a) Dopamine, inference, and uncertainty. Neural Com-
put 29:3311–3326. CrossRef Medline

Gershman SJ (2017b) Predicting the past, remembering the future. Curr
Opin Behav Sci 17:7–13. CrossRef Medline

Gershman SJ, Daw ND (2017) Reinforcement learning and episodic mem-
ory in humans and animals: an integrative framework. Annu Rev Psychol
68:101–128. CrossRef Medline

Gershman SJ, Blei DM, Niv Y (2010) Context, learning, and extinction. Psy-
chol Rev 117:197–209. CrossRef Medline

Gershman SJ, Moore CD, Todd MT, Norman KA, Sederberg PB (2012) The
successor representation and temporal context. Neural Comput 24:1553–
1568. CrossRef Medline

Gershman SJ, Markman AB, Otto AR (2014) Retrospective revaluation in
sequential decision making: a tale of two systems. J Exp Psychol Gen
143:182–194. CrossRef Medline

Hollup SA, Molden S, Donnett JG, Moser MB, Moser EI (2001) Accumula-
tion of hippocampal place fields at the goal location in an annular wa-
termaze task. J Neurosci 21:1635–1644. CrossRef Medline

Keramati M, Smittenaar P, Dolan RJ, Dayan P (2016) Adaptive integration
of habits into depth-limited planning defines a habitual-goal-directed
spectrum. Proc Natl Acad Sci U S A 113:12868 –12873. CrossRef Medline

Kool W, Cushman FA, Gershman SJ (2018) Competition and cooperation
between multiple reinforcement learning systems. In: Goal-directed de-
cision making: computations and neural circuits. New York: Academic.

Kulkarni TD, Saeedi A, Gautam S, Gershman SJ (2016) Deep successor re-
inforcement learning. arXiv:1606.02396.

Ludvig EA, Sutton RS, Kehoe EJ (2008) Stimulus representation and the
timing of reward-prediction errors in models of the dopamine system.
Neural Comput 20:3034 –3054. CrossRef Medline

Manns JR, Galloway CR, Sederberg PB (2015) A temporal context repeti-
tion effect in rats during a novel object recognition memory task. Anim
Cogn 18:1031–1037. CrossRef Medline

Mehta MR, Quirk MC, Wilson MA (2000) Experience-dependent asym-
metric shape of hippocampal receptive fields. Neuron 25:707–715.
CrossRef Medline

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves
A, Riedmiller M, Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik
A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D
(2015) Human-level control through deep reinforcement learning. Na-
ture 518:529 –533. CrossRef Medline

Momennejad I, Russek EM, Cheong JH, Botvinick MM, Daw N, Gershman SJ
(2017) The successor representation in human reinforcement learning.
Nat Hum Behav 1:680 – 692. CrossRef

Mondragón E, Alonso E, Kokkola N (2017) Associative learning should go
deep. Trends Cogn Sci 21:822– 825. CrossRef Medline

Muller RU, Kubie JL (1987) The effects of changes in the environment on
the spatial firing of hippocampal complex-spike cells. J Neurosci 7:1951–
1968. CrossRef Medline

Poggio T, Bizzi E (2004) Generalization in vision and motor control. Nature
431:768 –774. CrossRef Medline

Rainer G, Rao SC, Miller EK (1999) Prospective coding for objects in pri-
mate prefrontal cortex. J Neurosci 19:5493–5505. CrossRef Medline

Rao RP (2010) Decision making under uncertainty: a neural model based
on partially observable markov decision processes. Front Comput Neu-
rosci 4:146. CrossRef Medline

Russek EM, Momennejad I, Botvinick MM, Gershman SJ, Daw ND (2017)
Predictive representations can link model-based reinforcement learning
to model-free mechanisms. PLoS Comput Biol 13:e1005768. CrossRef
Medline

Schapiro AC, Turk-Browne NB, Norman KA, Botvinick MM (2016) Statis-
tical learning of temporal community structure in the hippocampus. Hip-
pocampus 26:3– 8. CrossRef Medline

Schmajuk NA, DiCarlo JJ (1992) Stimulus configuration, classical condi-
tioning, and hippocampal function. Psychol Rev 99:268 –305. CrossRef
Medline

Schölkopf B, Smola AJ (2002) Learning with kernels: support vector ma-
chines, regularization, optimization, and beyond. Cambridge, MA: MIT.

Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction
and reward. Science 275:1593–1599. CrossRef Medline

Sharpe MJ, Chang CY, Liu MA, Batchelor HM, Mueller LE, Jones JL, Niv Y,

Gershman • The Successor Representation J. Neurosci., August 15, 2018 • 38(33):7193–7200 • 7199

http://dx.doi.org/10.1080/14640748208400878
http://dx.doi.org/10.1111/j.1460-9568.2011.07653.x
http://www.ncbi.nlm.nih.gov/pubmed/21395871
http://dx.doi.org/10.1038/s41467-018-04397-0
http://www.ncbi.nlm.nih.gov/pubmed/29760401
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1371/journal.pcbi.1005003
http://www.ncbi.nlm.nih.gov/pubmed/27341100
http://dx.doi.org/10.1016/j.cub.2017.09.049
http://www.ncbi.nlm.nih.gov/pubmed/29103933
http://dx.doi.org/10.1162/089976602760407973
http://www.ncbi.nlm.nih.gov/pubmed/12433290
http://dx.doi.org/10.1038/nn1560
http://www.ncbi.nlm.nih.gov/pubmed/16286932
http://dx.doi.org/10.1162/neco.2006.18.7.1637
http://www.ncbi.nlm.nih.gov/pubmed/16764517
http://dx.doi.org/10.1162/neco.1993.5.4.613
http://dx.doi.org/10.1016/j.neunet.2006.03.002
http://www.ncbi.nlm.nih.gov/pubmed/16938432
http://dx.doi.org/10.1016/j.tics.2007.06.010
http://www.ncbi.nlm.nih.gov/pubmed/17631409
http://dx.doi.org/10.1098/rstb.1985.0010
http://dx.doi.org/10.1016/j.neuron.2013.09.007
http://www.ncbi.nlm.nih.gov/pubmed/24139036
http://dx.doi.org/10.1016/j.tics.2009.10.008
http://www.ncbi.nlm.nih.gov/pubmed/19939724
http://dx.doi.org/10.1101/239731
http://dx.doi.org/10.7554/eLife.17086
http://www.ncbi.nlm.nih.gov/pubmed/28448253
http://dx.doi.org/10.1162/neco_a_01023
http://www.ncbi.nlm.nih.gov/pubmed/28957023
http://dx.doi.org/10.1016/j.cobeha.2017.05.025
http://www.ncbi.nlm.nih.gov/pubmed/28920071
http://dx.doi.org/10.1146/annurev-psych-122414-033625
http://www.ncbi.nlm.nih.gov/pubmed/27618944
http://dx.doi.org/10.1037/a0017808
http://www.ncbi.nlm.nih.gov/pubmed/20063968
http://dx.doi.org/10.1162/NECO_a_00282
http://www.ncbi.nlm.nih.gov/pubmed/22364500
http://dx.doi.org/10.1037/a0030844
http://www.ncbi.nlm.nih.gov/pubmed/23230992
http://dx.doi.org/10.1523/JNEUROSCI.21-05-01635.2001
http://www.ncbi.nlm.nih.gov/pubmed/11222654
http://dx.doi.org/10.1073/pnas.1609094113
http://www.ncbi.nlm.nih.gov/pubmed/27791110
http://dx.doi.org/10.1162/neco.2008.11-07-654
http://www.ncbi.nlm.nih.gov/pubmed/18624657
http://dx.doi.org/10.1007/s10071-015-0871-3
http://www.ncbi.nlm.nih.gov/pubmed/25917312
http://dx.doi.org/10.1016/S0896-6273(00)81072-7
http://www.ncbi.nlm.nih.gov/pubmed/10774737
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1038/s41562-017-0180-8
http://dx.doi.org/10.1016/j.tics.2017.06.001
http://www.ncbi.nlm.nih.gov/pubmed/28668210
http://dx.doi.org/10.1523/JNEUROSCI.07-07-01951.1987
http://www.ncbi.nlm.nih.gov/pubmed/3612226
http://dx.doi.org/10.1038/nature03014
http://www.ncbi.nlm.nih.gov/pubmed/15483597
http://dx.doi.org/10.1523/JNEUROSCI.19-13-05493.1999
http://www.ncbi.nlm.nih.gov/pubmed/10377358
http://dx.doi.org/10.3389/fncom.2010.00146
http://www.ncbi.nlm.nih.gov/pubmed/21152255
http://dx.doi.org/10.1371/journal.pcbi.1005768
http://www.ncbi.nlm.nih.gov/pubmed/28945743
http://dx.doi.org/10.1002/hipo.22523
http://www.ncbi.nlm.nih.gov/pubmed/26332666
http://dx.doi.org/10.1037/0033-295X.99.2.268
http://www.ncbi.nlm.nih.gov/pubmed/1594726
http://dx.doi.org/10.1126/science.275.5306.1593
http://www.ncbi.nlm.nih.gov/pubmed/9054347


Schoenbaum G (2017) Dopamine transients are sufficient and necessary
for acquisition of model-based associations. Nat Neurosci 20:735–742.
CrossRef Medline

Skaggs WE, McNaughton BL (1998) Spatial firing properties of hippocam-
pal ca1 populations in an environment containing two visually identical
regions. J Neurosci 18:8455– 8466. CrossRef Medline

Smith TA, Hasinski AE, Sederberg PB (2013) The context repetition effect:
predicted events are remembered better, even when they don’t happen. J
Exp Psychol Gen 142:1298 –1308. CrossRef Medline

Soto FA, Gershman SJ, Niv Y (2014) Explaining compound generalization
in associative and causal learning through rational principles of dimen-
sional generalization. Psychol Rev 121:526 –558. CrossRef Medline

Stachenfeld KL, Botvinick MM, Gershman SJ (2017) The hippocampus as a
predictive map. Nat Neurosci 20:1643–1653. CrossRef Medline

Starkweather CK, Gershman SJ, Uchida N (2018) The medial prefrontal
cortex shapes dopamine reward prediction errors under state uncertainty.
Neuron 98:616 – 629.e6. CrossRef Medline

Sussillo D, Abbott LF (2009) Generating coherent patterns of activity from
chaotic neural networks. Neuron 63:544 –557. CrossRef Medline

Sutton RS, Barto AG (1998) Reinforcement learning: an introduction.
Cambridge, MA: MIT.

Takahashi YK, Batchelor HM, Liu B, Khanna A, Morales M, Schoenbaum G
(2017) Dopamine neurons respond to errors in the prediction of sensory
features of expected rewards. Neuron 95:1395–1405.e3. CrossRef Medline

Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189 –
208. CrossRef Medline

Valentin VV, Dickinson A, O’Doherty JP (2007) Determining the neural
substrates of goal-directed learning in the human brain. J Neurosci 27:
4019 – 4026. CrossRef Medline

Zhang J, Springenberg JT, Boedecker J, Burgard W (2017) Deep reinforce-
ment learning with successor features for navigation across similar envi-
ronments. In: IROS Vancouver 2017: IEEE/RSJ international conference
on intelligent robots and systems: Vancouver, BC, Canada, September
24 –28, 2017, pp 2371–2378. Piscataway, NJ: IEEE.

7200 • J. Neurosci., August 15, 2018 • 38(33):7193–7200 Gershman • The Successor Representation

http://dx.doi.org/10.1038/nn.4538
http://www.ncbi.nlm.nih.gov/pubmed/28368385
http://dx.doi.org/10.1523/JNEUROSCI.18-20-08455.1998
http://www.ncbi.nlm.nih.gov/pubmed/9763488
http://dx.doi.org/10.1037/a0034067
http://www.ncbi.nlm.nih.gov/pubmed/23957285
http://dx.doi.org/10.1037/a0037018
http://www.ncbi.nlm.nih.gov/pubmed/25090430
http://dx.doi.org/10.1038/nn.4650
http://www.ncbi.nlm.nih.gov/pubmed/28967910
http://dx.doi.org/10.1016/j.neuron.2018.03.036
http://www.ncbi.nlm.nih.gov/pubmed/29656872
http://dx.doi.org/10.1016/j.neuron.2009.07.018
http://www.ncbi.nlm.nih.gov/pubmed/19709635
http://dx.doi.org/10.1016/j.neuron.2017.08.025
http://www.ncbi.nlm.nih.gov/pubmed/28910622
http://dx.doi.org/10.1037/h0061626
http://www.ncbi.nlm.nih.gov/pubmed/18870876
http://dx.doi.org/10.1523/JNEUROSCI.0564-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17428979

	The Successor Representation: Its Computational Logic and Neural Substrates
	Introduction
	References


