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Abstract The notion of “context” has played an important
but complicated role in animal learning theory. Some stud-
ies have found that contextual stimuli (e.g., conditioning
chamber) act much like punctate stimuli, entering into com-
petition with other cues as would be predicted by standard
associative learning theories. Other studies have found that
contextual stimuli act more like “occasion setters,” modu-
lating the associative strength of punctate stimuli without
themselves acquiring associative strength. Yet other studies
have found that context is often largely ignored, resulting in
transfer of performance across context changes. This article
argues that these diverse functions of context arise in part
from different causal interpretations of the environment.
A Bayesian theory is presented that infers which causal
interpretation best explains an animal’s training history, and
hence which function of context is appropriate. The theory
coherently accounts for a number of disparate experimen-
tal results, and quantitatively predicts the results of a new
experiment designed to directly test the theory.
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Introduction

All learning about events in the world occurs in the pres-
ence of background stimuli, typically diffuse in space and
time, that constitute the “context” of learning. The nature
of contextual influences has been studied in animal learn-
ing for decades (Balsam & Tomie, 1985; Rosas, Todd, &
Bouton, 2013; Urcelay & Miller, 2014), and has played
an important role in the neuroscience of learning (Maren,
Phan, & Liberzon, 2013). Yet little theoretical consensus
has emerged. Indeed, the theoretical literature on context-
dependent learning is sparse and incomplete, in part because
the empirical data present a formidable challenge. In par-
ticular, three functions of context have been proposed, and
there is extensive evidence for all three.

First, context sometimes seems to be irrelevant, such that
behavior is invariant to changes of context (Bouton & King,
1983; Bouton & Peck, 1984; Kaye et al., 1987; Lovibond,
Preston, & Mackintosh, 1989). Second, context sometimes
acts in a modulatory manner, selecting particular associ-
ations between cues and outcomes without itself acqui-
ring associative strength (Bouton & Swartzentruber, 1986;
Grahame et al., 1990). This modulatory function of context
resembles the action of “occasion setters”—punctate cues
that control the associative properties of other cues (Bouton,
1993; Swartzentruber, 1995). Third, context sometimes acts
like a punctate cue, leading to competition between cues and
contexts (Balaz et al., 1981; Grau & Rescorla, 1984).

The key theoretical question is whether (and how) these
diverse functions can be described within a single frame-
work. This paper advances a positive answer: different
functions of context correspond to different latent causal
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structures (cf. Gershman, Norman, & Niv, 2015), and
Bayesian inference over these structures determines which
function is appropriate given an animal’s training history.
This theoretical framework takes a step towards resolving
the discrepant experimental data, by providing insight into
the factors that govern how context influences learning.
The rest of the paper is organized as follows. First, we
present an informal description of the computational model
(a technical description is contained in the appendices).
We then apply the model to select phenomena from the
Pavlovian conditioning literature that illustrate the diversity
of context functions. Finally, we present new experimental
data from a predictive learning task with humans designed
to directly test the model’s predictions. In the Discussion,
we consider the strengths and limitations of the model, and
connect it to a broader family of structure learning models.

Causal structure learning

An animal in a Pavlovian conditioning experiment is
exposed to a training history consisting punctate stimuli
(cues), contextual stimuli, and outcomes (rewards or punish-
ments). We consider a hypothesis space of causal structures
relating these variables, as shown in Fig. 1 (technical details
can be found in Appendix A). We do not consider this
hypothesis space to be exhaustive, but for simplicity we
only consider 3 causal structures that capture the main
ideas about context as summarized in the Introduction. Each
structure is a variation of the linear-Gaussian parametriza-
tion that has previously been applied to a number of animal
learning phenomena (Dayan & Kakade, 2001; Kruschke,

cue outcome

@ context

M;: irrelevant context
cue-outcome contingency
is context-independent

M,: modulatory context
cue-outcome confingency
is context-specific

Mg additive context
context acts like another
cue

Fig. 1 The hypothesis space of causal structures. Each node corre-
sponds to a variable, and arrows denote causal relations. In the case of
M, , the context does not exert a direct causal influence on the outcome,
but rather “gates” the causal influence of the cues
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2008; Gershman, 2015). This parametrization is essentially
a probabilistic extension of the Rescorla-Wagner model; it
assumes that outcomes are noisy linear functions of the
stimuli.

Structure M (irrelevant context) assumes that cues cause
outcomes, while context plays no causal role. Structure M»
(modulatory context) assumes that there is a separate set of
cue-outcome contingencies for each context. Structure M3
(additive context) assumes that context acts like another cue,
combining additively to determine the expected outcome.
Thus, M3 posits that standard cue competition phenom-
ena (e.g., blocking, overshadowing, overexpectation) should
apply to context.

Given this hypothesis space, we model the animal as
computing the posterior distribution over latent structures
given the training history. The posterior distribution encodes
the animal’s beliefs about what structure generated its train-
ing history. The posterior can be updated iteratively when
new data are observed, as stipulated by Bayes’ rule (detailed
in Appendix B). The animal is modeled as emitting a con-
ditioned response (CR) reflecting its outcome expectation.
Intuitively, the outcome expectation is computed by taking
an average of the expectations for each structure, weighted
by the posterior probability of that structure. The details of
computing the outcome expectation for each structure are
described in Appendix B.

The structure learning model can be viewed as a for-
malization of the idea that ambiguity is the crucial variable
determining the function of context (Bouton, 1993; Rosas
et al., 2013). When cues have an unambiguous relation-
ship with the outcome, context exerts a weak influence over
learning (i.e., the irrelevant context structure is relatively
favored). Context only begins to exert a stronger influence
over learning when the relationship is ambiguous but can be
disambiguated by taking context into account, such that the
modulatory or additive context structures become relatively
favored. We explore this idea further in the next section.

Accounting for the diverse functions of context

In this section, we describe several simulations of the model
illustrating how it can account for the diverse functions of
context observed experimentally.

Renewal

We first consider the phenomenon of context-dependent
renewal (Bouton & Bolles, 1979; Bouton & King, 1983;
Bouton & Swartzentruber, 1986). When an animal is con-
ditioned to expect an outcome following a cue, extinguish-
ing the cue by presenting it in the absence of the out-
come results in cessation of conditioned responding. If the
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training and extinction phases are carried out in two differ-
ent contexts, then conditioned responding can be renewed
by presenting the cue in the training context. A simple
explanation of this phenomenon in terms of classical asso-
ciative learning mechanisms is that the extinction context
acquired inhibitory associative strength—i.e., it became a
conditioned inhibitor. This suggests that learning a new
cue-outcome association in the extinction context should
be retarded relative to a novel context. By the same token,
the context should summate with a separately trained cue,
thereby depressing the conditioned response. In fact, both
of these predictions are false (Bouton & Swartzentruber,
1986): the extinction context does not appear to acquire
inhibitory associative strength (but see Polack, Laborda, &
Miller, 2012).

These observations led to the idea that contexts act like
“occasion setters” (Bouton, 1993; Swartzentruber, 1995),
capable of modulating the associative properties of cues
without themselves acquiring associative strength. How-
ever, as Bouton and others have noted, this occasion-setting
function only seems to emerge when cue-outcome relation-
ships are ambiguous (e.g., after extinction); in the absence
of ambiguity, cue-specific associations appear to transfer
across contexts. For example, conditioned responding is
relatively insensitive to context change after initial condi-
tioning (Bouton & King, 1983; Lovibond et al., 1984; Kaye
et al., 1987; Bouton & Peck, 1989).

The structure learning model described in the previous
section can account for these findings (Fig. 2). After con-
ditioning, the posterior probability over causal structures
is split primarily between M) (irrelevant context) and M,
(modulatory context), whereas M3 (additive context) is rel-
atively disfavored. Having only observed a single context,
the model does not know yet whether to posit one set of
associations for all contexts (M) or a different set of associ-
ations for each context (M»). The additive context structure
M3 is disfavored because of a “Bayesian Occam’s Razor”

effect (MacKay, 2003): It posits 3 weight parameters (one
cue-outcome association and two context-outcome associ-
ations), whereas the other structures can explain the data
equally well with a single parameter (M) or two parame-
ters (M>). There is no Bayesian Occam’s Razor penalizing
M, relative to M because only a single context has been
observed by the end of conditioning, and for M5 the context-
specific weights only affect the likelihood when a context
has been observed. This means that the posterior probability
of M> depends only on the observed contexts. By contrast,
M3 explicitly represents the weights for each possible con-
text even before observing those contexts, since it assumes
that theses contexts are cues with intensities of 0, and hence
must pay a penalty for additional parameters. The posterior
support for M means that conditioned responding will par-
tially transfer across contexts, as shown in the middle panel
of Fig. 2.

The story is different after extinction: The modulatory
context structure M now has strong support by offering
the most parsimonious explanation of the data, due to the
fact that it can explain the data as well as M3 but with
fewer parameters (M cannot explain the data at all, since
it requires the cue-outcome contingency to be invariant
across contexts). Consequently, the cue-outcome associa-
tion is rendered sensitive to context change (Fig. 2, right
panel). Notice also that in these simulations a novel cue is
never appreciably potentiated or inhibited by context, indi-
cating the lack of support for M3 (which predicts that con-
text by itself should be capable of supporting conditioned
responding).

The information value of contexts

An experiment reported by Preston et al. (1986) provides a
clear demonstration of how the information value of con-
text controls the context-dependence of learning. In this
experiment, animals were initially trained to discriminate
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Fig. 2 Renewal after extinction. (Left) Posterior probability over
causal structures at the end of the acquisition and extinction phases.
By the end of extinction, the modulatory context structure is strongly
favored. (Middle) Conditioned response (CR) to the training cue or
a novel transfer cue when tested after the acquisition phase, which
occurs either in the acquisition context (a) or in a novel context (b).

Test context

Test context

The response to the training cue partly generalizes across contexts, but
no appreciable response is elicited by the transfer cue, indicating the
absence of contextual associations. (Right) Conditioned response to
the training cue or a novel transfer cue when tested after the extinction
phase in context (b). Responding to the training cue is renewed upon
return to (a)
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Fig. 3 Making contexts informative. Following the experimental
protocol of Preston et al. (1986), two conditions were simulated. In the
discrimination (Disc) condition, one cue was always reinforced while
another cue was never reinforced, and these contingencies applied
across two different contexts. In the conditional discrimination (Cond)
condition, the contingencies reversed across contexts. Animals were
then given discrimination training with two novel CSs in a single

between two cues with different outcome probabilities. In
the discrimination condition, the outcomes depended only
on the cues and not on the context. In the conditional dis-
crimination condition, the outcome contingencies reversed
across contexts, thus making the contexts informative. As
shown in Fig. 3 (left panel), the discrimination training
strongly favors the irrelevant context structure My, whereas
the conditional discrimination training strongly favors the
modulatory context structure M5.

The key question is what happens when the animal is sub-
sequently given discrimination training with two novel CSs
in a single context and then presented with the same CSs in
a novel context. Preston et al. (1986) found that only con-
ditional discrimination led to context-specificity, such that
animals in that condition did not generalize responding to
the novel CSs from the training context to the novel test
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context, and finally tested with the same CSs in a novel context.
(Left) At the end of the first phase, the irrelevant context structure
(M) is favored in the discrimination condition, whereas the modula-
tory context structure (M3) is favored in the conditional discrimination
condition. (Right) Conditional discrimination training leads to con-
text specificity in the final test phase; discrimination training leads to
generalization across contexts

context. This finding is reproduced by the structure learning
model (Fig. 3, right panel) due to the strong support for M,
following conditional discrimination training.

Effects of outcome intensity and amount of training

Odling-Smee (1978) documented two other factors that
govern context-dependence: outcome intensity and amount
of training. In particular, Odling-Smee (1978) examined
the latency to enter a conditioning chamber following fear
conditioning, reasoning that animals would show a longer
latency (i.e., stronger CR) if the context had acquired
associative strength during training. The CR was found
to be stronger for high compared to low intensity shock,
and lower when the number of training trials increased.
Figure 4 shows that simulations of this experiment capture
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Fig. 4 Manipulations of outcome intensity and number of trials.
Simulations of the experiments reported by Odling-Smee (1978), in
which responding to the training context alone was measured follow-
ing cue-outcome pairings. (Left) Posterior probability of M decreases
with the outcome intensity and increases with the number of training
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trials. (Middle) Posterior probability of M3 shows the opposite pat-
tern. The probability of M| is not shown here because in this case M
and M, have identical probabilities. (Right) Responding to the context
increases with the outcome intensity and decreases with the number of
training trials
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Table 1 Experimental design. Cues are denoted by (xy, x2, x3) and contexts are denoted by ¢y, c2, ¢3). Outcome presentation is denoted by “+”

“

and no outcome is denoted by

Training phase Test phase
Irrelevant context group xjc1+ X1C1
X2c1— x1c3
xic+ X3C1
X202— X3€3
Modulatory context group xpc1+ xicy
X2C1— X1€3
X162— X3€C1
X202+ X3C3
Additive context group xic1+ Xxi1c1
xpc1+ X1C3
X10— X3C1
X202— X3€3

the two basic patterns. Specifically, we simulated 5, 10 or
15 trials with a single training cue and outcome intensities
of r = 1 (low intensity) or r = 2 (high intensity). On the
test trial, the CR was measured in response to the context
without the training cue.

Because there is a prior on the associative weights favor-
ing weights close to 0, the modulatory context structure M»
cannot easily account for high intensity outcomes, which
require a large associative weight for the cue. In contrast,
the additive context structure M3 can explain the same data
using a combination of cue and context associations, thereby
allowing each to have a weight closer to 0. This leads to
a preference for M3. As the number of trials increases, the
preference for M3 diminishes because sufficient evidence
accumulates to support a large weight for the cue in M.

An experimental test of the model

The simulations presented in the previous section illustrate
how different factors influence the posterior distribution
over causal structures. It is however rare to see the opera-
tion of all three structures in a single experiment. We now
present new data from a human predictive learning task
that allows us to uncover all three structures, providing a
rigorous experimental test of the structure learning model.
Following other studies of predictive learning in humans
(e.g., Abad, Ramos—Alvarez, & Rosas, 2009; Rosas &
Callejas-Aguilera, 2006), participants in the experiment
were asked to predict whether a particular food (the cue)
eaten in a particular restaurant (the context) would produce
sickness (the outcome). Each cue was shown in each con-
text an equal number of times; the only difference across
conditions was the reinforcement contingencies (Table 1),
which were designed to promote particular structural

interpretations (Fig. 5, top panel). In the test phase, partici-
pants were presented with four trials that covered the 2 x 2
space of old/new cue in an old/new context.

The model makes distinct predictions for test phase
behavior across the conditions (Fig. 5, bottom panel). When
the irrelevant context structure is favored, the old cue should
predict the outcome will occur in both old and new contexts,
but the new cue should not predict the outcome in either
context. When the modulatory context structure is favored,
the old cue should predict the outcome will occur only in
the old context, while the new cue again should not pre-
dict the outcome in either context. Finally, when the additive
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Fig. 5 Experimental predictions. (Top) Posterior probability over
causal structures at the end of training for each condition. (Bot-
tom) Predicted choice probabilities in the test phase. The model was
simulated on the same experimental structure as presented to the
participants
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context structure is favored, both the old and new cues
should predict the outcome most strongly in the old context.

Participants

Ninety participants were recruited via the Amazon Mechan-
ical Turk web service (N = 31 in the irrelevant training
condition, N = 29 in the modulatory training condition,
and N = 30 in the additive training condition). All par-
ticipants received informed consent and were paid for their
participation. The experiment was approved by the Harvard
University Internal Review Board.

Materials and procedure

We used a set of 3 Mexican foods (chili, burrito, nachos) and
3 restaurant names (Molina’s Cantina, Restaurante Arroyo,
El Coyote Cafe). The assignments of foods to cues and
restaurant names to contexts were randomized. We label the
foods presented to participants as (x1, x2, x3) and the con-
texts as (cy, ¢2, ¢3). On each trial in the training phase (5
trials of each trial type in Table 1, 20 trials total), partici-
pants were presented with a picture of one food along with
the name of a restaurant, and were asked to make a binary
prediction about whether an individual would get sick after
consuming the food in that restaurant. Once they entered
their response, participants received feedback. The training
phase was followed by a test phase, consisting of 4 trials
that were procedurally identical to the training phase trials
but presented without feedback.

Participants were divided into 3 groups that differed only
in terms of the reinforcement contingencies during the train-
ing phase, as summarized in Table 1. All participants were
presented with the same 4 test trials: an old cue in an old
context (xjc1), an old cue in a new context (x;c3), a new
cue in an old context (x3c¢y), or a novel cue in a new context

(x3¢3).
Results

The experimental results are shown in Fig. 6. Overall, the
model is in excellent quantitative agreement with the choice
data (r = 0.92, p < 0.0001), using the same parame-
ters as in the simulations (i.e., the parameters were not fit
to the data). For comparison, the correlation coefficient is
smaller if we constrain the model to use a single structure
for all conditions: r = 0.5 for My, r = 0.7 for M», and
r = 0.88 for M3. Although the correlation for M3 seems
impressive, this is deceptive—while it captures the pattern
of results for the irrelevant and additive training conditions,
it fails to capture the results for the modulatory training con-
dition, predicting a roughly uniform response across the test
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Fig. 6 Experimental results. Empirical choice probabilities in the
test phase. Error bars represent standard error of the mean

trials because it cannot encode the fact that the context has
a different influence on the outcome for each cue.

We confirmed the qualitative predictions of the model
using planned comparisons. In the irrelevant context condi-
tion, the old cue was judged to be more predictive of the
outcome in both the old and new contexts compared to the
new cue [7(29) = 2.57, p < 0.05]. In the modulatory con-
text condition, the old cue was judged to be more predictive
of the outcome in the old context compared to the other three
test trials [#(27) = 2.73, p < 0.05]. Finally, in the additive
context condition, both the old and new cues were judged as
more predictive of the outcome in the old context compared
to the new context [¢(29) = 4.04, p < 0.001]. Importantly,
no single-structure model captures this complete pattern of
results.

Discussion

This paper has shown how a new structure learning model
can account for the diverse functions of context in Pavlo-
vian conditioning and human predictive learning. First, the
model explains why different training protocols lead to
different forms of context-dependence. Second, the model
makes quantitatively accurate predictions about human pre-
dictive learning in a task designed to directly test the the-
ory’s predictions. No single-structure model could explain
the complete pattern of results.

Bayesian structure learning has been proposed as an
explanation for many behavioral and neural phenomena that
are puzzling from the perspective of classical associative
learning theory (Collins & Frank, 2013; Courville, Daw, &
Touretzky, 2006; Gershman, Blei, & Niv, 2010; Gershman
& Niv, 2012; Gershman et al., 2015; Lloyd & Leslie, 2013;
Soto, Gershman, & Niv, 2014). Of particular relevance
is the model developed by Gershman et al. (2010), which
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explained context-dependent renewal as the consequence of
inferring a structure in which the acquisition and extinc-
tion trials were generated by distinct latent causes. While
this model successfully accounted for the renewal effect, it
treated context as a cue; as we have seen, this assumption is
invalidated by the numerous observations that context does
not appear to acquire associative strength in the same way
that cues do. The explanation offered in this paper allows the
context to play a modulatory role and hence better explain
renewal.

There is, however, a way in which the current model fails
at explaining the complete set of renewal phenomena. When
an animal is trained in context A, extinguished in context
B, and then tested in context C, a renewal effect is also
observed (known as “ABC renewal”), though it is typically
somewhat weaker than ABA renewal. This is problematic
for the model, because the modulatory structure is strongly
favored by the end of extinction, and hence the cue should
have no associative strength in context C. There are at least
two possibilities for dealing with this lacuna. First, we could
hypothesize that the context does not have a direct causal
link with the outcome, but instead provides information
about a latent cause. This would allow some probability that
contexts A and C were generated by the same latent cause,
and is essentially the explanation proposed by Gershman
et al. (2010). Second, we could hypothesize a hierarchi-
cal Bayesian model in which the associative strength of
the cue is initialized to its “prior” value in context C, and
this prior is itself learned from the training history (see
Gershman & Niv, 2015). Intuitively, the prior reflects the
average expected outcome across all prior phases. Further
modeling will be required to decide between these different
possibilities.

Finally, a fundamental question still remains unan-
swered: What distinguishes contexts from cues? We have
assumed that contexts are clearly identified as such, but in
reality this is itself an inference problem, since an observer
only has access to stimulus features. No computationally
precise definition exists that unambiguously specifies what
stimulus features are distinctive of contexts. One intriguing
possibility is that the partitioning of stimuli into contexts
and cues is resolved by another form of structure learn-
ing. In particular, one could adapt the Bayesian framework
developed by Soto et al. (2014), in which latent causes are
inferred from stimulus features. Each latent cause is asso-
ciated with a hyper-rectangular “consequential region” in
stimulus space, and stimulus features are assumed to be
drawn from this consequential region. If we include duration
and spatial extent as stimulus dimensions, then we can for-
malize the intuitive notion that contexts are diffuse in time
and space by identifying contexts as latent causes with large
consequential regions.

Conclusion

Context is an important but puzzling concept in animal
learning theory. This paper demonstrates that it is possible to
provide a systematic analysis of context’s multiple functions
within a single computational framework. The key idea is
that Bayesian inference over causal structures enables an
animal to select the appropriate context given its training
history. This idea is unlikely to explain all the existing data
on context-dependent learning. However, the goal of this
paper is not to provide a comprehensive theory of context,
but rather to show how a single theory can unify a number
of seemingly disparate context-related phenomena. It is suf-
ficiently powerful to make new quantitative predictions that
we have confirmed experimentally.
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Appendix A: Causal structures

The animal’s training history is represented as hjy, =
(X1:1, I1:ns C1:p) for trials 1 to n, consisting of the following
variables:

e x, € RP: the set of D “punctate” stimuli (cues)
observed at time n. Typically we will use x,4 = 1 to
indicate that cue d is present and x,4; = 0 to indicate
that it is absent.

e ¢, €{l,..., K}: the context, which can take on one of
K discrete values.!

® r, € R: the outcome (e.g., reward or punishment).

To keep notation simple, we have omitted any dependence
on action, but the treatment below is easily generalized to
the instrumental setting where the outcome depends on both
the stimuli and the chosen action.

We consider three specific structures relating the above
variables. All the structures have in common that the out-
come is drawn from a Gaussian with variance o> = 0.01:

ra~ N (Fas 7)) (M

where we have left the dependence on ¢, and x,, implicit.
The structures differ in how the mean 7, is computed.

"More generally, the context could be multidimensional, but for sim-
plicity we do not consider that possibility here.
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e Irrelevant context (M):

D
Fa = WaXng =W X, 2)
d=1
e  Modulatory context (M>):
D
ry = Z WdkXnd = w]—crxn (3)
d=1

when ¢, = k.
e Additive context (M3):

D
- T~
Fa =) WaXnd + WDtk =W %y, “
d=1
again for ¢, = k. The augmented stimulus X, is defined
as: X, = [X,,¢C,], where ¢,y = 1ifc¢, = k, and O
otherwise.

We assume each weight is drawn independently from a zero-
mean Gaussian prior with variance 0’3) = 1. Each weight can
change slowly over time according to a Gaussian random
walk with variance 72 = 0.001. Finally, we assume that all
structures are equally probable a priori.

Appendix B: Probabilistic inference

We can compute the posterior over the weights for a given
model M using Bayes’ rule:

P (b1, W, M)P (W[ M)

P(wlhy,, M) = . : (5)
P(hlznlM)

For M1, the posterior at time n is P(wlhy,,, M = M) =

N(w; W, ¥,) with parameters updated recursively as fol-

lows:

‘?Vn+1 = Wn + g (rn — \?V;Xn) (6)
Titt = B, — &X' 2, @)

where ¥ = X, + 721. These update equations are known
as Kalman filtering, an important algorithm in engineering
and signal processing that has recently been applied to ani-
mal learning (Dayan and Kakade, 2001; Kruschke, 2008;
Gershman, 2015). The initial estimates are given by the
parameters of the prior: wg = 0, X9 = O'I%I. The Kalman
gain g, (a vector of learning rates) is given by:

/
XXy

X, X)X, + 07

gn (8

The same equations apply to M, but the mean and
covariance are context specific: VAVﬁ and Z’,f. Accordingly,
the Kalman gain is modified as follows:

/
Enkxn

T LTy w12
X, X, Xn + 0

gnk ©))
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if ¢, = k, and a vector of zeros otherwise. For M3, the same
equations as M1 apply, but to the augmented stimulus X,,.

To make predictions about future outcomes, we need to
compute the posterior predictive expectation, which is also
available in closed form:

Vi = ElralXn, cn, i1l
= Y ElralXu. cu. hio1. MIP(M by o). (10)
M
The first term in Eq. 10 is the posterior predictive expec-
tation conditional on model M:

E[rn|Xn, ¢n, Win—1, M] = X, Wy, (11)

where again the variables are modified depending on what
model is being considered. The second term in Eq. 10 is
the posterior probability of model M, which can be updated
according to Bayes’ rule:

P(Mhy) o< P(ralXp, cp b1, M)P(Mhy, 1), (12)

where the likelihood is given by:

P(rnlxn, ¢p, W1, M) = N(rn; X;‘,’\Vm X;,rz;lxn + Grz)

13)

To make predictions for the predictive learning experi-

ment, we mapped the posterior predictive expectation onto

choice probability (outcome vs. no outcome) by a logistic
sigmoid transformation:
1

1+ exp(=2V, +1)°

where a, = 1 indicates a prediction that the outcome will

occur, and a, = 0 indicates a prediction that the outcome
will not occur.

Pla,=1) =

(14)
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