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Rational analyses of memory suggest that retrievability of past

experience depends on its usefulness for predicting the future:

memory is adapted to the temporal structure of the

environment. Recent research has enriched this view by

applying it to semantic memory and reinforcement learning.

This paper describes how multiple forms of memory can be

linked via common predictive principles, possibly subserved by

a shared neural substrate in the hippocampus. Predictive

principles offer an explanation for a wide range of behavioral

and neural phenomena, including semantic fluency, temporal

contiguity effects in episodic memory, and the topological

properties of hippocampal place cells.
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Introduction
Why remember the past? George Santayana famously

remarked that ‘Those who cannot remember the past

are condemned to repeat it’ [1], and William Faulkner

expressed a similar sentiment in Requiem for a Nun: ‘The

past is never dead. It isn’t even the past.’ Patterns of

recurrence have fascinated historians from Polybius to

Arnold Toynbee [2], and some have tried to harvest

lessons from these patterns to guide political decision

making [3]. More mundanely, the daily lives of most

organisms are structured by cycles of sleeping, eating

and other routine activities. At shorter timescales, many

events can be anticipated using sensory information from

the recent past, giving organisms with memory an adap-

tive advantage. Thus, memory of the past, spanning

vastly different timescales, is relevant for predicting

and controlling the future [4�,5–7].
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Most research on human memory has focused on under-

standing, at a descriptive level, how information from the

past is stored and retrieved, without contemplating the

usefulness of this information for future action. However,

researchers have increasingly come to appreciate the fact

that memory is organized around predictive design prin-

ciples [8], evident in multiple forms of memory (seman-

tic, episodic, short-term and procedural). Computational

models have formalized these principles mathematically,

drawing upon ideas from library science, search engine

algorithms, probability theory, and reinforcement learn-

ing. Despite this diversity of approaches, we will see that

several of them can be unified in terms of a single

predictive representation, repurposed (with slight mod-

ifications) for the needs of different memory systems.

Neural correlates of this predictive representation have

been observed in the hippocampus, suggesting a func-

tional explanation for the region’s involvement in both

retrospective and prospective cognition.

The rational analysis of memory
John Anderson’s ‘rational analysis of memory’ was the first

theoretical attempt to explain the structure of memory in

terms of beliefs about the future [9,10]. Anderson con-

ceptualized the problem facing memory as one of deter-

mining need probability: the likelihood that a particular

piece of information will be needed in the future. On the

assumption that past need predicts future need, memory

can used to produce a forecast. Importantly, because need

probability may change over time, this forecast should

adapt to the statistics of past experience.

It is worth highlighting here the extent to which this view

represents a significant departure from prevailing ideas

about episodic memory. The standard view (see [11�] for

a summary) holds that there is a fundamental tension

between memory for specific instances (episodic mem-

ory) and memory for statistical regularities (semantic

memory). In contrast, Anderson’s rational analysis posited

that episodic memory is structured by statistical regulari-

ties. To formalize this idea, Anderson adapted a model of

library borrowing, likening memories to books in a library

system. The usage of each book is subject to fluctuations,

and the task facing the library system is to track these

usage statistics in order to anticipate the probability that a

book will be needed in the near future. Anderson showed

that this model could capture many basic properties of

memory, such as spacing, recency, fan and word fre-

quency effects.

Several authors have explored different assumptions

about the statistical regularities governing episodic
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memory. For example, Gershman and colleagues [12]

developed a Bayesian nonparametric model in which

the environmental dynamics can switch between an

unknown number of ‘modes.’ This model makes the

prediction (confirmed experimentally) that abrupt

changes will result in the inference that a new mode

has been encountered, effectively creating an event

boundary that reduces interference between items on

either side of the boundary. The importance of event

boundaries in memory formation and retrieval has been

highlighted by a number of other recent studies [13–18].

Rational analysis has also been applied to semantic mem-

ory. In this case, the need probability is dictated by the

long-run marginal probability of items, rather than the

temporally specific need probability used in the analysis

of episodic memory. Griffiths and colleagues [19] showed

that the semantic need probability is precisely what is

computed by Google’s PageRank search algorithm [20].

They conceptualized semantic memory as a directed

network (a kind of mental World Wide Web) over which

semantic processing flows according to a random walk. If

we let Lij ¼ Lij=
P

kLik denote the normalized link matrix

(where Lij = 1 if there is a link from item i to item j, and

0 otherwise), then PageRank computes the vector of item

ranks r according to the recursive definition r ¼ Lr.

We can understand the rank of item i as proportional to its

marginal probability P(i) after running the random walk

on the semantic network for a long time. Intuitively, this

means that the proportion of time a person spends think-

ing about item i scales with its rank. It can also be

interpreted as a probabilistic model of environmental

structure: if the need for an item over time can be

described by a random walk, then its rank reflects its

long-run need probability. Griffiths and colleagues asked

participants to generate words beginning with a particular

letter, and showed that the number of times a word was

retrieved (a measure of semantic fluency) was well-pre-

dicted by its rank. This suggests that human semantic

memory is structured to make predictions of future need

probability over long timescales.

A predictive substrate
Another way to derive the PageRank algorithm is to

construct a predictive representation for each item i that

encodes the expected discounted number of times item j
will be needed on a random walk initiated at i:

Mij ¼ E
X1
t¼1

g tIðst ¼ jÞjs0 ¼ i

" #
; ð1Þ

where st denotes the item needed at time t, Ið�Þ ¼ 1 if its

argument is true (0 otherwise), and g is a discount factor

controlling the effective time horizon over which item
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counts are accumulated. The expectation is taken over

randomness in state transitions and rewards. One can

interpret 1 � g as the constant probability that the ran-

dom walk will terminate at any given time. An item’s rank

can be computed from the predictive representation

simply by summing the rows of M : rj /
P

iMij. In other

words, the long-run probability of visiting an item is

obtained by summing its cumulative expected need

across the collection of random walks initiated at different

items.

This way of deriving PageRank is intriguing because the

matrix M has another life in the reinforcement learning

literature, where it is known as the successor representation
(SR) [21]. The central problem in reinforcement learning

is the computation of value, the discounted cumulative

reward expected in the future upon entering a state:

Vi ¼ E
X1
t¼1

g tRðstÞjs0 ¼ i

" #
; ð2Þ

where R(s) is the immediate reward expected upon enter-

ing state s. The SR renders value computation a linear

operation, due to the identity Vi =
P

jMijR(j). It therefore

offers a significant computational advantage over tradi-

tional model-based planning algorithms that typically

scale superlinearly with the number of states [22].

Further insight can be gleaned by considering the long-

run average reward. It can be shown that the long-run

average reward is a reward-weighted version of the rank

(and hence need probability) returned by the PageRank

algorithm, revealing a deep and surprising formal connec-

tion between reinforcement learning, information

retrieval, and the rational analysis of memory. It suggests

a way in which reward associations can reweight need

probabilities, in accordance with well-known motiva-

tional influences on memory [23–25].

Learning the successor representation with
temporal context
The SR is defined as an expectation over infinitely long

trajectories, raising the question of how it can be tractably

computed. One possibility, borrowing ideas from rein-

forcement learning, is to directly update an estimate the

SR (M̂) from state transitions. Specifically, the SR can be

updated incrementally using a form of temporal differ-

ence learning [26]:

DM̂ði; jÞ ¼ a½Iðstþ1 ¼ jÞ þ gM̂ðstþ1; jÞ � M̂ðst; jÞ�etðiÞ;
ð3Þ

where a is a learning rate and et(i) is an exponentially

decaying memory trace of recent states that specifies the
www.sciencedirect.com
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Figure 1

The successor representation defined over space. (Left) Neurons

tuned to different locations encode prediction about future locations.

Shading corresponds to expected number of times a neuron’s

preferred location will be visited along a trajectory initiated at the

animal’s current location. (Right) Simulated predictive place fields for

different environments.
‘eligibility’ of state i for updating. The term in brackets

represents a ‘prediction error’ analogous to the reward

prediction error thought to be conveyed by phasic dopa-

mine signaling [27], but in this case the prediction error is

defined on state expectations rather than on reward

expectations.

The temporal difference update described above is nearly

identical to an influential theory of episodic memory, the

temporal context model (TCM; [28,29]). TCM was origi-

nally developed to explain the temporal structure of

memory retrieval in free recall experiments, but has more

recently been applied to many other phenomena, ranging

from false memory [30,31] to spacing and repetition

effects [32]. According to TCM, items are bound in

memory to a slowly drifting representation of temporal

context (a recency-weighted average of previous items),

and at test the temporal context acts as a retrieval cue,

preferentially drawing items based on their strength of

association. It can be shown (see [26] for details) that the

temporal context representation corresponds to the eligi-

bility trace et, and the matrix of item-context associations

corresponds to M̂.

The connection between TCM and the SR suggests

another way in which episodic memory can be cast in

terms of predictive mechanisms. However, the temporal

difference learning update is equivalent to the originally

proposed Hebbian update rule [28] only when items are

presented once per list. In this case, the second term in

the temporal difference update is always zero, because no

predictions for novel items have been formed yet. When

items are repeated, the second term comes into play,

altering the theory’s predictions. An elegant study [33��]
drew out these implications, testing the prediction that

the temporal difference update will produce a context
repetition effect: repeating the temporal context of a partic-

ular item will strengthen memory for that item, even if

the item itself was not repeated. This prediction follows

from the fact that the second term in the temporal

difference update will be positive whenever an item’s

temporal context recurs. The study found support for this

prediction across several experiments, as well as a bound-

ary condition, whereby the effect only occurs when the

item is strongly predicted by the temporal context. This

again is entirely consistent with the theory, since the

second term in the update will be smaller when the

predictive relationship between context and item is weak.

The context repetition effect was also recently demon-

strated in rats using an object recognition task [34].

The role of the hippocampus
The multi-faceted role of predictive representations in

memory suggests that they may have a dedicated neural

substrate. Several lines of evidence suggest that the

hippocampus, although traditionally viewed as a reposi-

tory for episodic memory and spatial representation, may
www.sciencedirect.com 
in fact be organized around predictive principles [35,36].

First, place cells in the hippocampus sweep ahead of an

animal’s current position when it is at a choice point [37];

these forward sweeps may arise from phase precession,

the progressive shift in spike timing relative to the

ongoing theta oscillation as an animal moves through a

place field [38,39,4�]. Second, when an animal repeatedly

runs on a particular trajectory, place fields tend to expand

opposite the direction of travel [40], consistent with the

idea that earlier place cells learn to predict upcoming

locations. Third, functional MRI experiments in humans

have indicated that the hippocampus is sensitive to the

predictability of upcoming stimuli [41–43,44�]. Fourth,

the hippocampus is activated when humans engage in

episodic future-thinking [45], and damage to the hippo-

campus appears to severely impair this ability [46]

(though this finding is controversial; see [47]).

Recent theoretical work has formalized the predictive

function of the hippocampus in terms of the SR [48].

According to this view, place cells do not actually encode

spatial location; they encode expectations about future

locations (though see [49] for evidence that some place

cells have no predictive properties during immobility). In

an open field, these future locations will tend to be in the

vicinity of the animal’s current location, yielding classical

radially symmetric place fields. However, predictive

fields will become distorted when obstacles are intro-

duced or the environmental topology is altered (Figure 1)

— just as observed experimentally [50–52]. Likewise,

replay of place cell sequences appear to respect the
Current Opinion in Behavioral Sciences 2017, 17:7–13
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Figure 2

Prospective coding by spiking neurons. (a) A network of spiking

neurons (colored triangles), with spike times indicated by vertical lines.

The green neuron drives spiking of the purple neuron, opening a

potentiation window (red box) during which other spiking neurons can

strengthen their synaptic connections with the purple neuron. (b) As a

consequence of plasticity, the purple neuron can now be driven by the

blue neuron, shifting the potentiation window earlier and allowing the

orange neuron to strengthen its connection with the purple neuron.

The activity of the green neuron thus becomes predicted by neurons

spiking earlier in time.

Adapted from [64��].
environmental topology [53]. The topological sensitivity

of the SR is a natural consequence of the fact that an

animal’s future trajectory is constrained by barriers to

movement.

Even when there are not physical barriers to movement,

the SR may still distort along certain paths, for example,

when rewards occur in reliable locations. This follows

from the fact that an animal’s policy tends to be reward-

seeking. Consistent with this hypothesis, place fields tend

to cluster around rewarded locations [54]. Moreover, a

recent experiment found that forward sweeps preferen-

tially visit rewarded locations [55��].

Early during learning, the SR may resemble a relatively

‘pure’ representation of space, since the predictive rela-

tionships between states have not yet been learned. The

fact that some place cells show no predictive properties

during early exposure to an environment [49] aligns well

with the classic finding that contextual fear conditioning

is more effective if the animal is first pre-exposed to the

environment (an effect that is hippocampus-dependent

[56]). According to the SR theory, predictive relationships

between states allow the shock association to propagate to

other states (i.e. locations within the environment), lead-

ing to a more robust fear memory.

It is important to note that the SR theory does not entirely

dispense with some notion of purely spatial representa-

tion, as posited by the classical place cell literature. In

fact, the SR, when defined over space, is predicated on

such a representation, since this is the only way to index

spatially distinct states. Likewise, place cells could also

index local perceptual features [57], allowing the SR to be

defined over this feature space.

Another point of contact between the classical place cell

literature and the SR theory concerns the mechanisms of

SR updating. The previous section described a temporal

difference learning algorithm for updating the SR based

on experienced trajectories. However, it is well-known

that animals can rapidly change their behavior in response

to structural changes in the environment without directly

experiencing those changes, such as the detour behavior

observed by Tolman [58]. These rapid behavioral

changes seem to require an internal model or ‘cognitive

map’ that can be updated in the absence of direct expe-

rience. One way to accomplish this within the SR theory

is to posit a simulation mechanism that can use an internal

model to update the SR [59,60], possibly implemented by

forward sweeps of place cells [37].

One of the strengths of the SR theory is that it provides a

framework for understanding the origin of non-spatial,

relational representations in the hippocampus. For exam-

ple, the hippocampus is involved in the computation of

transitive inferences [61], and damage to the
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hippocampus impairs transitive inference [62]. Recently,

Garvert and colleagues [63�] used functional MRI to

directly examine the SR account of relational representa-

tion. Subjects in their study were exposed to sequences of

items generated by a random walk on a graph. Represen-

tational similarity in the hippocampus (as measured by

adaptation of the neural response across random pairs of

items) scaled inversely with distance on the graph, and

quantitative analyses revealed that this similarity struc-

ture was best described by the SR compared to other

graph-theoretic measures.

Predictive spiking neurons
How does the SR arise in biologically realistic neural

circuits? Neurons must spike within a few tens of milli-

seconds of one another for their synapses to be strength-

ened, much shorter than the temporal horizon of predic-

tive codes like the SR (on the order of seconds). Brea and

colleagues [64��] have developed a framework for resolv-

ing this puzzle, using a variant of traditional spike timing-

dependent plasticity [65].

The basic idea is illustrated in Figure 2. When a synapse

between two neurons is potentiated, the presynaptic

neuron can cause the postsynaptic neuron to fire earlier.

This in turn allows the postsynaptic neuron to enter into

plasticity with other neurons that are spiking even earlier.

Thus, the membrane potential of the postsynaptic neuron

comes to reflect the anticipatory drive from presynaptic
www.sciencedirect.com
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inputs; in effect, the postsynaptic neuron is anticipating

its own future spiking. This is the same kind of boot-

strapping that underlies the temporal difference learning

algorithm described above.

Brea and colleagues [64��] showed that a form of spike

timing-dependent plasticity can be used to implement

predictive spiking. In particular, under some fairly gen-

eral assumptions their plasticity rule enables the dendritic

potential to directly encode the expected discounted

future spike rate at the soma — that is, one column of

the SR matrix M. Predictive spiking offers an explanation

for widespread anticipatory responses in the brain

[66,43,67].

Conclusions
Starting from the principle that memory is designed to

serve a predictive function, a rich web of theoretical

insights can be derived. Semantic and episodic memory

can be linked via a common predictive representation

initially studied in the reinforcement learning literature,

allowing us to contemplate the computational properties

that these different forms of memory may have in com-

mon. These commonalities may derive from a shared

neural substrate, as suggested by the widespread involve-

ment of the hippocampus across domains [68].

Despite the appeal of a unifying neural substrate, this

viewpoint is in tension with taxonomies of memory that

stipulate dissociable systems in the brain [69]. For exam-

ple, transformational consolidation theories hold that

episodic memories stored initially in the hippocampus

are gradually transformed into semantic memories stored

in neocortex [70,11�]. This viewpoint is supported by

evidence that hippocampal amnesics show spared long-

term semantic memory [71]. However, more recent

experiments have found semantic impairments in amne-

sia (see [72] for a review), and amnesics exhibit semanti-

cally impoverished episodic future-thinking [73]. Beyond

semantic memory, there is now considerable evidence

that the hippocampus (and episodic memory more gen-

erally) plays an important role in reinforcement learning

as well [7]. Collectively, these observations lend credence

to the idea that multiple forms of memory may draw upon

a common predictive representation in the hippocampus.

Another tension derives from dissociations between dif-

ferent forms of memory that support behavioral control in

reinforcement learning tasks. For example, stimulus-

response strategies depend on subregions of the striatum

but not on the hippocampus, whereas allocentric ‘place’

strategies depend on the hippocampus but not the stria-

tum [74]. These dissociations indicate that a predictive

representation in the hippocampus can only be one part of

a larger multi-system architecture, whose components

interact both competitively and cooperatively [7].
www.sciencedirect.com 
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