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HIGHLIGHTS

e Reinforcement learning models suffer from the difficulty of parameter estimation.
e Empirical priors improve predictive accuracy, reliability, identifiability, and detection of individual differences.

e These priors are fairly robust across model variants.
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Computational models of reinforcement learning have played an important role in understanding learning
and decision making behavior, as well as the neural mechanisms underlying these behaviors. However,
fitting the parameters of these models can be challenging: the parameters are not identifiable, estimates
are unreliable, and the fitted models may not have good predictive validity. Prior distributions on the

parameters can help regularize estimates and to some extent deal with these challenges, but picking a
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good prior is itself challenging. This paper presents empirical priors for reinforcement learning models,
showing that priors estimated from a relatively large dataset are more identifiable, more reliable, and
have better predictive validity compared to model-fitting with uniform priors.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Reinforcement learning (RL) models formalize the process
through which stimulus-reward predictions are acquired and
used to guide choice behavior (Sutton & Barto, 1998). These
models have become important tools for developing a mechanistic
understanding of RL in the brain, as well as its breakdown
in psychiatric and neurological disorders (Maia & Frank, 2011).
The successful application of RL models hinges on accurately
estimating parameters, perform model comparison, and predict
new data. Because these models are non-linear functions of their
parameters, it is necessary to rely on optimization or Monte Carlo
sampling (Daw, 2011). These methods are prone to errors which
are computationally expensive to correct (e.g., one could run
the optimizer with more initializations, or generate more Monte
Carlo samples). There are also fundamental problems that more
computation cannot address, such as estimation error due to small
sample sizes and poor parameter identifiability.

When sample size is small and the data are noisy relative to the
complexity of the model being fit, parameters can be “overfit”—
i.e., the estimated parameters do not generalize to new datasets.
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Overfitting can be controlled by constraining the complexity of
the model, or by placing prior probabilities on the parameters
that control the “effective” complexity. Intuitively, if there are two
parameters, and one parameter is constrained by the prior to take
on a fixed value, then the model effectively has one parameter.
Priors can also aid identifiability. A model is identifiable if dif-
ferent parameter settings cannot produce equivalent likelihoods
(Casella & Berger, 2002). Identifiability is not especially important
if one’s only goal is prediction or model comparison. However, if
one wishes to interpret the parameter estimates (e.g., make an
inference that a particular parameter lies within some range of
values) or correlate them with other measurements (e.g., individ-
ual differences analyses), then identifiability is crucial. RL models
suffer from non-identifiability; for example, equivalent likelihoods
can be achieved by different combinations of learning rate and
inverse temperature. One symptom of this non-identifiability is
correlation between parameter estimates across participants—
a commonly observed but poorly appreciated phenomenon.'

1 Fully Bayesian approaches, which estimate the posterior distribution (e.g., using
Monte Carlo simulation) rather than a point estimate, can reveal non-identifiability
by inspecting correlations between parameters in the joint posterior. The Laplace
approximation, which we use below, produces a local Gaussian approximation of
this joint distribution around the posterior mode.
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Different participants may have different fitted parameter values,
but all these values may lie along an iso-likelihood contour in the
parameter space. When changing one parameter can compensate
for changes in another parameter so as to remain on the contour,
then fitted parameter values will be correlated.’

The approach advocated in this paper is to use “empirical pri-
ors” estimated from a separate dataset. The basic idea is to use the
distribution of parameter estimates to construct a parameterized
prior that is transferable to other datasets. Below, we describe the
steps involved, along with a quantitative evaluation. We ask four
questions about empirical priors:

1. Do they improve predictive accuracy?

2. Do they improve reliability of parameter estimates?

3. Do they improve parameter identifiability?

4. Do they improve the measurement of individual differences?

To foreshadow our results, the answer to all four question is yes.
2. Methods
2.1. Participants

Dataset 1 (D1 hereafter) collects together 166 participants
across 4 experiments reported in Gershman (2015). In that
paper, model comparison suggested that participants behaved
essentially the same across experiments, which licenses collapsing
the experiments together. Dataset 2 (D2 hereafter) consists of new
data from 40 participants doing the same task as the participants in
D1 but with different reward probabilities (see below). In addition,
we collected predictions of reward probability for the chosen
option on every trial, using a continuous rating scale. Participants
did both tasks on the web, via Amazon’s Mechanical Turk service
(they were thus drawn from the same population; participants
were not excluded from doing both experiments). The experiment
was approved by the Harvard Institutional Review Board and
participants were paid for their participation.

2.2. Procedure

On each trial, participants were shown two colored buttons
and told to choose the button that they believed would deliver
the most reward. After clicking a button, participants received a
binary (0, 1) reward with some probability. The probability for
each button was fixed throughout a block of 25 trials. In D1, there
were two types of blocks, presented in a randomized order: low
reward rate blocks and high reward rate blocks. On low reward rate
blocks, both options delivered reward with probabilities less than
0.5. On high reward rate blocks, both options delivered reward
with probabilities greater than 0.5. These probabilities (which
were never shown to participants) differed across experiments
(see Gershman, 2015, for more details).

D2 followed the same procedure, but with different reward
probabilities. Specifically, on each block one of the options always
delivered reward with a probability less than 0.5, and the other
option always delivered reward with a probability greater than
0.5. The 4 reward probability pairs were (0.4, 0.6), (0.3, 0.7), (0.2,
0.8) and (0.1, 0.9). Each reward probability pair was experienced
for 25 trials (thus a total of 100 trials per subject). Condition
order was randomized across participants. For the purposes of
this paper, the differences between these conditions are not
particularly important; performance depended on the difference in
reward probability between the two options, but the model fits and
parameter estimates did not differ appreciably across experiments
or conditions.

2 More complex identifiability issues, such as contours that do not change
monotonically as a function of two parameters, will not be revealed by correlations.
Furthermore, correlations can also reflect meaningful individual differences. In
general, parameter correlations must be interpreted with caution.

2.3. Models

We fit 4 different models to participants’ choice data:

e M1: Single learning rate. After choosing option ¢, € {1, 2}
on trial t and observing reward r; € {0, 1}, the value (reward
estimate) of the option is updated according to:

Vigr(co) = Vi(co) + née, (1

where n € [0, 1] is the learning rate and §; = r; — Vi(c;) is
the prediction error. The values were initialized to 0. This is a
standard Q-learning model (Daw, O'Doherty, Dayan, Seymour,
& Dolan, 2006; Sutton & Barto, 1998) with a single fixed learning
rate. For this and subsequent models, all values are initialized
to zero. A logistic sigmoid (softmax) transformation is used to
convert values to choice probabilities:

1

Pla =1 = s Fmwovaen

(2)
where S is an “inverse temperature” parameter that governs
the exploration-exploitation trade-off.

e M2: Dual learning rates. This model is identical to M1, except
that it uses two different learning rates, n* for positive pre-
diction errors (6; > 0) and n~ for negative prediction errors
(8; < 0).This model has been explored by several authors (Daw,
Kakade, & Dayan, 2002; Frank, Doll, Oas-Terpstra, & Moreno,
2009; Frank, Moustafa, Haughey, Curran, & Hutchison, 2007;
Gershman, 2015; Niv, Edlund, Dayan, & O’'Doherty, 2012).

e M3: Single learning rate + stickiness. This model is identical
to M1, with the addition of a “stickiness” parameter w that bi-
ases repetition of choices independent of reward history:

1
Pa=0= T svo-vanr 3)
oy Vi) +o ifcoi=c
Vi) = {Vt(c) ifc,_1 #c. (4)

In words, the stickiness parameter adds a bonus onto the op-
tion value of the most recently chosen option. A number of stud-
ies have used this or similar parameterizations (e.g., Christakou
et al., 2013; Gershman, Pesaran, & Daw, 2009).

e M4: Dual learning rates + stickiness. This model is a combi-
nation of models M2 and M3, with separate learning rates for
positive and negative prediction errors, as well as a stickiness
parameter.

2.4. Parameter estimation and model comparison

Parameters for model m and subject s (denoted O,s) were
estimated by optimizing the maximum a posteriori (MAP) objective
function—i.e., finding the posterior mode:

Oms = argemaXP(Dszs’ mM)p(OmsIm, ém), (5)
where p(Dg|6s, m) is the likelihood of data D, for subject s
conditional on parameters 6,5 and model m, and p(On,s|m, ¢m)
is the prior probability of 6,5 conditional on model m and
hyperparameters ¢,,. We assume each parameter is bounded and
use constrained optimization to find the MAP estimates.

To compare models, we assumed that each model occurs with
some frequency in the population (i.e., the assignment of models

3 Software for performing optimization and other analyses reported in this paper
is available at https://github.com/sjgershm/mfit. Reinforcement learning models
and data are available at https://github.com/sjgershm/RL-models.
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Table 1

Empirical prior distributions and hyperparameters. Gamma distribution is parameterized in terms of shape and scale.

For gamma and beta distributions, a mode/standard deviation parameterization is also given.

Inverse temperature Learning rate Stickiness
Bounds [0, 50] [0, 1] [-5, 5]

B ~ Gamma(4.83, 0.73) n ~ Beta(0.007,0.018)
M1 Mode: 2.8 Mode: 0.5

Standard deviation: 1.6 Standard deviation: 0.4

n* ~ Beta(0.009, 0.026)

B ~ Gamma(5.09, 0.83) Mode: 0.5

M2 Mode: 3.39 Standard deviation: 0.41

Standard deviation: 1.87

B ~ Gamma(2.52, 1.34)
M3 Mode: 2.04
Standard deviation: 2.13

B ~ Gamma(4.82, 0.88)
Mode: 3.36

M4 Standard deviation: 1.93

n~ ~ Beta(0.015, 0.023)
Mode: 0.5
Standard deviation: 0.48

n ~ Beta(0.195, 0.479)
Mode: 0.61
Standard deviation: 0.35

nT ~ Beta(0.01, 0.032)
Mode: 0.51

Standard deviation: 0.42
n~ ~ Beta(0.012, 0.021)
Mode: 0.5

Standard deviation: 0.47

© ~ N(0.12,1.26)

© ~ N(0.15, 1.42)

to subjects is a random effect), and estimate this rate using
a hierarchical Bayesian model (see Rigoux, Stephan, Friston, &
Daunizeau, 2014; Stephan, Penny, Daunizeau, Moran, & Friston,
2009, for more details). This analysis proceeds in two steps. First,
we approximate the marginal likelihood of each model by plugging
the MAP estimates into the Laplace approximation (Bishop, 2006):

Inp(Ds|m, ¢pm) = ln/ P(Ds|Oms, M)p(Oms|m, dm)

Oms

2 10 p(Dy|Oms, M) + 10 p(@ng|m, prm)
+ K—mann—lln|H|, (6)
2 2
where K, is the number of parameters for model m and

H = — V'V In[p(Ds|Bpms, M)p(Orms|m, dpm)] 7)

is the Hessian matrix of second derivatives of the negative log
posterior. The Laplace approximation assumes that the posterior
is approximately Gaussian around the mode, which is a reasonable
assumption when the amount of data is relatively large. The second
step in our model comparison method is to use the marginal
likelihood approximation as the likelihood in the hierarchical
model described by Stephan et al. (2009). Each model is assumed
to occur in the population with a latent frequency estimated
using variational Bayesian inference. Once these frequencies have
been estimated, we compute the protected exceedance probability,
defined as the probability that a particular model is more frequent
in the population than all the other models, averaged over the
probability of the null hypothesis that all models are equally
frequent. Since model comparison is not the focus of this paper, we
refer the reader to Rigoux et al. (2014) and Stephan et al. (2009) for
more details.

2.5. Empirical priors and cross-validation

Once subject-specific parameter estimates were obtained, we
estimated empirical priors by maximum likelihood:

(zm = ar%maxnp(éms|¢ln)v (8)

where we have assumed that parameter estimates are indepen-
dent and identically distributed across subjects. For convenience,
we choose the prior to have a parametric form (typically in the ex-
ponential family), although this choice is not essential.

0.8

0.6

0471

0.2}

Protected exceedance prob.

M1 M2 M3 M4

Fig. 1. Bayesian model comparison. The protected exceedance probability for each
model. This is the probability that a particular model is more frequent in the
population than all the other models, averaged over the probability of the null
hypothesis that all models are equally frequent.

Empirical priors were estimated with D1 and then used for MAP
estimation with D2. In order to evaluate the parameter estimates
obtained using the empirical priors, we performed leave-one-
block-out cross-validation with D2, whereby we fit the parameters
on 3/4 blocks (using either empirical or uniform priors) and then
computed the log likelihood of data on the held-out block. All
cross-validation results are reported as averages of results across
held-out blocks. Uniform priors were constructed to have a flat
probability density function over the parameter range.

3. Results

3.1. Model comparison

We carried out Bayesian model comparison on D1 to determine
the best model among those we considered. As shown in Fig. 1,
M4 (dual learning rates + stickiness) had a decisively higher
protected exceedance probability, indicating that it is with high
probability more frequent in the population than the other models.
Consequently, we focus on M4 for some of the analyses reported
below.
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Fig. 2. Empirical priors for M4. Each panel shows a kernel density plot (using a Gaussian kernel with the optimal plugin bandwidth) of the parameter estimates for the
group and an empirical prior obtained by fitting a parametric distribution to the parameter estimates using maximum likelihood.

7 . . .

. Empiricél
[ |:| Uniform

Log likelihood ratio
w

M1 M2 M3 M4

Inter—block correlation

1 ‘ ‘ ‘ ‘
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

M3 M4

M1

M2

Fig. 3. Cross-validation results. (Left) Log ratio between the model posterior predictive likelihood and the likelihood under a random policy. (Right) Pearson correlation
(estimated using Bayesian inference) between parameter estimates across different sets of training blocks. Error bars represent 95% credible intervals (across participants)

around the posterior mean, after averaging over folds.
3.2. Empirical priors

The empirical priors fit to D1 for all 4 models are shown in
Table 1. In order to provide some flexibility for future applications
of these priors, parameters for the gamma and beta distributions
are shown in the mode and standard deviation parameterization;
this allows a modeler to (for example) reuse the mean but increase
the standard deviation in order to obtain a vaguer prior. The
empirical priors for the best-fitting model M4 are shown in Fig. 2.
One noteworthy aspect of the hyperparameter estimates is that
they typically do not vary substantially across models, indicating
that the priors will be fairly robust across different variants of the
models studied here.

We now turn to a quantitative evaluation of these empirical
priors on a separate dataset (D2).

3.3. Quantitative evaluation

Cross-validation results on D2 are shown in Fig. 3(Left). The
performance metric plotted here is the log ratio of each model’s
posterior predictive likelihood (i.e., the likelihood assigned to
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Fig. 4. Parameter estimate correlations. Pearson correlations (estimated using
Bayesian inference) between the estimates for different pairs parameters.
Correlations are computed across participants based on the entire dataset.

held-out trials conditional on the estimated parameters) and the
likelihood under a random policy (i.e., choosing each option with
equal probability). Thus, a log likelihood ratio of 0 indicates that
a particular model predicts no better than chance. The empirical
prior resulted in a higher log likelihood ratio compared to using
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Fig. 5. Individual differences analysis. Relationship between inverse temperature and reward prediction accuracy, defined as the mean-squared error between predicted
and observed reward, with a least-squares line superimposed. (Left) Empirical priors. (Right) Uniform priors. The analysis above each graph reports the results of a Bayesian
correlation test: the posterior mean Pearson correlation coefficient, the posterior probability that the Pearson correlation coefficient is less than 0, and the 95% credible

interval.

uniform priors (posterior probability of a difference greater than
0: 0.98, Bayesian t-test). Moreover, uniform priors were not on
average significantly different from chance (p = 0.13). These
results confirm that empirical priors improve cross-validated
predictive accuracy.

Parameter reliability tells a similar story (Fig. 3(Right)):
parameter estimates are more strongly correlated across cross-
validation folds for empirical priors compared to uniform priors
(posterior probability of a difference greater than 0: 0.99, Bayesian
t-test). Note that high reliability can be trivially achieved by
using very strong priors, such that estimates for every subject
are identical; however, this would deleteriously affect predictive
accuracy (see also Scheibehenne & Pachur, 2015). The fact that
we see both high accuracy and high reliability indicates that
the empirical priors are achieving a good balance between
regularization and data fit.

As mentioned in the Introduction, correlations between pa-
rameters is symptomatic of non-identifiability: When parameters
trade off against each other to achieve equivalent likelihoods, these
different parameter settings are indistinguishable and hence the
parameter estimates are not interpretable. We found that the ab-
solute values of parameter correlations are strongly reduced when
using empirical priors (Fig. 4), with a posterior probability of 0.78
that the mean difference in correlations was greater than 0. This
arises because the empirical priors suppress regions of the parame-
ter space, thereby constraining the set of parameter configurations
with high posterior probability. These constraints improve identi-
fiability.

Finally, we turn to individual differences. One concern about
using strong priors is that they regularize parameter estimates
for different subjects closer together, and therefore eliminate
variability which might be correlated with other individual
difference measures. Note, however, that regularization also
eliminates noise due to poor parameter estimates. Since this will
reduce the variance of parameter estimates across subjects, it has
the potential to increase correlations. We demonstrate this using
D2, where we collected continuous ratings of reward probability
on each trial. We reasoned that the inverse temperature, which
can be viewed as a rough proxy for decision confidence, would
be correlated with reward prediction accuracy (as measured by
the mean-squared error between predicted and observed reward).
Intuitively, participants with higher decision confidence, provided
they are reasonably well-calibrated with their actual accuracy,
will tend to exhibit higher accuracy (lower mean-squared error).
Indeed, this is the case when using empirical priors, but the
relationship is much weaker when using uniform priors (Fig. 5).

4 For thisandall following statistical tests, we use the R package BayesianFirstAid
to compute parameter estimates and posterior probabilities.

While the empirical prior estimates are more clustered, they also
show a tighter relationship with reward prediction accuracy.’

4. Conclusion

We have argued that empirical priors offer several distinct
advantages over uniform priors when fitting RL models: They im-
prove predictive accuracy, reliability, identifiability, and measure-
ment of individual differences. The empirical priors estimated here
can be potentially applied to a wide range of models and tasks
that share similar parameterizations. We noted that the priors are
robust across parameterizations, suggesting that they are fairly
transferable.

This paper has focused on RL models, but empirical priors could
benefit other areas of cognitive science. For example, Smith (2006)
has pointed out that a large class of categorization models suffers
from “colliding parameters”: the similarity and choice components
effectively cancel each other out (but see Navarro, 2007). This is, in
essence, an identifiability issue, and therefore can potentially be
remedied by using empirical priors. Many other areas involve the
quantification of individual differences in terms of computational
models, particularly in cognitive neuroscience and psychiatry. To
the extent that empirical priors aid the analysis of individual
differences, these domains will similarly benefit.

An alternative to empirical priors is to use hierarchical
modeling (Gelman & Hill, 2006). Rather than fitting a prior to one
dataset and then applying it to another dataset, one could estimate
the prior on the same dataset. The advantage of this approach is
that the priors are potentially better tuned to the dataset at hand.
The disadvantage is that the risk of overfitting is greater, in the
sense that both parameters and hyperparameters are being fit to
the data, in contrast to the use of empirical priors, where only the
parameters are fit after the priors are obtained (see Scheibehenne
& Pachur, 2015, for further discussion of pitfalls with hierarchical
modeling). Another disadvantage is that hierarchical modeling is
somewhat more computationally involved, although new software
developments for generic Bayesian inference (e.g., Stan, JAGS,
BUGS) are making this task easier. A comprehensive comparison
of empirical and hierarchical priors is an important task for future
work.

The approach adopted in this paper, while motivated by
Bayesian concepts (priors, posteriors, etc.), is not fully Bayesian:

5 six participants were fit with inverse temperatures at the parameter upper
bound (50), but the results do not change materially when these participants are
removed.
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model-fitting is based on point estimation rather than computing
the full posterior. While this will be unsatisfying for the hardcore
Bayesian, the goal of this paper was not to defend point
estimation but rather to show how the use of empirical priors
can improve widely used model-fitting techniques. The usefulness
of informative priors has been amply demonstrated in cognitive
science (Vanpaemel,2011; Vanpaemel & Lee, 2012), and there are a
variety of ways that such priors can be constructed and employed.
Many RL researchers are comfortable with point estimation, and
this paper was designed to be surgical in its modification of current
practices. Nonetheless, empirical priors are perfectly compatible
with a fully Bayesian approach.
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