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ABSTRACT

The “blessing of abstraction” refers to the observation that acquiring abstract
knowledge sometimes proceeds more quickly than acquiring more specific
knowledge. This observation can be formalized and reproduced by hierarchical
Bayesian models. The key notion is that more abstract layers of the hierarchy have
a larger “effective” sample size, because they combine information across multiple
specific instances lower in the hierarchy. This notion relies on specific variables
being relatively concentrated around the abstract “overhypothesis”. If the variables
are highly dispersed, then the effective sample size for the abstract layers will not
be appreciably larger than for the specific layers. Moreover, the blessing of
abstraction is counterbalanced by the fact that data are more informative about
lower levels of the hierarchy, because there is necessarily less stochasticity
intervening between specific variables and the data. Thus, in certain cases abstract
knowledge will be acquired more slowly than specific knowledge. This paper
reports an experiment that shows how manipulating dispersion can produce both
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fast and slow acquisition of abstract knowledge in the same paradigm.

One reason to acquire abstract knowledge is that it
facilitates the acquisition of new specific knowledge.
This “learning to learn” (Harlow, 1949) is evident in
many domains. For example, by the age of 24
months children learn that shape tends to be homo-
geneous within object categories (the “shape bias”;
Heibeck & Markman, 1987; Landau, Smith, & Jones,
1988), allowing them to extend a category label to
novel, similarly shaped objects after seeing a single
category exemplar. Human motor control similarly
benefits from learning abstract task structure (Braun,
Aertsen, Wolpert, & Mehring, 2009). In rats, repeatedly
reversing which of two actions is rewarded leads to
progressively faster reversal, even after a single error
(Buytendijk, 1930; Dufort, Guttman, & Kimble, 1954).
Learning to learn is puzzling: how can abstract
knowledge facilitate learning if it must also be
learned from specific examples? Hierarchical Bayesian
models (HBMs) offer a way out of this puzzle, by for-
malizing how learning can occur simultaneously at
multiple levels of abstraction (Gershman & Niv, 2015;

Kemp, Goodman, & Tenenbaum, 2010; Kemp,
Perfors, & Tenenbaum, 2007; Lucas & Griffiths, 2010).
Specific variables are constrained by abstract variables
by virtue of a probabilistic relationship between the
two. For example, the distribution of dog sizes is
centred on the prototypical dog size, an example of
an “overhypothesis” in the terminology of Goodman
(1955). Learning at both levels is accomplished by
using Bayes’ rule to form a joint posterior distribution
over hypotheses and overhypotheses.

Importantly, learning in HBMs can sometimes be
faster at more abstract levels—a phenomenon
dubbed the “blessing of abstraction” by Goodman,
Ullman, and Tenenbaum (2011), who contrasted it
with connectionist approaches to knowledge acqui-
sition that build from the specific to the more abstract
(e.g., Hinton, Osindero, & Teh, 2006). The blessing of
abstraction is similar to phenomena occurring at a
much faster timescale in visual perception, where a
coarse “gist” is extracted before fine-grained details
(Hegdé, 2008; Hochstein & Ahissar, 2002). Abstract-
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Overhypothesis

Hypothesis:
m, ~ N(mg,v)

Observation:
Ykn - N(mk's)

Figure 1. Generative model showing the probabilistic relationships
between variables in the experiment. Unshaded nodes represent
latent variables, shaded nodes represent observed variables, and
plates denote replicates. K is the number of buttons and N is the
number of observations for each button.

before-specific learning and coarse-to-fine processing
arise in HBMs because the abstract variables of the
hierarchy typically connect to multiple specific vari-
ables (e.g., the category “dogs” includes many
specific dogs). By combining information across
specific variables, the sample size for abstract variables
is effectively larger than for specific variables.
Crucially, the blessing of abstraction depends on
the dispersion of specific variables around the
central tendency induced by the overhypothesis." Dis-
persion could be controlled by the topology of the
HBM (a pyramidal structure, with abstract variables
at the top of the pyramid, will tend to produce the
blessing) or its functional form (parameters governing
the variance of specific variables conditional on
abstract variables). While dogs tend to be similar
sizes (low dispersion), the distribution of plant sizes
can range from tiny flowers to enormous trees. In
the latter case, the overhypothesis will not strongly
constrain generalization to new examples, and we
might expect learning at the abstract level to be
slower than at the specific level. Indeed, from an infor-
mation-theoretic perspective, data will tend to con-
strain specific variables more than abstract variables,
because there are fewer sources of stochasticity inter-
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Figure 2. Example sequences of observations, the mean on each block, and human predictions (taken from two different participants). (A) Low

dispersion condition. (B) High dispersion condition.

"More precisely, it depends on the dispersion at the specific level relative to the dispersion at the abstract level.
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Figure 3. Experimental results. (A) Learning curves for the low dispersion condition. The “abstract” learning curve shows the mean squared error
on the first trial of every block. The “specific” learning curve shows the mean squared error on each trial of the first block. Error bars represent
standard errors. (B) Learning curves for the high dispersion condition. (C) Errors averaged across all points on each learning curve.

vening between specific variables and the data (Goel,
1983).

The study reported in this paper tests this basic
prediction of HBMs by manipulating dispersion and
comparing the learning curves for abstract and
specific inferences. We predicted that the blessing
of abstraction would only occur when dispersion
was low, and that it would reverse for high
dispersion.

Experimental study

Participants were presented with a simple prediction
game: predict the scalar numerical output of a
button. On each trial, participants made a prediction
and then received feedback. Participants were faced
with 10 different buttons, interacting with each one
10 times. To measure the blessing of abstraction, we
computed two learning curves: an abstract learning
curve (the squared error on the first trial of every
button) and a specific learning curve (the squared
error on each trial for the first button). The abstract
learning curve gives us insight into the learned induc-
tive bias, before any specific information about a
button has been experienced. The specific learning
curve gives us insight into learning prior to the for-
mation of any inductive bias.

Method

Participants

Two hundred and seventeen participants (117 in
the low dispersion condition, 100 in the high dis-
persion condition, 56% male, ages 21-44) were
recruited for the experiment through the Amazon

Mechanical Turk web service. The participants
were paid 1 dollar for their participation. The exper-
iment was approved by the Harvard Institutional
Review Board.

Materials and procedure

The experimental interface consisted of a coloured
button and a text-entry box in which participants
entered their prediction on a 0 to 100 scale. Each
block of trials had a different randomly coloured
button. Participants entered their prediction and
then clicked the button to receive feedback. Partici-
pants completed 10 blocks of 10 trials each, lasting a
total of approximately 15 minutes. Participants in
both conditions were instructed as follows:

In this task, your job is to predict the pay-offs of slot
machines (symbolized by coloured buttons). You will be
shown 10 different slot machines, 10 times each. You
will first be asked to guess the pay-off (between 0 and
100) and rate your confidence in your guess (1 = least
confident, 10 = most confident). You will then receive
feedback about the pay-off. The slot machine pay-offs
are noisy, so no slot machine will give the same pay-off
every time.

Each button k was associated with a Gaussian dis-
tribution N(my,s) over observation y,, on trial n, where
my is the mean and s = 25 is the variance. The mean
was drawn from N(mg,v) where my = 40 is the global
mean across all buttons, and v is the global variance.
The global variance was manipulated between-
subject: v = 36 in the low dispersion condition and
144 in the high dispersion condition. The generative
process just described is displayed as a graphical
model in Figure 1. Several example sequences of
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Figure 4. Hierarchical model predictions. Same format as Figure 3. (A) Learning curves for the low dispersion condition. (B) Learning curves for
the high dispersion condition. (C) Errors averaged across all points on each learning curve.

observations and human predictions are shown in
Figure 2.

To measure the specific learning curve, we com-
puted the mean squared error (across participants)
between the mean (my) on the first block and the par-
ticipants’ predictions on each trial. The abstract learning
curve was computed similarly, but the global mean (m,)
was used instead of the block-specific mean.

Results

The learning curves for the low and high dispersion
conditions are shown in Figure 3, revealing the
expected result: abstract learning is slightly faster
than specific learning in the low dispersion condition,
but this pattern reverses in the high dispersion con-
dition. To assess this result quantitatively, we averaged
each learning curve (shown in Figure 3c) and per-
formed a 2 (low vs. high dispersion) by 2 (abstract
vs. specific) ANOVA. The main effects were not signifi-
cant (p > .35) but there was a significant interaction

[F(1,430) = 12.67, p < .001]. The interaction was also
significant when only looking at the final datapoint
on each learning curve [F(1,430) = 44, p < .05]. Post-
hoc tests showed that abstract error was significantly
lower than specific error in the low dispersion con-
dition [t(116) = 2.50, p < .05] and significantly higher
in the high dispersion condition [t(99) = 3.80, p < .001].

To compare the experimental results with the pre-
dictions of an HBM, we implemented the ideal Bayesian
learner for this task (due to space limitations, details are
omitted). The model predictions are shown in Figure 4.
These predictions were made using the true generative
parameters (no free parameters), though the predic-
tions are generally robust to deviations from these par-
ameters. The modelling results demonstrate that the
ideal Bayesian learner captures the key interaction
between dispersion and level of abstraction. We com-
pared the HBM predictions to the predictions of a
non-hierarchical model which assumed that each
block was learned independently. As shown in Figure
5, the non-hierarchical model did not capture the
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Figure 5. Non-hierarchical model predictions. Same format as Figure 3. (A) Learning curves for the low dispersion condition. (B) Learning curves
for the high dispersion condition. (C) Errors averaged across all points on each learning curve.
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interaction effect, because it has no means of learning
at the abstract level.

Discussion

The results of this study provide important boundary
conditions on the blessing of abstraction. When the dis-
persion of specific variables was low, we observed a
blessing of abstraction (faster learning of the global
mean relative to the block-specific mean), but when
dispersion was high, we observed a reversal of the bles-
sing (slower learning of the global mean). This finding is
consistent with HBMs (Gershman & Niv, 2015;
Goodman et al., 2011; Kemp et al.,, 2007, 2010; Lucas
& Griffiths, 2010), in that the statistical aggregation of
information across specific variables is only beneficial
when the dispersion is low. When dispersion is high,
the benefits of this aggregation are swamped by the
additional uncertainty contributed by noise.

While our results are consistent with HBMs, they are
not uniquely predicted by them. For example, connec-
tionist models can also be designed to learn at mul-
tiple levels of abstraction (e.g., Rogers & McClelland,
2004). An appropriately configured exemplar model,
with similarities determined by button identity, may
also predict our findings. However, it is not exactly
fair to compare Bayesian and exemplar models,
since these models are formulated at different levels
of analysis. Bayesian models describe the rational sol-
ution to an inductive inference problem, whereas
exemplar models are mechanistic descriptions of the
underlying psychological process. Indeed, exemplar
models can be viewed as psychological implemen-
tations of Bayesian inference (Shi, Griffiths, Feldman,
& Sanborn, 2010). Tying together rational and
mechanistic theories is an important task that is not
directly addressed in this paper.
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