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Abstract Studies of reinforcement learning have shown
that humans learn differently in response to positive and
negative reward prediction errors, a phenomenon that can be
captured computationally by positing asymmetric learning
rates. This asymmetry, motivated by neurobiological and
cognitive considerations, has been invoked to explain learn-
ing differences across the lifespan as well as a range of
psychiatric disorders. Recent theoretical work, motivated by
normative considerations, has hypothesized that the learning
rate asymmetry should be modulated by the distribution of
rewards across the available options. In particular, the learn-
ing rate for negative prediction errors should be higher than
the learning rate for positive prediction errors when the aver-
age reward rate is high, and this relationship should reverse
when the reward rate is low. We tested this hypothesis in
a series of experiments. Contrary to the theoretical predic-
tions, we found that the asymmetry was largely insensitive
to the average reward rate; instead, the dominant pattern
was a higher learning rate for negative than for positive
prediction errors, possibly reflecting risk aversion.

Keywords Reinforcement learning · Multi-armed bandit ·
Decision-making

Introduction

Reward prediction error—the discrepancy between ob-
served and predicted reward—plays a central role in many
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theories of reinforcement learning (Niv & Schoenbaum,
Rescorla & Wagner, 2008; Sutton & Barto, 1972; 1990).
These theories posit that predictions are incrementally
adjusted to reduce the error, with the size of this adjustment
determined by a learning rate parameter. Studies have
shown that humans differ in the degree to which they learn
from positive and negative prediction errors, suggesting
asymmetric learning rates (Daw, Kakade, & Dayan, 2002;
Frank, Moustafa, Haughey, Curran, & Hutchison, 2007;
Frank, Doll, Oas-Terpstra, & Moreno, 2009; Niv, Edlund,
Dayan, & O’Doherty, 2012). This asymmetry may arise
from the differential response of striatal D1 and D2
dopamine receptors to positive and negative rewards,
a hypothesis consistent with individual differences in
dopaminergic genes (Frank, Moustafa, Haughey, Curran,
& Hutchison, 2007; Frank, Doll, Oas-Terpstra, & Moreno,
2009) and the effects of dopaminergic medication on lear-
ning in patients with Parkinson’s disease (Frank, Seeberger,
& O’Reilly, 2004; Rutledge et al., 2009) and schizophrenia
(Waltz et al. 2007). The learning rate asymmetry also
appears to shift across the lifespan: Adolescents learn more
from positive prediction errors, while older adults learn
more from negative prediction errors (Christakou et al.,
2013).

While previous studies have examined differences in
the learning rate asymmetry across individuals or medi-
cation states, they have generally assumed that the asym-
metry is stable over the course of a learning episode. In
contrast, Cazé and van der Meer (2013) have recently
hypothesized that the asymmetry may dynamically adapt
to the distribution of rewards across options. Their hypoth-
esis is based on a normative argument: Asymmetric
learning rates can enable an agent to better discrimi-
nate reward probabilities, and thereby earn more reward.
Importantly, the optimal asymmetry depends on the average
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reward rate, such that the learning rate for negative pre-
diction errors should be higher than the learning rate for
positive prediction errors when the average reward rate is
high, and this relationship should reverse when the reward
rate is low. Cazé and van der Meer (2013) proposed a meta-
learning algorithm that automatically adapts the asymmetry
based on the reward history, and they showed in simulations
that this algorithm leads to superior performance compared
to an algorithm with fixed learning rates.

The experiments reported in this paper were designed
to test the predictions of the adaptive learning rate model.
Using a two-armed bandit task, we manipulated the aver-
age reward rate across blocks. We then fit several dif-
ferent reinforcement learning models and performed for-
mal model comparison. These models include standard RL
models (Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006;
Sutton & Barto, 1998), as well as models with asymmet-
ric learning rates (Daw, Kakade, & Dayan, 2002; Frank,
Moustafa, Haughey, Curran, & Hutchison, 2007; Frank,
Doll, Oas-Terpstra, & Moreno, 2009; Niv, Edlund, Dayan,
& O’Doherty, 2012) and variants of the meta-learning
model proposed by Cazé and van der Meer (2013). Taken
together, these models cover a range of assumptions con-
cerning learning rates that have been proposed in the recent
RL literature. Our results show that the learning rate asym-
metry is robust across experiments, but this asymmetry does
not adapt to the distribution of rewards.

Experiments 1–4

All four experiments followed the same procedure,
differing only in the reward probabilities (which were not
presented explicitly to the participants). On each trial,
participants chose one of two options and observed a
stochastic binary outcome. The average reward rate was
manipulated across blocks, enabling a within-participant
comparison of learning rates under different reward
rates.

Methods

Participants

A total of 166 participants (ages 23–39) were recruited
through the Amazon Mechanical Turk web service: 38 in
Experiment 1, 46 in Experiment 2, 45 in Experiment 3, and
37 in Experiment 4. Participants were each paid a flat rate
of $0.25. See Crump et al. (2013) for evidence that psy-
chological experiments can be run effectively on Amazon
Mechanical Turk.

Procedure

On each trial, participants were shown two colored but-
tons and told to choose the button that they believed would
deliver the most reward. After clicking a button, participants
received a binary (0,1) reward with some probability. The
probability for each button was fixed throughout a block
of 25 trials. There were two types of blocks: low-reward
rate blocks and high-reward rate blocks. On low-reward
rate blocks, both options delivered rewards with probabili-
ties less than 0.5. On high-reward rate blocks, both options
delivered rewards with probabilities greater than 0.5. These
probabilities (which were never shown to participants) dif-
fered across experiments, as summarized in Table 1. The
probabilities were chosen to cover a relatively diverse range
and thus enhance the generality of our results.

Each participant played two low-reward blocks and two
high-reward blocks. The button colors for each block were
randomly selected, and the assignment of probabilities to
buttons was counterbalanced across blocks. Participants
were told to treat each set of buttons as independent.

Models

We fit four different models to participants’ choice data:

1. Single learning rate. After choosing option ct ∈ {1, 2}
on trial t and observing reward rt ∈ {0, 1}, the value
(reward estimate) of the option is updated according to:

Vt+1(ct ) = Vt (ct ) + ηδt , (1)

where η ∈ [0, 1] is the learning rate and δt = rt −Vt (ct )

is the prediction error. This is the standard temporal
difference (TD) model (Daw, O’Doherty, Dayan, Sey-
mour, & Dolan, 2006; Sutton and Barto, 1998) with
a single fixed learning rate. For this and subsequent
models, all values are initialized to zero.

2. Dual learning rates. This model is identical to Model
1, except that it uses two different learning rates, η+ for
positive prediction errors (δt > 0) and η− for negative

Table 1 Design of experiments

Experiment Low reward blocks High reward blocks

1 0.2, 0.4 0.6, 0.8

2 0.1, 0.3 0.7, 0.9

3 0.1, 0.2 0.8, 0.9

4 0.2, 0.3 0.7, 0.8

The numbers in columns 2 and 3 represent the reward probabilities for
each action in a block
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prediction errors (δt < 0). As noted in the Introduction,
this model has been proposed by several authors (Daw,
Kakade, & Dayan, 2002; Frank, Moustafa, Haughey,
Curran, & Hutchison, 2007; Frank, Doll, Oas-Terpstra,
& Moreno, 2009; Niv, Edlund, Dayan, & O’Doherty,
2012).

3. Dual adaptive learning rates. Like Model 2, this
model has separate learning rates for positive and neg-
ative prediction errors, but these are adapted automat-
ically by a meta-learning algorithm rather than being
treated as fixed parameters. The meta-learning algo-
rithm adapts the learning rates according to:

η−
t+1 = η−

t + α(rt − η−
t ) (2)

η+
t+1 = η+

t + α(1 − rt − η+
t ) (3)

These updates are similar to the meta-learning algo-
rithm proposed by Cazé and van der Meer (2013),
which estimates the optimal learning rates. Intuitively,
these updates will cause η− to increase on high-reward
rate blocks and to decrease on low-reward rate blocks,
while the opposite pattern will obtain for η+. The initial
values η+

1 and η−
1 were fit as free parameters.

4. Extended dual adaptive learning rates. This model
extends Model 3 by allowing the meta-learning rate (α)
to vary across positive and negative prediction errors:

η−
t+1 = η−

t + α−(rt − η−
t ) (4)

η+
t+1 = η+

t + α+(1 − rt − η+
t ) (5)

where α− and α+ are the meta-learning rates for δ < 0
and δ > 0, respectively.1

5. Dual block-specific learning rates. This model also
has separate learning rates for positive and negative
prediction errors, but fits them separately for high-
(η+

high, η
−
high) and low (η+

low, η−
low-)reward blocks. Note

that participants are not explicitly told what block they
are in, so this model is descriptive rather than mech-
anistic; it is useful insofar as it allows us to test the
experimental predictions of Cazé and van der Meer
(2013) without making a commitment to a particular
meta-learning algorithm. For this reason, we do not
include Model 5 in the model comparisons reported
below, which are meant to identify a psychologically
plausible learning algorithm.

1We also fit a version of the dual adaptive learning rate model in which
the learning rates are updated according to the Pearce-Hall rule (Pearce
and Hall 1980). However, we found that this model fit the data poorly,
and for the sake of brevity we will not report these model fits.

All models use a logistic sigmoid transformation to
convert values to choice probabilities:

P(ct = 1) = 1

1 + e−β[Vt (1)−Vt (2)] , (6)

where β is a free parameter that governs the exploration–
exploitation trade-off. Previous work has shown that this
model of choice probability provides a good account of
choice variability (Daw, O’Doherty, Dayan, Seymour, &
Dolan, 2006).

Model fitting

Free parameters were estimated for each participant sepa-
rately using importance sampling (Robert and Casella,
2004). While maximizing likelihood is a more standard
parameter estimation technique in the reinforcement lear-
ning literature, maximum likelihood has two drawbacks for
our purposes. First, it tends to produce parameter estimates
with high variance across participants, a consequence of
the small amount of data we have per participant. Second,
it does not provide an estimate of the marginal likelihood
(model evidence), which balances fit against complexity,
and is a standard metric for model comparison (seeMacKay,
2003, for an overview). While one could use an approxi-
mation like the Bayesian Information Criterion (Schwarz,
1978), this approximation is known to over-penalize com-
plexity for small amounts of data. In contrast, impor-
tance sampling can produce an arbitrarily accurate estima-
tor of the marginal likelihood, provided we use enough
samples.

Letting θ denote the set of parameters, we drew sam-
ples {θ1, . . . , θM} from a prior distribution P(θ). We chose
M = 25000, which yielded stable parameter estimates.
Using these samples, the mean of the posterior distribution
over parameters is approximated by:

E[θ |D] ≈
∑M

m=1 P(D|θm)θm
∑M

m=1 P(D|θm)
, (7)

where D represents the choice and reward data for a sin-
gle participant and the likelihood is given by P(D|θ) =∏

t P (ct |θ). We assumed that P(θ) was uniform over
the parameter range (for β we restricted this range to
[0.001, 10], but our results are not sensitive to this choice).
In order to assess whether participants were choosing non-
randomly, we also fit a version of the model that allows β

to occupy the range [−10, 10]. Although having a negative
value of β is non-sensical from a computational point of
view (since it induces repulsion from high value choices),
this version of the model permits us to test whether β is
significantly greater than 0, indicating non-random choice
behavior.
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To compare models at the group level, we assumed that
the marginal likelihood of the data P(D) is a random effect
across participants, and submitted these marginal likeli-
hoods to the hierarchical Bayesian method described in
Stephan, Penny, Daunizeau, Moran, and Friston, (2009). In
brief, this method posits that each participant’s data were
drawn from one model (among the set of models consi-
dered); the probability distribution over models is itself a
random variable drawn from a Dirichlet distribution. After
estimating the parameters of this Dirichlet distribution, the
exceedance probability for each model (the probability that
a particular model is more likely than all the other models
considered) can be computed and used as a model compa-
rison metric. We used importance sampling to approximate
the marginal likelihood for a single participant:

P(D) =
∫

θ

P (D|θ)P (θ)dθ

≈ 1

M

M∑

m=1

P(D|θm). (8)

The marginal likelihood for the group is the product of
marginal likelihoods over participants. We computed this
group marginal likelihood separately for each model.

Results

The average proportion of correct responses in the last
ten trials of each block was 0.56 across all experiments,
significantly greater than chance [t (165) = 59.63, p <

0.0001], and significantly greater than the average propor-
tion of correct responses in the first ten trials of each block
[t (165) = 2.48, p < 0.05]. This low level of performance
reflects the difficulty of the task, which only gives partici-
pants 25 trials to distinguish probabilities that are separated
by 0.2 (Experiments 1 and 2) or 0.1 (Experiments 3 and 4).
To confirm that participants were treating the blocks as inde-
pendent, we correlated the performance metric measured on
neighboring blocks. After Fisher z-transforming these cor-
relations, we found that they were not significantly greater
than 0 across all experiments (p = 0.61).

Turning to model-based analyses of the data, we sought
to confirm that the class of models described above was
sufficiently rich to capture choice probabilities in our exper-
iments. Figure 1 shows empirical and predicted choice
probabilities for each model as a function of the value dif-
ference, V (1) − V (2). As these results demonstrate, all the
models do a good job capturing the choice probability curve
(we excluded Model 5 from this comparison, since it is
not a mechanistic model of the task, but the results look
similar). We next asked whether participants effectively
exploited their learned knowledge about the probabilities

(i.e., choosing non-randomly), by fitting a version of the
models that allows β to be less than 0 (see Methods). We
found that β was significantly greater than 0 [t (165) =
12.79, p < 0.0001]. Thus, participants appear to be choos-
ing non-randomly. All the following analyses use the model
variants, which restrict β to the range [0.001, 10].

We then addressed the central question of the paper:
do learning rates adapt to the distribution of reward? The
parameter estimates for Model 5 and exceedance probabi-
lities for Models 1-4 are shown in Fig. 2 (mean parameter
estimates for all models are displayed in Table 2). Across all
four experiments, a fairly consistent picture emerges from
the Model 5 parameter estimates: The learning rate for neg-
ative prediction errors (η−) is greater than the learning rate
for positive prediction errors (η+). We confirmed this obser-
vation statistically by running an ANOVA with reward rate
(high vs. low), prediction error type (positive vs. negative),
and experiment as factors (note that reward rate and pre-
diction error type here refer to descriptors of the learning
rate parameters). We found an effect of prediction error type
[F(1, 162) = 39.02, p < 0.0001], and an effect of reward
rate [F(1, 162) = 5.02, p < 0.05]. The effect of reward
rate was primarily driven by the results of Experiment 1;
when examined individually, only Experiment 1 showed a
significant effect of reward rate [F(1, 37) = 5.73, p <

0.05]. Importantly, we found no interaction between predic-
tion error type and reward rate (p = 0.12), disconfirming
the predictions of Cazé and van der Meer (2013). We also
found no effect of experiment (p = 0.94), indicating that
small variations in the reward probabilities do not exert a
significant effect on the learning rate asymmetry.

Our formal model comparison, using the method
described in Stephan, Penny, Daunizeau, Moran, and
Friston, (2009), showed generally strong support for a
model with fixed separate learning rates for positive and
negative prediction errors (Model 2). The only exception
was Experiment 3, where the exceedance probability for
Model 2 was relatively low. This appears to be a conse-
quence of the fact that no learning rate asymmetry was
found for the high-reward condition, as shown by an analy-
sis of the learning rates for Model 5 (p = 0.53). In this case,
the lack of a reliable learning rate asymmetry in Experi-
ment 3 favored the simpler Model 1 (which has one less free
parameter). Nonetheless, when the marginal likelihoods for
all experiments were pooled together, the exceedance prob-
ability for Model 2 was indistinguishable from 1. In no case
did we find appreciable support for Models 3 or 4, meta-
learning models similar to the one suggested by Cazé and
van der Meer (2013).

One issue in interpreting these results is that the meta-
learning models are more complex (i.e., have more param-
eters) than the other models, and hence they will be more
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Fig. 1 Choice probabilities. Each panel shows the average human and
model probabilities of choosing option 1, plotted as a function of the
value difference, V (1) − V (2). On each trial, we recorded whether
or not a participant chose option 1, along with the estimated value
difference on that trial for each model; the plotted choice probabili-
ties represent averages across trials. Data are combined across all four

experiments. Note that the data are the same in all four panels, but the
curves appear slightly different because they are binned based on the
model-based values (which differ across panels). Also note that value
differences can exceed the differences in reward probabilities because
the values are updated incrementally and hence can cover the entire
[0, 1] interval

strongly penalized by the model comparison metric. This
possibility is suggested by Fig. 1, where Models 3 and 4
appear to have a better fit to the choice probability data.
To address this issue, we fit a version of the meta-learning
models in which the learning rates are initialized to 0 and
updated before the value update, so that the initial value is
proportional to the first reward (in the case of the negative
learning rate), or proportional to 1 minus the first reward (in
the case of the positive learning rate). This eliminates two
free parameters from the models. Our model comparison
results were largely the same as shown in Fig. 2, indicating
that the lower model evidence for the meta-learning models
is not simply due to a complexity penalty.

It is possible that some participants were poorly fit by
Model 5, which could explain the absence of a learning rate
asymmetry. To address this possibility, we correlated the
evidence for Model 5 with the interaction effect computed
by the ANOVA. For all four experiments, we failed to find
a significant correlation (p > 0.49), indicating that partici-
pants who are better explained by the model do not show a
stronger learning rate asymmetry.

Another potential concern is that the experiments are
insufficiently powered to discover a learning rate asymme-
try should one exist. To address this concern, we performed
a simulation study. For each experiment and each model, we

generated simulated data from artificial agents with parame-
ters drawn from a normal distribution fitted to the empirical
parameter estimates.2 The data set was the same size as
the actual experiments (four blocks, 25 trials per block),
with the same number of participants. We then fit each
model to the simulated data and examined the exceedance
probabilities. Figure 3 (top) shows that the exceedance prob-
ability for the correct model (i.e., the one that generated
the data) was very close to 1 across all experiments. Thus,
our experimental design and model-fitting procedure can
recover the correct model with very high accuracy. We also
examined the accuracy with which parameters can be reco-
vered. As shown in Fig. 3 (bottom), the correlation between
the inferred and ground truth parameters always exceeded
0.84, and the median correlation was 0.95, demonstrating
that subtle variations in parameter values can be recovered
accurately. We conclude that the experiments are indeed
sufficiently powered to discover a learning rate asymmetry
should one exist.

2Largely the same results were obtained with parameters drawn ran-
domly from the prior (i.e., uniformly within the parameter bounds).
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Fig. 2 (Top) Posterior mean parameter estimates for Model 5 (dual block-specific learning rate model). Error-bars represent within-subject
standard errors of the mean. (Bottom) Exceedance probabilities for Models 1–4

Table 2 Parameter estimates
(mean across participants) for
all models

Experiment Model 1 Model 2 Model 3 Model 4 Model 5

1 β = 3.24 β = 4.03 β = 2.92 β = 2.95 β = 3.77
η = 0.47 η+ = 0.37 η+

1 = 0.41 η+
1 = 0.40 η+

low = 0.39
η− = 0.57 η−

1 = 0.49 η−
1 = 0.48 η−

low = 0.50
α = 0.3 α+ = 0.28 η+

high = 0.45

α− = 0.42 η−
high = 0.58

2 β = 2.82 β = 3.08 β = 2.08 β = 1.91 β = 2.61
η = 0.40 η+ = 0.37 η+

1 = 0.43 η+
1 = 0.44 η+

low = 0.42
η− = 0.50 η−

1 = 0.48 η−
1 = 0.49 η−

low = 0.49
α = 0.37 α+ = 0.39 η+

high = 0.43

α− = 0.44 η−
high = 0.5

3 β = 4.32 β = 4.41 β = 3.45 β = 3.46 β = 4.27
η = 0.43 η+ = 0.42 η+

1 = 0.42 η+
1 = 0.41 η+

low = 0.42
η− = 0.47 η−

1 = 0.47 η−
1 = 0.49 η−

low = 0.50
α = 0.31 α+ = 0.34 η+

high = 0.47

α− = 0.42 η−
high = 0.49

4 β = 3.04 β = 3.66 β = 2.49 β = 2.49 β = 3.18
η = 0.43 η+ = 0.35 η+

1 = 0.41 η+
1 = 0.40 η+

low = 0.37
η− = 0.55 η−

1 = 0.50 η−
1 = 0.49 η−

low = 0.56
α = 0.34 α+ = 0.34 η+

high = 0.45

α− = 0.47 η−
high = 0.52
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Fig. 3 For each experiment, simulated data generated by one model
were fit by all the models. (Top) Exceedance probabilities for each
model combination. The rows correspond to the ground truth model,
and the columns correspond to the model used to fit the data.
White indicates an exceedance probability of 0; black indicates an

exceedance probability of 1. In all cases, the exceedance probability
of the correct (data-generating) model was indistinguishable from 1.
(Bottom) Correlation between the ground truth and inferred parameters
for each model

Discussion

The results of four experiments provide evidence for rein-
forcement learning models with separate learning rates
for positive and negative prediction errors (Christakou
et al., 2013; Frank, Seeberger, & O’Reilly, 2004; Frank,
Moustafa, Haughey, Curran, & Hutchison, 2007; Frank,
Doll, Oas-Terpstra, & Moreno, 2009; Niv, Edlund, Dayan,
& O’Doherty, 2012; Waltz, Frank, Robinson, & Gold, 2007.
In particular, the negative learning rate was generally higher
than the positive learning rate, consistent with the results
of Niv, Edlund, Dayan, and O’Doherty, (2012). This may
reflect risk aversion: a higher negative learning rate drives
choices away from risky options (Mihatsch & Neuneier,
2002).

The results failed to support a recent normative model
proposed by Cazé and van der Meer (2013), according to
which the learning rate asymmetry should adapt to the dis-
tribution of rewards. Instead, we found that the learning
rate asymmetry is mostly stable over a variety of different
reward distributions. Because we have only studied choices
between two options with binary gains, more research will
be required to evaluate the generality of our conclusions.

Beyond learning rate asymmetries, recent research on
reinforcement learning has lead to a plethora of other ideas
about learning rates, include dynamic volatility-sensitive
adjustment (Behrens, Woolrich, Walton, & Rushworth,
2007), selective attention (Dayan, Kakade, & Montague,
2000), multiple timescales (Bromberg-Martin, Matsumoto,
Nakahara, & Hikosaka, 2010), and neuromodulatory control
(Doya, 2002). Some of these ideas have deep roots in asso-
ciative learning theory (e.g., Mackintosh, 1975; Pearce and
Hall, 1980). Theorists are now faced with the challenge of
formalizing how these disparate ideas fit together. Toward
this end, it is crucial to ascertain which theoretical pre-
dictions are robust across experimental manipulations. The
contribution of the present study is to sharpen our empirical
understanding of the factors governing learning rates, and to
show how this can aid in whittling down the complex tangle
of assumptions underpinning contemporary reinforcement
learning theory.
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