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The hypothesis that the phasic dopamine response reports a reward
prediction error has become deeply entrenched. However, dopamine neu-
rons exhibit several notable deviations from this hypothesis. A coher-
ent explanation for these deviations can be obtained by analyzing the
dopamine response in terms of Bayesian reinforcement learning. The key
idea is that prediction errors are modulated by probabilistic beliefs about
the relationship between cues and outcomes, updated through Bayesian
inference. This account can explain dopamine responses to inferred value
in sensory preconditioning, the effects of cue preexposure (latent inhibi-
tion), and adaptive coding of prediction errors when rewards vary across
orders of magnitude. We further postulate that orbitofrontal cortex trans-
forms the stimulus representation through recurrent dynamics, such that
a simple error-driven learning rule operating on the transformed repre-
sentation can implement the Bayesian reinforcement learning update.

1 Introduction

The phasic firing of dopamine neurons in the midbrain has long been
thought to report a reward prediction error—the discrepancy between ob-
served and expected reward—whose purpose is to correct future reward
predictions (Eshel et al., 2015; Glimcher, 2011; Montague, Dayan, & Se-
jnowski, 1996; Schultz, Dayan, & Montague, 1997). This hypothesis can
explain many key properties of dopamine, such as its sensitivity to the
probability, magnitude, and timing of reward; its dynamics over the course
of a trial; and its causal role in learning. Despite its success, the predic-
tion error hypothesis faces a number of puzzles. First, why do dopamine
neurons respond under some conditions, such as sensory preconditioning
(Sadacca, Jones, & Schoenbaum, 2016) and latent inhibition (Young, Joseph,
& Gray, 1993), where the prediction error should theoretically be zero?
Second, why do dopamine responses appear to rescale with the range or
variance of rewards (Tobler, Fiorillo, & Schultz, 2005)? These phenomena
appear to require a dramatic departure from the normative foundations of
reinforcement learning that originally motivated the prediction error hy-
pothesis (Sutton & Barto, 1998).
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This letter provides a unified account of these phenomena, expanding
the prediction error hypothesis in a new direction while retaining its nor-
mative foundations. The first step is to reconsider the computational prob-
lem being solved by the dopamine system; instead of computing a single
point estimate of expected future reward, the dopamine system recognizes
its own uncertainty by computing a probability distribution over expected
future reward. This probability distribution is updated dynamically using
Bayesian inference, and the resulting learning equations retain the impor-
tant features of earlier dopamine models. Crucially, the Bayesian theory
goes beyond earlier models by explaining why dopamine responses are sen-
sitive to sensory preconditioning, latent inhibition, and reward variance.

The theory presented here was first developed to explain a broad range
of associative learning phenomena within a unifying framework (Gersh-
man, 2015). We extend this theory further by equipping it with a mech-
anism for updating beliefs about cue-specific volatility (i.e., how quickly
associations between particular cues and outcomes change over time). This
mechanism harkens back to the classic Pearce-Hall theory of attention in
associative learning (Pearce & Hall, 1980; Pearce, Kaye, & Hall, 1982), as
well as to more recent Bayesian incarnations (Behrens, Woolrich, Walton,
& Rushworth, 2007; Mathys, Daunizeau, Friston, & Stephan, 2011; Nassar,
Wilson, Heasly, & Gold, 2010; Yu & Dayan, 2005). As we show, volatility
estimation is important for understanding the effect of reward variance on
the dopamine response.

2 Temporal Difference Learning

The prediction error hypothesis of dopamine was originally formalized by
Montague et al. (1996) in terms of the temporal difference (TD) learning
algorithm (Sutton & Barto, 1998), which posits an error signal of the form

§=r+yVia—V, (2.1)

where r; is the reward received at time ¢, y € [0, 1] is a discount factor that
downweights distal rewards exponentially, and V; is an estimate of the ex-
pected discounted future return (or value):

Vi=E [Z y"er} . (2.2)

k=0

By incrementally adjusting the parameters of the value function to min-
imize prediction errors, TD learning gradually improves its estimates of
future rewards. One common functional form, in both machine learning
and neurobiological applications, is linear function approximation, which
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approximates the value as a linear function of features x;: V; = w ' x;, where
w is a vector of weights, updated according to Aw o x/' ;.

In the complete serial compound (CSC) representation, each cue is bro-
ken down into a cascade of temporal elements, such that each feature cor-
responds to a binary variable indicating whether a stimulus is present or
absent at a particular point in time. This allows the model to generate tem-
porally precise predictions, which have been systematically compared to
phasic dopamine signals. While the original work by Schultz et al. (1997)
showed good agreement between prediction errors and dopamine using
the CSC, later work called into question its adequacy (Daw, Courville, &
Touretzky, 2006; Gershman, Moustafa, & Ludvig, 2014; Ludvig, Sutton, &
Kehoe, 2008). Nonetheless, we will adopt this representation for its simplic-
ity, noting that our substantive conclusions are unlikely to be changed with
other temporal representations.

3 Reinforcement Learning as Bayesian Inference

The TD model is a point estimation algorithm, updating a single weight
vector over time. Gershman (2015) argued that associative learning is bet-
ter modeled as Bayesian inference, where a probability distribution over all
possible weight vectors is updated over time. This idea was originally ex-
plored by Dayan and colleagues (Dayan & Kakade, 2001; Dayan, Kakade, &
Montague, 2000) using a simple Bayesian extension of the Rescorla-Wagner
model (the Kalman filter). This model can explain retrospective revaluation
phenomena like backward blocking that posed notorious difficulties for
classical models of associative learning (Miller, Barnet, & Grahame, 1995).
Gershman (2015) illustrated the explanatory range of the Kalman filter by
applying it to numerous other phenomena. However, the Kalman filter is
still fundamentally limited by the fact that it is a trial-level model and hence
cannot explain the effects of intratrial structure like the interstimulus in-
terval or stimulus duration. It was precisely this structure that motivated
real-time frameworks like the TD model (Sutton & Barto, 1990).

The same logic that transforms Rescorla-Wagner into the Kalman filter
can be applied to transform the TD model into a Bayesian model (Geist &
Pietquin, 2010). Gershman (2015) showed how the resulting unified model
(Kalman TD) can explain a range of phenomena that neither the Kalman
filter nor the TD model can explain in isolation. In this section, we describe
Kalman TD and its extension to incorporate volatility estimation. We then
turn to studies of the dopamine system, showing how the same model can
provide a more complete account of dopaminergic prediction errors.

3.1 Kalman Temporal Difference Learning. To derive a Bayesian
model, we first need to specify the data-generating process. In the context
of associative learning, this entails a prior probability distribution on the
weight vector, p(wy), a change process on the weights, p(w;|w;_1), and a
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reward distribution given stimuli and weights, p(r:|w;, x;). Kalman TD as-
sumes a linear-gaussian dynamical system:

wo ~ N(0, 021), (3.1)
Wi ~ N(Wt—L Q). (3.2)
Ty ~ N(W;rht, 0';,2), (33)

where I is the identity matrix, Q = diag(q1, ..., gp) is a diagonal diffusion
covariance matrix, and h; = x; — yx;41 is the discounted temporal deriva-
tive of the features. Intuitively, this generative model assumes that weights
change gradually and stochastically over time. Under these assumptions,
the value function can be expressed as a linear function of the features,
V; = w'x;, just as in the linear function approximation architecture for TD
(though in this case, the relationship is exact).

Given an observed sequence of feature vectors and rewards, Bayes’s rule
stipulates how to compute the posterior distribution over the weight vector:

P(Wt|xl:t, 1) X P(f1:t|Wt, Xl:t)P(Wt)~ (3.4)

Under the generative assumptions described above, the Kalman filter can
be used to update the parameters of the posterior distribution in closed
form. In particular, the posterior is gaussian with mean W; and covariance
matrix %;, updated according to

Wi = Wi + .y, (3.5

(XtOltT
At

Y1 =2 +Q— ) (3.6)

where Wy = 0 is the initial weight vector (the prior mean), £y = 021 is the
initial (prior) weight covariance matrix, oy = (2; 4+ Q)h, is a vector of learn-
ing rates, and

P= (3.7)

is the prediction error rescaled by the marginal variance
)»t = h:at + O’rz, (38)

which encodes uncertainty about upcoming reward.

Like the original TD model, the Kalman TD model posits updating of
weights by prediction error, and the core empirical foundation of the TD
model (see Glimcher, 2011) also applies to Kalman TD. Unlike the original



Dopamine, Inference, and Uncertainty 3315

TD model, the learning rates change dynamically in Kalman TD, a property
important for explaining phenomena like latent inhibition, as discussed be-
low. In particular, learning rates increase with the posterior variance, re-
flecting the intuition that new data should influence the posterior more
when the agent is more uncertain. At each time step, the posterior vari-
ance increases due to unobserved stochastic changes in the weights, but this
increase may be compensated by reductions due to observed outcomes. An-
other deviation from the original TD model is the fact that weight updates
may not be independent across cues; if there is nonzero covariance between
cues, then observing novel information about one cue will change beliefs
about the other cue. This property is instrumental to the explanation of var-
ious revaluation phenomena (Gershman, 2015), which we explore using the
sensory preconditioning paradigm.

3.2 Volatility Estimation. One unsatisfying, counterintuitive property
of the Kalman TD model is that the learning rates do not depend on the re-
ward history. This means that the model will not be able to capture changes
in learning rate due to variability in the reward history. In fact, a consider-
able literature suggests that learning rate changes as a function of reward
history, though the precise nature of such changes is controversial (Le Pel-
ley, 2004; Mitchell & Le Pelley, 2010). For example, learning is slower when
the cue was previously a reliable predictor of reward (Hall & Pearce, 1979).
Pearce and Hall (1980) interpreted this and other findings as evidence that
learning rate declines with cue-outcome reliability. They formalized this
idea by assuming that learning rate is proportional to the absolute predic-
tion error (see Roesch, Esber, Li, Daw, & Schoenbaum, 2012, for a review of
the behavioral and neural evidence).

A similar mechanism can be derived from first principles within the
Kalman TD framework. We have so far assumed that the diffusion covari-
ance matrix Q is known, but the diagonal elements (diffusion variances)
q1, - - ., qp can be estimated by maximum likelihood methods. In particular,
we can derive a stochastic gradient descent rule by differentiating the log
likelihood with respect to the diffusion variances:

§2—1
At

Agq = nh?, , (3.9)

where 7 is a learning rate. This update rule exhibits the desired dependence
of learning rate on the unsigned prediction error (52), since learning rate for
cue d increases monotonically with g,.

3.3 Modeling Details. We use the same parameters as in our earlier pa-
per (Gershman, 2015): 02 =1, 0> = 1, and y = 0.98. The volatilities were

w

initialized to g; =0.01 and then updated using a metalearning rate of
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Figure 1: Sensory preconditioning: Simulation of Sadacca et al. (2016). In the
sensory preconditioning phase, animals are exposed to the cue sequences A—B
and C—D. In the conditioning phase, B is associated with reward, and D is
associated with nothing. The intact orbitofrontal cortex model shows elevated
conditioned responding and dopamine activity when subsequently tested on
cue A, but not when tested on cue C. The lesioned OFC model does not show
this effect, but responding to B is intact.

n = 0.1. Stimuli were modeled with a four-time-step CSC representation
and an intertrial interval of six time steps.

4 Applications to the Dopamine System

We are now in a position to resolve the puzzles with which we started, fo-
cusing on two empirical implications of the TD model. First, the model up-
dates only the weights of present cues, and hence cues that have not been
paired directly with reward or with reward-predicting cues should not elicit
a dopamine response. This implication disagrees with findings from a sen-
sory preconditioning procedure (Sadacca et al., 2016) where cue A is se-
quentially paired with cue B and cue C is sequentially paired with cue D
(see Figure 1). If cue B is subsequently paired with reward and cue D is
paired with nothing, cue A comes to elicit both a conditioned response and
elevated dopamine activity compared to cue B. The TD model predicts no
dopamine response to either A or B. The Kalman TD model, in contrast,
learns a positive covariance between the sequentially presented cues. As a
consequence, the learning rates will be positive for both cues whenever one
of them is presented alone, and hence conditioning one cue in a pair will
cause the other cue to inherit value.
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Figure 2: Latent inhibition: Simulation of Young et al. (1993). The acquisition of

a dopamine response to a cue is slower for preexposed cues (Pre) compared to
novel cues (NoPre).

In the latent inhibition procedure, preexposing a cue prior to pairing it
with reward should have no effect on dopamine responses during condi-
tioning in the original TD model (since the prediction error is 0 through-
out preexposure), but experiments show that preexposure results in a
pronounced decrease in both conditioned responding and dopamine activ-
ity during conditioning (Young et al., 1993). The Kalman TD model predicts
that the posterior variance will decrease with repeated preexposure presen-
tations (Gershman, 2015) and, hence, the learning rate will decrease as well.
This means that the prediction error signal will propagate more slowly to
the cue onset for the preexposed cue compared to the non-preexposed cue
(see Figure 2).

A second implication of the TD model is that dopamine responses at the
time of reward should scale with reward magnitude. This implication dis-
agrees with the work of Tobler et al. (2005), who paired different cues half
the time with a cue-specific reward magnitude (liquid volume) and half the
time with no reward. Although dopamine neurons increased their firing
rate whenever reward was delivered, the size of this increase was essen-
tially unchanged across cues despite the reward magnitudes varying over
an order of magnitude. Tobler et al. (2005) interpreted this finding as ev-
idence for a form of adaptive coding, whereby dopamine neurons adjust
their dynamic range to accommodate different distributions of prediction
errors (see also Diederen & Schultz, 2015; Diederen, Spencer, Vestergaard,
Fletcher, & Schultz, 2016, for converging evidence from humans). Adap-
tive coding has been found throughout sensory areas as well as in reward-
processing areas (Louie & Glimcher, 2012). While adaptive coding can be
motivated by information-theoretic arguments (Atick, 1992), the question
is how to reconcile this property with the TD model.
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Figure 3: Adaptive coding: Simulation of Tobler et al. (2005). Each cue is asso-
ciated with a 50% chance of earning a fixed reward and 50% chance of nothing.
Dopamine neurons show increased responding to the reward compared to noth-
ing, but this increase does not change across cues delivering different amounts
of reward. This finding is inconsistent with the standard TD prediction error ac-
count but consistent with the hypothesis that prediction errors are divided by
the posterior predictive variance.

The Kalman TD model resolves this puzzle if one views dopamine as
reporting §; (the variance-scaled prediction error) instead of & (see Figure
3).! Critical to this explanation is volatility updating: the scaling term (1)
increases with the diffusion variance g4, which itself scales with the reward
magnitude in the experiment of Tobler et al. (2005). In the absence of volatil-
ity updating, diffusion variance would stay fixed, and hence A; would no
longer be a function of reward history.?

5 Representational Transformation in the Orbitofrontal Cortex

Dayan and Kakade (2001) described a neural circuit that approximates the
Kalman filter but did not explore its empirical implications. This section
reconsiders the circuit implementation applied to the Kalman TD model
and then discusses experimental data relevant to its neural substrate.

The network architecture is shown in Figure 4. The input units represent
the discounted feature derivatives, h;, which are then passed through an
identity mapping to the intermediate units y;. The intermediate units are

' Preuschoff and Bossaerts (2007) made an essentially identical suggestion, but did not
provide a mechanistic proposal for how the scaling term would be computed.

Eshel, Tian, Bukwich, and Uchida (2016) have reported that dopamine neurons in the
ventral tegmental area exhibit homogeneous prediction error responses that differ only in
scaling. One possibility is that these neurons have different noise levels (¢2) or volatility
estimates (g;), which would influence the normalization term 2.
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Figure 4: Neural architecture for Kalman TD. Modified from Dayan and
Kakade (2001). Nodes corresponds to neurons, arrows to synaptic connections.

recurrently connected with a synaptic weight matrix B and undergo linear
dynamics given by

‘L'yt = —=V: + ht + Byt, (51)

where 7 is a time constant. These dynamics will converge to y° = (I —
B) 'h;, assuming the inverse exists. The synaptic weight matrix is updated
according to an anti-Hebbian learning rule (Atick & Redlich, 1993; Goodall,
1960):

AB o« —hyy[ +1—B. (5.2)

If B is initialized to all zeros, this learning rule asymptotically satisfies
(I—B)™! = E[%]. It follows that y® = E[e;] asymptotically. Thus, the in-
termediate units, in the limit of infinite past experience and infinite compu-
tation time, approximate the learning rates required by the Kalman filter.
As Dayan and Kakade (2001) noted, the resulting outputs can be viewed
as decorrelated (whitened) versions of the inputs. Instead of modulating
learning rates over time (e.g., using neuromodulation; Doya, 2002; Nassar
etal., 2012; Yu & Dayan, 2005) the circuit transforms the inputs so that they
implicitly encode the learning rate dynamics.

The final step is to update the synaptic connections (w) between the in-
termediate units and a reward prediction unit (7;):

AW = y{°5;. (5.3)

The prediction error is computed with respect to the initial output of the
intermediate units (i.e., x;), whereas the learning rates are computed with
respect to their outputs after convergence. This is consistent with the as-
sumption that the phasic dopamine response is fast, but the recurrent dy-
namics and synaptic updates are relatively slow.
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Figure 4 presents a neuroanatomical gloss on the original proposal by
Dayan and Kakade (2001). We suggest that the intermediate units corre-
spond to the orbitofrontal cortex (OFC), with feedforward synapses to re-
ward prediction neurons in the ventral striatum (Eblen & Graybiel, 1995).
This interpretation offers a new, albeit not comprehensive, view of the
OFC’s role in reinforcement learning. Wilson, Takahashi, and Schoenbaum
(2014) have argued that the OFC represents a “cognitive map” of task space,
providing the state representation over which TD learning operates. The
circuit described above can be viewed as implementing one form of state
representation based on a whitening transform.

If this interpretation is correct, then OFC damage should be devastating
for some kinds of associative learning (namely, those that entail nonzero
covariance between cues) while leaving other kinds of learning intact
(namely, those that entail uncorrelated cues). A particularly useful example
of this dissociation comes from work by Jones et al. (2012), which demon-
strated that OFC lesions eliminate sensory preconditioning while leaving
first-order conditioning intact. This pattern is reproduced by the Kalman
TD model if the intermediate units are “lesioned” such that no input trans-
formation occurs (i.e., inputs are mapped directly to rewards; see Figure 1).
In other words, the lesioned model is reduced to the original TD model with
fixed learning rates.

6 Discussion

The twin roles of Bayesian inference and reinforcement learning have a
long history in animal learning theory, but until recently, these ideas were
not unified into a single theory known as Kalman TD (Gershman, 2015).
In this letter, we applied the theory to several puzzling phenomena in
the dopamine system: the sensitivity of dopamine neurons to posterior
variance (latent inhibition), covariance (sensory preconditioning), and pos-
terior predictive variance (adaptive coding). These phenomena could be
explained by making two principled modifications to the prediction error
hypothesis of dopamine. First, the learning rate, which drives updating
of values, is vector-valued in Kalman TD, with the result that associa-
tive weights for cues can be updated even when that cue is not present,
provided it has nonzero covariance with another cue. Furthermore, the
learning rates can change over time, modulated by the agent’s uncertainty.
Second, Kalman TD posits that dopamine neurons report a normalized pre-
diction error, §, such that greater uncertainty suppresses dopamine activity
(see also Preuschoff & Bossaerts, 2007).

How are the probabilistic computations of Kalman TD implemented in
the brain? We modified the proposal of Dayan and Kakade (2001), accord-
ing to which recurrent dynamics produce a transformation of the stimulus
inputs that effectively whitens (decorrelates) them. Standard error-driven
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learning rules operating on the decorrelated input are then mathematically
equivalent to the Kalman TD updates. One potential neural substrate for
this stimulus transformation is the OFC, a critical hub for state representa-
tion in reinforcement learning (Wilson et al., 2014). We showed that lesion-
ing the OFC forces the network to fall back on a standard TD update (i.e.,
ignoring the covariance structure). This prevents the network from exhibit-
ing sensory preconditioning, as has been observed experimentally (Jones
et al., 2012). The idea that recurrent dynamics in OFC play an important
role in stimulus representation for reinforcement learning and reward ex-
pectation has also figured in earlier models (Deco & Rolls, 2005; Frank &
Claus, 2006).

Kalman TD is closely related to the hypothesis that dopaminergic predic-
tion errors operate over belief state representations. These representations
arise when an agent has uncertainty about the hidden state of the world.
Bayes'’s rule prescribes that this uncertainty be represented as a posterior
distribution over states (the belief state), which can then feed into standard
TD learning mechanisms. Several authors have proposed that belief states
could explain some anomalous patterns of dopamine responses (Daw et al.,
2006; Rao, 2010), and experimental evidence has recently accumulated for
this proposal (Lak, Nomoto, Keramati, Sakagami, & Kepecs, 2017; Stark-
weather, Babayan, Uchida, & Gershman, 2017; Takahashi, Langdon, Niv, &
Schoenbaum, 2016). One way to understand Kalman TD is to think of the
weight vector as part of the hidden state. A similar conceptual move has
been studied in computer science, in which the parameters of a Markov
decision process are treated as unknown, thereby transforming it into a
partially observable Markov decision process (Duff, 2002; Poupart, Vlassis,
Hoey, & Regan, 2006). Kalman TD is a model-free counterpart to this idea,
treating the parameters of the function approximator as unknown. This
view allows one to contemplate more complex versions of the model pro-
posed here, for example, with nonlinear function approximators or struc-
ture learning (Gershman, Norman, & Niv, 2015), although inference quickly
becomes intractable in these cases.

A number of other authors have suggested that dopamine responses are
related to Bayesian inference in various ways. Friston and colleagues have
developed a theory grounded in a variational approximation of Bayesian
inference, whereby phasic dopamine reports changes in the estimate of
inverse variance (FitzGerald, Dolan, & Friston, 2015; Friston et al., 2012;
Schwartenbeck, FitzGerald, Mathys, Dolan, & Friston, 2014). This theory
fits well with the modulatory effects of dopamine on downstream circuits,
but it is currently unclear to what extent this theoretical framework can ac-
count for the body of empirical data on which the prediction error hypoth-
esis of dopamine is based. Other authors have suggested that dopamine is
involved in specifying a prior probability distribution (Costa, Tran, Turchi,
& Averbeck, 2015) or influencing uncertainty representation in the striatum
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(Mikhael & Bogacz, 2016). These different possibilities are not necessarily
mutually exclusive, but more research is necessary to bridge these varied
roles of dopamine in probabilistic computation.

Of particular relevance here is the finding that sustained dopamine ac-
tivation during the interstimulus interval of a Pavlovian conditioning task
appears to code reward uncertainty, with maximal activation to cues that
are the least reliable predictors of upcoming reward (Fiorillo, Tobler, &
Schultz, 2003). Although it has been argued that this finding may be an
averaging artifact (Niv, Duff, & Dayan, 2005), subsequent research has con-
firmed that uncertainty coding is a distinct signal (Hart, Clark, & Phillips,
2015). This suggests that dopamine may convey multiple signals, only some
of which can be explained in terms of prediction errors as pursued here.

The Kalman TD model makes several new experimental predictions.
First, it predicts that a host of posttraining manipulations, identified as
problematic for traditional associative learning (Gershman, 2015; Miller
et al.,, 1995), should have systematic effects on dopamine responses. For
example, extinguishing the blocking cue in a blocking paradigm causes
recovery of responding to the blocked cue in a subsequent test (Blaisdell,
Gunther, & Miller, 1999); the Kalman TD model predicts that this extinction
procedure should cause a positive dopaminergic response to the blocked
cue. Note that this prediction does not follow from the probabilistic inter-
pretation of dopamine in terms of changes in inverse variance (FitzGerald
et al., 2015; Friston et al., 2012; Schwartenbeck et al., 2014), which reflects
beliefs about policies (whereas we have restricted our attention to Pavlo-
vian state values). A second prediction is that the OFC should exhibit dy-
namic cue competition and facilitation (depending on the paradigm). For
example, in the sensory preconditioning paradigm (where facilitation pre-
vails), neurons selective for one cue should be correlated with the neurons
selective for another cue, such that presenting one cue will activate neurons
selective for the other cue. By contrast, in a backward blocking paradigm
(where competition prevails), neurons selective for different cues should be
anticorrelated. Finally, OFC lesions in these same paradigms should elimi-
nate the sensitivity of dopamine neurons to posttraining manipulations.

One general limitation of Kalman TD is that it imposes strenuous com-
putational costs. For D stimulus dimensions, a D x D covariance matrix
must be maintained and updated. This representation thus does not scale
well to high-dimensional spaces, but there are a number of ways the cost
can be reduced. In many real-world domains, the intrinsic dimensionality
of the state space is lower than the dimensionality of the ambient stim-
ulus space. This suggests that a dimensionality reduction step could be
combined with Kalman TD so that the covariance matrix is defined over a
low-dimensional state space. Several lines of evidence suggest that this is
indeed what the brain does. First, cortical inputs into the striatum are mas-
sively convergent, with an order of magnitude reduction in the number of
neurons from cortex to striatum (Zheng & Wilson, 2002). Bar-Gad, Morrig,
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and Bergman (2003) have argued that this anatomical organization is well
suited for reinforcement-driven dimensionality reduction. Second, the ev-
idence that dopamine reward prediction errors exhibit signatures of belief
states (Lak et al., 2017; Starkweather et al., 2017; Takahashi, Langdon, Niv,
& Schoenbaum, 2016) is consistent with the view that value functions are
defined over low-dimensional hidden states. Third, many behavioral phe-
nomena suggest that animals are learning about hidden states (Courville,
Daw, & Touretzky, 2006; Gershman et al., 2015). Computational models of
hidden state inference could be productively combined with Kalman TD in
future work.

The theory presented here does not pretend to be a complete account of
dopamine; there remain numerous anomalies that will keep RL theorists
busy for a long time (Dayan & Niv, 2008). The contribution of this work is
to chart a new avenue for thinking about the function of dopamine in prob-
abilistic terms, with the aim of building a bridge between reinforcement
learning and Bayesian approaches to learning in the brain.
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