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Abstract
Two important ideas about associative learning have emerged in recent decades: (1) Ani-
mals are Bayesian learners, tracking their uncertainty about associations; and (2) animals
acquire long-term reward predictions through reinforcement learning. Both of these ideas
are normative, in the sense that they are derived from rational design principles. They are
also descriptive, capturing a wide range of empirical phenomena that troubled earlier theo-
ries. This article describes a unifying framework encompassing Bayesian and reinforcement
learning theories of associative learning. Each perspective captures a different aspect of
associative learning, and their synthesis offers insight into phenomena that neither perspec-
tive can explain on its own.

Author Summary
How do we learn about associations between events? The seminal Rescorla-Wagner model
provided a simple yet powerful foundation for understanding associative learning. How-
ever, much subsequent research has uncovered fundamental limitations of the Rescorla-
Wagner model. One response to these limitations has been to rethink associative learning
from a normative statistical perspective: How would an ideal agent learn about associa-
tions? First, an agent should track its uncertainty using Bayesian principles. Second, an
agent should learn about long-term (not just immediate) reward, using reinforcement
learning principles. This article brings together these principles into a single framework
and shows how they synergistically account for a number of complex learning phenomena.

Introduction
Learning to predict rewards (or punishments) from the occurrence of other stimuli is funda-
mental to the survival of animals. When such learning occurs, it is commonly assumed that a
stimulus-reward association is stored in memory [1, 2]. Two ideas have, over the last few
decades, altered our understanding of how such associations are formed, and the nature of
their content. First, Bayesian theories of learning have suggested that animals estimate not only
the strength of associations, but also their uncertainty in these estimates [3–8]. Second,
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reinforcement learning (RL) theories have suggested that animals estimate long-term cumula-
tive future reward [9–11].

Both Bayesian and RL theories can be viewed as generalizations of the seminal Rescorla-
Wagner model [12] that address some of its limitations. The mathematical derivations of these
generalizations and their empirical support will be reviewed in the following sections. Bayesian
and RL theories are derived from different—but not mutually exclusive—assumptions about
the nature of the learning task. The goal of this paper is to unify these perspectives and explore
the implications of this unification.

One set of assumptions about the learning task concerns the target of learning. The Bayesian
generalization of the Rescorla-Wagner model, embodied in the Kalman filter [3, 4, 6], assumes
that this is the problem of predicting immediate reward, whereas RL theories, such as temporal
difference (TD) learning, assume that the goal of learning is to predict the cumulative future
reward. A second set of assumptions concerns the representation of uncertainty. The Kalman
filter learns a Bayesian estimator (the posterior distribution) of expected immediate reward,
whereas TD learns a point estimator (a single value rather than a distribution) of expected
future reward. As shown below, the Rescorla-Wagner model can be construed as a point esti-
mator of expected immediate reward.

After reviewing these different modeling assumptions (organized in Fig 1), I show how they
can be naturally brought together in the form of the Kalman TD model. This model has been
previously studied in the RL literature [13], but has received relatively little attention in neuro-
science or psychology (see [14] for an exception). I explain how this model combines the
strengths of Bayesian and TD models. I will demonstrate this point using several experimental
examples that neither model can account for on its own.

Results
Preliminaries
Let xn denote the vector of conditioned stimulus (CS) intensities on trial n (all vectors are
taken to be column vectors), wn denote the associative strengths (or weights), and rn denote

Fig 1. Organizing Bayesian and reinforcement learning theories. Point estimation algorithms learn the
expected reward or value, while Bayesian algorithms learn a posterior distribution over reward or value. The
columns showwhat is learned, and the rows show how it is learned.

doi:10.1371/journal.pcbi.1004567.g001
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the unconditioned stimulus (US; i.e., observed reward). Note that traditional associative
learning theories interpret rn as the asymptotic level of responding supported by the US on
the current trial; however, in this article I interpret rn as reward in order to facilitate the con-
nection to RL.

To compactly describe experimental paradigms, I use uppercase letters (A, B, etc.) to denote
conditioned stimuli, and combinations of letters (e.g., AB) to denote stimulus compounds. A
stimulus (or compound) terminating in reward is denoted by A!+. Similarly, a stimulus ter-
minating in no reward is denoted by A!-. A stimulus terminating with the onset of another
stimulus is denoted A!B. The notation A!? indicates that conditioned responding to A is the
dependent measure in a particular experiment. When multiple trial types are interleaved within
a phase, forward slashes are used (e.g., A!+ / B!-), and contiguous phases are separated by
semi-colons (e.g., A!+; B!-).

Making predictions about empirical phenomena is complicated by the fact that experimen-
tal paradigms use diverse stimuli, rewards, and behavioral measures. The simulations reported
below are predicated on the assumption that we can abstract away from some of these experi-
mental details and predict response rates simply on the basis of reward expectation, as acquired
by trial-and-error learning. This assumption is certainly false: response rates depend on other
factors, such as motivation and stimulus-specific properties (e.g., [15]). Nonetheless, this
assumption enables the models considered below to make predictions about a wide range of
experimental paradigms without getting bogged down in experimental minutiae. The same is
true for many other computational models, and is helpful for making progress before more
realistic theoretical assumptions can be refined.

The Rescorla-Wagner model
The Rescorla-Wagner model is the cornerstone of modern associative learning theory. While it
has a number of crucial shortcomings [16], the model stimulated decades of experimental
research and served as the basis of more sophisticated models [17–19]. Learning is governed by
the following equation:

wnþ1 ¼ wn þ axndn; ð1Þ

vn ¼ w>
n xn ð2Þ

where α 2 [0, 1] is a learning rate parameter (also known as associability), δn = rn − vn is the
prediction error, and vn is the reward expectation, which is taken to be monotonically related to
the conditioned response.

In the next section, I describe a probabilistic interpretation of this learning rule, which will
play an important role in subsequent developments. I then discuss some empirical implications
of the model.

Probabilistic interpretation. To derive a probabilistic interpretation, we need to impute
to the animal a set of probabilistic assumptions about how its sensory data are generated—the
animal’s internal model. Specifically, the internal model is defined by a prior on weights, p(w0),
a change process on the weights, p(wnjwn−1), and a reward distribution given stimuli and
weights, p(rnjwn, xn). Following earlier work [3, 4, 6], I take this to be a linear-Gaussian
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dynamical system (LDS):

w0 % N ð0; s2
wIÞ ð3Þ

wn % N ðwn&1; t
2IÞ ð4Þ

rn % N ðvn; s2
r Þ; ð5Þ

where I is the identity matrix. Intuitively, the LDS makes the following claims about the ani-
mal’s internal model. First, the prior on weights posits that weights tend to be close to 0 (i.e.,
associations tend to be weak); the strength of this prior is inversely proportional to s2

w. Second,
the change process posits that weights tend to change slowly and independently over time; the
volatility of this change process increases with τ2. Third, the reward distribution posits that
reward is a noisy linear combination of stimulus activations.

From the animal’s perspective, the goal of learning is to recover an estimate of the weights.
The generative process serves as a set of soft constraints on the weight estimator. In other
words, the generative process provides an inductive bias that makes some estimators better than
others. In order to precisely define what makes an estimator “better,” we need to specify an
objective function that is maximized by the optimal estimator. Let us first make the simplifying
assumption that the weights do not change over time (i.e., τ2 = 0), in which case the weights are
static parameters and we can drop the trial index. Under this assumption, it can be shown that
the objective function maximized (asymptotically as t!1) by the Rescorla-Wagner model is
the log-likelihood log p(r1:njw, x1:t), where the index 1:n denotes all trials from 1 to n.

To show this, I draw a connection between the Rescorla-Wagner model and the Robbins-
Monro algorithm for stochastic approximation [20]. In the context of the LDS described
above, the Robbins-Monro algorithm updates the weight estimate ŵ according to:

ŵnþ1 ¼ ŵn þ ans
&2xnðrn & vnÞ; ð6Þ

where αn is a dynamically decreasing learning rate satisfying

X1

n¼0

an ¼ 1;
X1

n¼0

a2n < 1: ð7Þ

One simple choice of learning rate that satisfies these conditions is αn = 1/n. The Robbins-
Monro algorithm converges asymptotically to the maximum likelihood estimate of w. Compar-
ing Eqs 1 and 6 (and allowing σ−2 to be absorbed into the learning rate), it can be seen that the
Rescorla-Wagner model with a dynamically decreasing learning rate is a maximum likelihood
estimator (see also [21]). This analysis echoes the observation that the Rescorla-Wagner model
is an instantiation of the “least mean squares” (aka Widrow-Hoff) learning rule [22]: under a
Gaussian observation model, minimizing summed squared error is equivalent to maximizing
likelihood. The main difference is that the least mean squares rule assumes a static learning
rate, and imposes restrictions on the learning rate to ensure convergence.

While the Rescorla-Wagner model thus has a normative basis in statistical estimation, it is
not a fully probabilistic estimator—it only maintains a single “point” hypothesis about the
weights. As a consequence, the estimator ignores uncertainty about the weights. There is good
evidence that the brain maintains representations of uncertainty [23], and updates these repre-
sentations using Bayesian inference [24]. Below I discuss a Bayesian generalization of the
Rescorla-Wagner model, following a brief consideration of the empirical phenomena that
motivate this generalization.
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Empirical implications. The Rescorla-Wagner model formalizes two important princi-
ples: (1) learning is driven by reward prediction errors; and (2) simultaneously presented sti-
muli summate to predict reward. These principles will figure prominently in the subsequent
discussion of the model’s limitations and possible remedies.

To see that learning is driven solely by reward prediction errors, notice that wn is updated
only when the prediction error is non-zero. One surprising consequence of this property is that
associative strength can in some cases weaken as a consequence of reinforcement. For example,
Rescorla [25] demonstrated that reinforcing a compound consisting of two previously rein-
forced stimuli caused a decrement in responding to the individual stimuli on a subsequent test.
This effect is referred to as overexpectation because summing the associative strength of two
individually reinforced stimuli should produce a larger reward prediction than either stimulus
alone. Because the reinforcer magnitude is the same, the prediction error will be negative, and
thus the associative strength for both stimuli will be decremented. This demonstrates that
learning is driven not by reinforcement per se, but by unexpected reinforcement.

The same principles can give rise to negative (inhibitory) associative strength. In the condi-
tioned inhibition paradigm [26, 27], A!+ trials are interspersed with AB!- trials, resulting in
negative associative strength accruing to stimulus B (as assessed, for example, by showing that
pairing B with a previously reinforced stimulus C reduces responding relative to C alone).
According to the Rescorla-Wagner model, the negative association is acquired because of the
negative prediction error on AB!- trials; B must have a negative weight in order to counter-
balance the excitatory weight of A.

The combination of error-driven learning with associative summation leads to stimulus com-
petition. For example, in forward (Kamin) blocking[28], stimulus A is paired with reward and
then in a second phase the compound AB is paired with reward. In a subsequent test of B alone,
responding is lower compared to a condition in which the first phase is omitted. In terms of the
Rescorla-Wagner model, stimulus A blocks acquisition of an association between B and reward
because the reward is fully predicted by A and hence there is no prediction error to drive learn-
ing in the second phase. A similar argument accounts for the phenomenon of overshadowing
[26], in which reinforcing the compound AB results in weaker responding to the individual
stimulus elements compared to a condition in which each stimulus is reinforced separately.

Although considerable evidence supports the existence of error-driven learning and stimu-
lus competition in associative learning, violations of these principles are well-documented [16].
For example, presenting a stimulus alone prior to pairing it with reward retards acquisition of
the stimulus-reward association, a phenomena known as the CS pre-exposure effect or latent
inhibition[29]. Because the associative strength is presumably initialized to 0, the prediction
error is 0 during pre-exposure and hence no associative learning should occur according to the
Rescorla-Wagner model. Another example of learning in the absence of prediction errors is
second-order conditioning [26, 30]: The serial compound A!B results in conditioning of A if
B was previously paired with reward. Here again there is no prediction error during the A!B
and hence no learning should have occurred (a more fundamental problem here, which I dis-
cuss further below, is that the Rescorla-Wagner model only makes trial-level predictions and
hence is actually inapplicable to serial-compound conditioning).

The Rescorla-Wagner model also runs into trouble in situations where absent stimuli
appear to compete with present stimuli. For example, in backward blocking [31–33], a com-
pound AB is reinforced and then A is reinforced by itself, resulting in a reduction of responding
to B alone. Conversely, stimulus competition can be reduced by post-training extinction of one
element [34–36].

These findings undercut some of the basic claims of the Rescorla-Wagner model, and have
stimulated extensive work in animal learning theory [2]. The next two sections will focus on two
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normatively-motivated generalizations of the Rescorla-Wagner model that can accommodate
these (and many other) findings, before proceeding to a unifying view of these generalizations.

Bayesian inference and the Kalman filter
The probabilistic interpretation of the Rescorla-Wagner model given above shows that it is a
maximum likelihood estimator of the weight vector. This estimator neglects the learner’s
uncertainty by only representing the single most likely weight vector. Given that humans and
other animals are able to report their uncertainty, and that these reports are often well-cali-
brated with veridical confidence (i.e., the probability of being correct; see [37]), it appears nec-
essary to consider models that explicitly represent uncertainty. Moreover, such models are an
important step towards understanding how the brain represents uncertainty [23, 24].

Bayesian models of learning posit that the learner represents uncertainty in the form of a
posterior distribution over hypotheses given data. In the case of associative learning, the poste-
rior distribution is stipulated by Bayes’ rule as follows:

pðwnjx1:nÞ / pðx1:njwnÞpðwnÞ: ð8Þ

Under the LDS specified in Eqs 3–5, the posterior is Gaussian with mean ŵn and covariance
matrix Sn, updated using the Kalman filter equations:

ŵnþ1 ¼ ŵn þ kndn ð9Þ

Snþ1 ¼ Sn þ t2I& knx
>
n ðSn þ t2IÞ; ð10Þ

where ŵ0 ¼ 0, S0 ¼ s2
wI, and kn is the Kalman gain:

kn ¼
ðSn þ t2IÞxn

x>
n ðSn þ t2IÞxn þ s2

r

: ð11Þ

Here the Kalman gain has replaced the learning rate α in the Rescorla-Wagner model. Impor-
tantly, the Kalman gain is stimulus-specific, dynamic and grows monotonically with the uncer-
tainty encoded in the diagonals of the posterior covariance matrix Sn. This allows the Kalman
filter model to explain some of the phenomena that are problematic for the Rescorla-Wagner
model.

Two factors govern the covariance matrix update. First, uncertainty grows over time due to
the random diffusion of the weights (Eq 4); this is expressed by the τ2I term in Eq 10. The
growth of uncertainty over time increases with the diffusion variance τ2, leading to higher
learning rates in more “volatile” environments. The relationship between volatility and learn-
ing rate follows intuitively from the fact that high volatility means that older information is less
relevant and can therefore be forgotten [38, 39]. The second factor governing the covariance
matrix update is the reduction of uncertainty due to observation of data, as expressed by the
term knx

>
n ðSn þ t2IÞ. Whenever a cue is observed, its variance on the diagonal of the covari-

ance matrix is reduced, as are the covariances (off-diagonals) for any correlated cues.
One implication of the Kalman filter is that repeated CS presentations will attenuate poste-

rior uncertainty and therefore reduce the Kalman gain. As illustrated in Fig 2, this reduction in
gain produces latent inhibition, capturing the intuition that CS pre-exposure reduces “atten-
tion” (associability or learning rate). The Kalman filter can also explain why interposing an
interval between pre-exposure and conditioning attenuates latent inhibition [40]: The posterior
variance grows over the interval (due to random diffusion of the weights), increasing the Kal-
man gain. Thus, the Kalman filter can model some changes in learning that occur in the
absence of prediction error, unlike the Rescorla-Wagner model.

A Unifying Probabilistic View of Associative Learning
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The Kalman filter can also account for the effects of various post-training manipulations,
such as backward blocking [3, 6]. During the compound training phase, the model learns that
the cue weights must sum to 1 (the reward value), and thus any weight configurations in which
one weight is large necessitates that the other weight be small. Mathematically, this is encoded
as negative covariance between the weights (i.e., the off-diagonals of Sn). As a consequence,
learning that A predicts reward leads to a reduction in the associative strength for B.

Beyond backward blocking, the Kalman filter can capture a wider range of recovery phe-
nomena than has previously been simulated. Four examples are shown in Fig 3 (see Methods
for simulation details). As shown by Matzel and colleagues [34], overshadowing (AB!+ train-
ing leads to weaker responding to B compared to B!+ training) can be counteracted by extin-
guishing one of the stimulus elements prior to test (AB!+; A!-). Similarly, extinguishing the
blocking stimulus in a forward blocking paradigm (A!+; AB!+; A!-; B!?) causes a recov-
ery of responding to the blocked stimulus [35], and extinguishing one of the stimulus A in an
overexpectation paradigm (A!+ / B!+; AB!+; A!-; B!?) causes a recovery of responding
to the other stimulus B [36]. Finally, extinguishing the excitatory stimulus A in a conditioned
inhibition paradigm (A!+ / AB!-; A!-) reduces the negative associative strength of the
inhibitory stimulus B [41].

All of these examples have a common structure shared with backward blocking, where com-
pound training causes the acquisition of negative covariance between the stimulus elements.
This negative covariance implies that post-training inflation or deflation of one stimulus will
cause changes in beliefs about the other stimulus. Post-training recovery phenomena have
inspired new theories that allow learning to occur for absent stimuli. For example, Van
Hamme andWasserman [18] developed an extension of the Rescorla-Wagner model in which
the associative strengths for absent cues are modified just like present cues, but possibly with a
smaller learning rate (see also [19, 42, 43]). The Kalman filter provides a normative explanation
of recovery phenomena, while retaining close similarities with classical theories like the
Rescorla-Wagner model.

Temporal difference learning and long-term reward prediction
The Kalman filter fixes some of the problems vexing the Rescorla-Wagner model, but a funda-
mental limitation remains: The Rescorla-Wagner model is a trial-levelmodel, which means that
it only makes predictions at the granularity of a trial, remaining blind to intra-trial structure
such as stimulus duration and the inter-stimulus interval. While one can finesse this by treating

Fig 2. Kalman filter simulation of latent inhibition. (A) Reward expectation following pre-exposure (Pre)
and no pre-exposure (No-Pre) conditions. (B) The Kalman gain as a function of pre-exposure trial.

doi:10.1371/journal.pcbi.1004567.g002
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each time-step in the model as a sub-division of a trial, such a solution is inadequate because it
fails to capture the fact that conditioned responses are anticipatory of long-term future events.
For example, interposing a delay between CS offset and US onset means that the CS never co-
occurs with the US and hence should not produce any conditioning according to this particular
real-time extension of the Rescorla-Wagner model (contrary to the empirical data).

It is possible to augment the Rescorla-Wagner model with a time-varying stimulus trace
evoked by the CS, allowing the trace to enter into association with the US. This idea goes back
to the work of Pavlov [26] and Hull [44], who posited that the stimulus trace persists for several
seconds following CS offset, decaying gradually over time. More complex stimulus traces have
been explored by later researchers (e.g., [45, 46]).

While a persistent trace enables the model to capture aspects of intra-trial temporal struc-
ture, there is an additional problem: the association between the trace and the US can only be
reinforced following US presentation, but contrary to this assumption it has been demon-
strated empirically that an association can be reinforced without any pairing between the CS
and US. As mentioned above, an example is second-order conditioning [26, 30], where A is
paired with reward and subsequently B is paired with A, resulting in conditioned responding
to B. An analogous phenomenon, known as conditioned reinforcement, has been studied in
operant conditioning [47]. Somehow, a CS must be able to acquire the reinforcing properties of
the US with which it has been paired.

Fig 3. Kalman filter simulation of recovery phenomena. (A) Overshadowing and unovershadowing by extinction of the overshadowing stimulus. (B)
Forward blocking and unblocking by extinction of the blocking stimulus. (C) Overexpectation and unoverexpectation by extinction of one element. (D)
Conditioned inhibition and uninhibition by extinction of the excitatory stimulus.

doi:10.1371/journal.pcbi.1004567.g003
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The TD model [9] offers a solution to both of these problems, grounded in a different ratio-
nal analysis of associative learning. The underlying assumption of the TD model is that the
associative learning system is designed to learn a prediction of long-term future reward, rather
than immediate reward (as was assumed in our rational analysis of the Rescorla-Wagner and
Kalman filter models). Specifically, let us imagine an animal that traverses a “state space”
defined by the configuration of stimuli, moving from xt at time t to xt+1 according to a transi-
tion distribution p(xt+1jxt). (Note that we now index by t to emphasize that we are in “real
time”). The value of state xt is defined as the expected discounted future return (cumulative
reward):

VðxtÞ ¼ E
X1

k¼0

gkrtþk

" #

; ð12Þ

where γ 2 [0, 1] is a discount factor that controls how heavily the near future is weighted rela-
tive to the distant future. Applications of the TDmodel to associative learning assume that con-
ditioned responding is monotonically related to the animal’s value estimate. This means that
two stimuli might have the same expected reward, but responding will be higher to the stimulus
that predicts greater cumulative reward in the future.

The RL problem is to learn the value function. As is common in the RL literature [48, 49], I
will assume that the value function can be approximated as a linear combination of stimuli:
VðxtÞ ¼ w>

t xt . This reduces the RL problem to learning wt. This can be accomplished using
an update very similar to that of the Rescorla-Wagner model [49]:

ŵtþ1 ¼ ŵt þ axtdt; ð13Þ

where δt is now defined as the temporal difference prediction error:

dt ¼ rt þ gŵ>
t xtþ1 & ŵ>

t xt: ð14Þ

Except for the addition of the future reward expectation term gŵ>
t xtþ1, the TD prediction

error is identical to the Rescorla-Wagner prediction error, and reduces to it when γ = 0.
In order to apply the TD model to associative learning tasks, it is necessary to specify a tem-

porally extended stimulus representation. Sutton and Barto [9] adopted the complete serial
compound (CSC) representation, which divides a stimulus into a sequence of non-overlapping
bins. Thus, a stimulus lasting for two time steps would be represented by x1 = [1, 0] and x2 =
[0, 1]. Although there are a number of problems with this representation [11, 50–52], I use it
here for continuity with previous work.

The TD model can account for a number of intra-trial phenomena, such as the effect of
stimulus timing on acquisition and cue competition (see [9, 11] for extensive simulations). It
also provides a natural explanation for second-order conditioning: despite the immediate
reward term rt in Eq 14 being 0 for A!B trials, the future reward expectation term gŵ>

t xtþ1 is
positive (due to the B!+ trials) and hence the value of A is increased.

In summary, the TD model has proven to be a successful real-time generalization of the
Rescorla-Wagner model, and also has the advantage of being grounded in the normative theory
of RL. However, it lacks the uncertainty-tracking mechanisms of the Kalman filter, which I
argued are important for understanding CS pre-exposure and post-training recovery effects. I
now turn to the problem of unifying the Kalman filter and TD models.

A Unifying Probabilistic View of Associative Learning
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A unifying view: Kalman temporal difference learning
Bayesian versions of TD learning have been developed in a number of different forms [13, 53,
54]; all of them have in common the idea that an agent tracks the entire distribution over dis-
counted future returns, not just the mean. Of particular interest is Kalman TD, an elegant
adaptation of the Kalman filtering machinery to TD learning developed by Geist and Pietquin
[13]. Operationally, the only change from the Kalman filter model described above is to replace
the stimulus features xn with their discounted time derivative, ht = γ xt + 1−xt. To see why this
makes sense, note that the immediate reward can be expressed in terms of the difference
between two values:

rt ¼ gVðxtþ1Þ & VðxtÞ
¼ gw>

t xtþ1 &w>
t xt

¼ w>
t ðgxtþ1 & xtÞ:

ð15Þ

I have assumed here, as in the previous section, that values are linear in the stimulus features.
As the derivation shows, this implies that rewards are linear in the discounted time derivative
of the stimulus features. Under the assumption that the weights evolve over time as a Gaussian
random walk and the rewards are corrupted by Gaussian noise, we can use the same LDS for-
mulation described earlier, for which the Kalman filter implements Bayesian estimation.

Kalman TD combines the strengths of Kalman filtering and TD learning: it is a real-time
model that that represents a distribution over weights rather than a point estimate. These prop-
erties allow the model to capture both within-trial structure and retrospective revaluation. In
the remainder of this section, I present several examples that illustrate the intersection of these
phenomena, and compare the predictions of TD and Kalman TD (since these examples involve
within-trial structure, I do not consider the Kalman filter or Rescorla-Wagner).

Denniston et al. [55] presented a series of experiments exploring recovery from overshad-
owing. In one experiment (summarized in Fig 4A), the authors combined overshadowing and
second-order conditioning to show that extinguishing an overshadowed stimulus allows its
partner to better support second-order conditioning. Animals were divided into two groups,
OV-A and OV-B. Both groups first learned to associate two light-tone compounds (AX and
BY) with a US (a footshock in this case). This compound training protocol was expected to
result in overshadowing. One element of the compound was then extinguished (A in group
OV-A, B in group OV-B). Stimulus X was then used as a second-order reinforcer for condi-
tioning of a novel stimulus, Z. Denniston et al. found that overshadowing reduced the ability of
an overshadowed stimulus to support second-order conditioning, but this reduction could be
attenuated if the overshadowing stimulus was extinguished. In particular, they found that
responding at test to stimulus Z was greater in group OV-A than in group OV-B.

Simulations show that KTD, but not TD, can capture this finding (Fig 4B). While TD can
capture second-order conditioning, it cannot explain why post-training extinction changes the
value of an absent stimulus, because only the weights for presented stimuli are eligible for
updating. The latter phenomenon is captured by the Kalman filter, which encodes the negative
covariation between stimuli. As a consequence, the Kalman gain for stimulus X during Phase 2
(despite X not appearing during this phase) is negative, meaning that extinguishing A will
cause inflation of X. By contrast, extinguishing B has no effect on the value of X, since B and X
did not covary during Phase 1. This is essentially the same logic that explains the post-training
recovery phenomena described above, but applied to a second-order conditioning scenario
outside the scope of the Kalman filter.

A Unifying Probabilistic View of Associative Learning
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Fig 4. Overshadowing and second-order conditioning. (A) Experimental design [55]. Note that two control groups have been ignored here for simplicity.
(B) Simulated value of stimulus Z computed by Kalman TD (left) and TD (right). Only Kalman TD correctly predicts that extinguishing an overshadowing
stimulus will allow the overshadowed stimulus to support second-order conditioning. (C) Posterior covariance between weights for stimuli A and X (left) and
Kalman gain for stimulus X (right) as a function of Phase 1 trial. (D) Posterior covariance between weights for stimuli A and X (left) and Kalman gain for
stimulus X (right) as a function of Phase 2 trial.

doi:10.1371/journal.pcbi.1004567.g004
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One extensively studied aspect of second-order conditioning has been the effect of extin-
guishing the first-order stimulus on responding to the second-order stimulus. Rashotte and
colleagues [56] reported a Pavlovian autoshaping experiment with pigeons in which extinction
of the first-order stimulus reduces responding to the second-order stimulus. This finding has
been replicated a number of times [57–59], although notably it is not found in a number of
other paradigms [30, 60], and a comprehensive explanation for this discrepancy is still lacking.
Fig 5 shows that Kalman TD predicts sensitivity to first-order extinction, whereas TD predicts
no sensitivity. The sensitivity of Kalman TD derives from the positive covariance between the
first- and second-order stimuli, such that changes in the value of the first-order stimulus imme-
diately affect the value of the second-order stimulus.

I next turn to serial compound conditioning, which illustrates the within-trial behavior of
Kalman TD. As summarized in Fig 6A, Gibbs et al. [61] studied the effects of extinguishing
stimulus X following serial compound training (Z!X!+). They found that this extinction
treatment reduced the conditioned response to Z (see [15] for similar results). Kalman TD can
account for this finding (Fig 6B) because the positive covariance between Z and X means that
the value of Z is sensitive to post-training manipulations of X’s value (Fig 6C). TD, which lacks
a covariance-tracking mechanism, cannot account for this finding.

In a second experiment (Fig 7A), Gibbs et al. had the extinction phase occur prior to train-
ing, thereby making it a latent inhibition (CS pre-exposure) design. As with the extinction
treatment, latent inhibition reduces responding to Z, a finding that can be accounted for by
Kalman TD, but not TD (Fig 7B). The Kalman TD account is essentially the same as the Kal-
man filter account of latent inhibition: Pre-exposure of X causes its posterior variance to
decrease, which results in a concomitant reduction of the Kalman gain (Fig 7C).

A conceptually related design was studied by Shevill and Hall [62]. Instead of extinguishing
the first-order stimulus X, they extinguished the second-order stimulus Z and examined the
effect on responding to the first-order stimulus (Fig 8A). This extinction procedure increased

Fig 5. Second-order extinction. (A) Experimental design [56]. (B) Simulated value of stimulus Z computed
by Kalman TD (left) and TD (right).

doi:10.1371/journal.pcbi.1004567.g005
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responding to the first-order stimulus relative to another first-order stimulus (Y) whose associ-
ated second-order stimulus had not been extinguished. This finding is predicted by Kalman
TD, but not TD (Fig 8B), because in a serial conditioning procedure the first-order stimulus
overshadows the second-order stimulus, and extinguishing the first-order stimulus causes a
recovery from overshadowing (a reduced first-order value is evidence that the second-order
stimulus was responsible for the outcome). Note that this explanation is essentially the same as
the one provided by the Kalman filter for recovery from overshadowing with simultaneous
compounds [34]; the key difference here is that in serial compounds the second-order stimulus
tends to differentially overshadow the first-order stimulus [63].

Discussion
While the theoretical literature on associative learning is vast and complex, a few principles
continue to play a central role in contemporary thinking. Some of these principles are embod-
ied in the Rescorla-Wagner model and its generalizations—the TD model and the Bayesian

Fig 6. Serial compound extinction. (A) Experimental design [61]. (B) Simulated value of stimulus Z
computed by Kalman TD (left) and TD (right). (C) Posterior covariance between the weights for stimuli Z and
X as a function of conditioning trial.

doi:10.1371/journal.pcbi.1004567.g006
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Kalman filter model. Each model has strengths and weaknesses, as reviewed above. I have
argued that Kalman TD represents a synthesis of these models that combines their strengths
and remedies some of their weaknesses.

These models are by no means the only generalizations of the Rescorla-Wagner model (see,
for example, [18, 64]), and there are other theoretical frameworks that offer different perspec-
tives on the mechanisms underlying associative learning (e.g., [5, 7, 8, 43, 65]). Nonetheless,
the synthesis of Bayesian and TD models has special significance given their influence on con-
temporary experimental research, particularly in neuroscience [48, 66]. These models offer dif-
ferent normative views of the associative learning problem—the Kalman filter views associative
learning as tracking a changing reward distribution over time, while the TD model views asso-
ciative learning as predicting long-term future reward (value). A central goal of this paper was
to provide a unifying view, according to which associative learning is the tracking of a changing

Fig 7. Serial compound latent inhibition. (A) Experimental design [61]. (B) Simulated value of stimulus Z
computed by Kalman TD (left) and TD (right). (C) Posterior variance (left) and Kalman gain (right) of stimulus
X as a function of pre-exposure trial.

doi:10.1371/journal.pcbi.1004567.g007
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value distribution over time. The fruit of this unification is a model that can account for a num-
ber of complex phenomena that cannot be accounted for by either model on its own.

While Kalman TD can capture a number of phenomena qualitatively, a task for future
research is to validate the model’s quantitative predictions. Such a validation is hampered by
the fact that associative learning paradigms differ in many procedural details. Thus, it is impor-
tant to adopt a single paradigm whose parameters can be explored systematically. Quantitative
evaluation of Kalman filtering has been extensively studied in the motor control literature [67],
and similar experimental techniques could be applied to associative learning. Among the pre-
dictions made by Kalman TD are: (1) uncertainty should grow linearly with the intertrial inter-
val, and (2) the strength of association should grow linearly with the magnitude of the
temporal derivative of the features.

Limitations and extensions
One of the important insights of the Pearce-Hall model [17] was that learning rate should
increase with surprise—formalized as the absolute value of recent prediction errors. This
model successfully predicts that inconsistently pairing a CS with an outcome enhances its
learning rate in a subsequent training phase with a different outcome [68]. In the Kalman filter
(as well as in Kalman TD), changes in learning rate are driven solely by changes in the covari-
ance matrix, which does not depend on outcomes. Thus, the model cannot explain any changes
in learning rate that depend on prediction errors.

One way to deal with this problem is to recognize that the animal may have uncertainty
about the transition dynamics (parameterized by τ), so that it learns simultaneously about the
associative weights and τ. It is straightforward to show that the partial derivative of the log-like-
lihood with respect to τmonotonically increases with d2

t , which means that gradient ascent will
increase τ when the squared prediction error is greater than 0. This will give rise to qualitatively
similar behavior to the Pearce-Hall model. Closely related Bayesian treatments have been
recently explored, although not in the context of TD learning [38, 39, 69, 70].

Another issue that arises in models of associative learning is the problem of feature (or state
space) representation [71]. When we present an animal with a stimulus configuration, it is

Fig 8. Recovery from overshadowing. (A) Experimental design [62]. (B) Simulated value of stimulus X and
stimulus Y computed by Kalman TD (left) and TD (right).

doi:10.1371/journal.pcbi.1004567.g008
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reasonable to expect that the animal applies some kind of processing to the stimulus represen-
tation. Some neural network models conceive this processing as the application of a non-linear
transformation to the stimulus inputs, resulting in a hidden-layer representation that encodes
configural features [64, 72, 73]. Other models derive stimulus representation from a clustering
process that partitions stimulus inputs into a discrete set of states [7, 71, 74, 75]. A related line
of work has studied the representation of temporally extended stimuli; for example, a number
of theories postulate a distributed representation of stimuli using basis functions with temporal
receptive fields (see [52] for a review). In general, any of these representations are compatible
with Kalman TD as long as values are linear functions of the representation. While this may
sound limiting, it is in fact extremely powerful, since any smooth function can be arbitrarily
well approximated by a linear combination of suitably chosen basis functions [76].

The final issue I will mention here concerns instrumental learning: A complete theory of
associative learning must account for associations between actions and outcomes. One influen-
tial framework for combining Pavlovian and instrumental learning processes is the actor-critic
architecture [77], according to which a Pavlovian “critic” learns state values, while an instru-
mental “actor” optimizes its policy using the critic’s prediction errors. Within this architecture,
Kalman TD could function as a Bayesian critic. An interesting question that then arises is what
role the critic’s uncertainty should play in guiding policy updating (see [78] for one possibility).

Conclusions
This paper makes several contributions. First, it provides a unifying review of several associa-
tive learning models, elucidating their connections and their grounding in normative computa-
tional principles. Second, it presents new simulations that highlight previously unappreciated
aspects of these models. Third, it presents Kalman TD, a synthesis of these models. While this
model has been described in other papers [13, 14], this is the first systematic application to
associative learning. This paper demonstrates that several prominent themes in associative
learning theory can be coherently unified.

Methods
Simulation details

Latent learning. In the “Pre” condition, the agent was exposed to 10 pre-exposure trials
(A!-) followed by 10 conditioning trials (A!+). In the “No-Pre” condition, the pre-exposure
phase was omitted.

Overshadowing. In the “overshadowing” condition, the agent was exposed to 10 com-
pound conditioning trials (AB!+) followed by a test of responding to B. In the “unoversha-
dowing” condition, the agent was additionally exposed to 10 extinction trials (A!-) between
conditioning and test.

Forward blocking. In the “blocking” condition, the agent was exposed to 10 conditioning
trials (A!+) followed by 10 compound conditioning trials (AB!+) and a test of responding
to B. In the “unblocking” condition, the agent was additionally exposed to 10 extinction trials
(A!-) between compound conditioning and test.

Overexpectation. In the “overexpectation” condition, the agent was exposed to 10 condi-
tioning trials for each stimulus (A!+ / B!+) followed by 10 compound conditioning trials
(AB!+) and a test of responding to B. In the “unoverexpectation” condition, the agent was
additionally exposed to 10 extinction trials (A!-) between compound conditioning and test.

Conditioned inhibition. In the “inhibition” condition, the agent was exposed to 10 A!
+ trials and 10 AB!- trials, followed by a test of responding to B. In the “uninhibition” condi-
tion, the agent was additionally exposed to 10 extinction trials (A!-) prior to test.
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Overshadowing and second-order conditioning. The design is summarized in Fig 4A.
Each phase consisted of 10 trials.

Serial compound extinction and latent inhibition. The designs are summarized in Figs
6A and 7A. Each phase consisted of 10 trials.

Recovery from overshadowing. The design is summarized in Fig 8A. Each phase con-
sisted of 10 trials.

Model parameters
Kalman filter. For all simulations, the following parameters were used:

s2
w ¼ 1; s2

r ¼ 1; t2 ¼ 0:01.
Temporal difference learning. For all simulations, the following parameters were used: α

= 0.3, γ = 0.98. A complete serial compound [9, 48] was used for the temporal representation:
Each stimulus was divided into 4 time bins, and each bin acted as a stimulus feature that was
active only at a specific time relative to the stimulus onset. The precise duration of the stimuli
was not important for our results.

Kalman temporal difference learning. For all simulations, the parameters were the same
as for the Kalman filter, with the addition of a discount factor γ = 0.98. The temporal represen-
tation was the same complete serial compound used in the TD simulations.
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Correction to Gershman (2015)

Samuel J. Gershman
Harvard University

October 11, 2017

On p. 10 of Gershman (2015), The “discounted time derivative” ht is defined incorrectly. It should
read as follows:

Operationally, the only change from the Kalman filter model described above is to replace the
stimulus features xn with their discounted time derivative, ht = xt��xt+1. To see why this makes
sense, note that the immediate reward can be expressed in terms of the di↵erence between two
values:

rt = V (xt)� �V (xt+1)

= w

>
t xt � �w>

t xt+1

= w

>
t (xt � �xt+1). (1)

This error does not a↵ect the simulations, which were implemented with the correct definition.
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