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Abstract
Learning in humans and animals is accompanied by a penumbra: Learning one task benefits
from learning an unrelated task shortly before or after. At the cellular level, the penumbra of
learning appears when weak potentiation of one synapse is amplified by strong potentiation of
another synapse on the same neuron during a critical time window. Weak potentiation sets a
molecular tag that enables the synapse to capture plasticity-related proteins synthesized in
response to strong potentiation at another synapse. This paper describes a computational
model which formalizes synaptic tagging and capture in terms of statistical learning mech-
anisms. According to this model, synaptic strength encodes a probabilistic inference about
the dynamically changing association between pre- and post-synaptic firing rates. The rate of
change is itself inferred, coupling together different synapses on the same neuron. When the
inputs to one synapse change rapidly, the inferred rate of change increases, amplifying
learning at other synapses.
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The individual synapse has long served as a microcosm for studying the cellular

basis of memory formation. In particular, memory formation is commonly believed

to rely on long-term potentiation (LTP), the sustained increase in synaptic strength

induced by repeated high-frequency stimulation of a neuron (Martin et al., 2000).

However, research over the last two decades has demonstrated that memory

formation at one synapse can depend strongly on what happens at other synapses.
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Frey and Morris, (1997) showed that weak tetanic stimulation of a set of synapses,

or strong stimulation in the presence of a protein-synthesis inhibitor, induces an

early-phase of LTP (E-LTP) which decays over the course of hours, but can be

transformed into sustained, late-phase LTP (L-LTP) if preceded by strong

stimulation of an independent set of synapses in the same population of neurons

(Figure 1A). Capture of plasticity-related proteins by a weakly stimulated synapse

can also occur if strong stimulation of another synapse occurs after the weak

stimulation (Frey and Morris, 1998). These discoveries have lead to the synaptic

tagging and capture hypothesis (Martin and Kosik, 2002; Redondo and Morris,

2011), according to which stimulation sets a synaptic tag that enables the synapse to

capture plasticity-related proteins synthesized at another synapse.

Synaptic tagging and capture provides a mechanism by which learning at one

synapse casts a penumbra over other synapses, facilitating learning. This penumbra

is accompanied by a behavioral correlate: Learning one task is enhanced by learning

an unrelated task shortly before or after, an observation replicated across several

different paradigms and species (Moncada and Viola, 2007; Merhav and

Rosenblum, 2008; Wang et al., 2010; Duncan et al., 2012). For example, learning

in a variety of tasks (spatial object recognition, contextual fear conditioning,

conditioned taste aversion) can be enhanced by allowing animals to explore a novel

spatial environment before or after training (Ballarini et al., 2009).

This paper presents a computational theory of synaptic tagging and capture,

formalizing its role in a statistical learning system. The central idea is that each

synapse estimates a time-varying association between the firing rates of pre- and

Figure 1. Model schematic. (A) Experimental setup: a neuron is tetanized at two different
synaptic sites. The strong pathway (red) is subjected to repeated trains of high-frequency
stimulation, while the weak pathway (blue) is subjected to a single train. (B) Graphical model
showing two time slices of the generative process. The model consists of multiple synapses,
all of which share the same diffusion variance q. Observed variables are indicated by a black
border. (C) The transition function f(w) of synaptic strength as a function of the current
strength w. (A color version of this figure is available in the online edition of this article.)
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post-synaptic neurons. The rate at which the association changes over time is itself

unknown and must be inferred. When change is inferred to be faster, the learning

rate is increased. Importantly, the rate of change is shared across multiple synapses

at a single neuron, thereby coupling the synapses together within a penumbra of

learning: A change in one association is evidence for change in all the associations

(although not necessarily in the same direction). The availability of plasticity-related

proteins, on this view, signals the inferred rate of change, with the diffusion

of proteins between synapses propagating this inference across the probabilistic

model.

Methods

Generative model

We begin by describing a probabilistic generative model of the random variables

represented by a neural population, schematized in Figure 1B. For simplicity,

we will consider two real-valued random variables (x and y), but the full theory

deals with multiple pairs of random variables. The random variables are

represented by the firing rates of two synaptically connected neurons, with xt

denoting the firing rate of the pre-synaptic neuron at time t, and yt denoting

the firing rate of the post-synaptic neuron. The relationship between xt and yt is

governed by a time-varying association wt. When wt > 0, pre-synaptic firing tends

to evoke post-synaptic firing, and when wt < 0, pre-synaptic firing tends to suppress

post-synaptic firing.

Two processes govern the evolution of wt over time. The first is a decay towards

0 specified by a transition function f(w), shown in Figure 1C. The transition

function expresses a strength-dependent decay, such that stronger associations

decay less than weak associations. In other words, this amounts to the assumption

that strong relationships between variables tend to persist, while weak relationships

tend to dissipate quickly. From a neurobiological perspective, this transition

function induces a form of cellular consolidation (McGaugh, 2000): If a synaptic

weight is sufficiently strong, it will persist almost indefinitely (i.e., it will be

consolidated), whereas a weak synaptic weight will decay back to baseline.

The second process governing the evolution of wt over time is a Gaussian

diffusion process determined by the diffusion variance q. Larger values of q produce

faster rates of change. Crucially, we assume that the diffusion variance is unknown,

and that when there are multiple synapses on the same post-synaptic neuron, the

diffusion variance is shared across all of them. This means that synapses are coupled

not in terms of their specific associations, but rather in terms of the rate at which the

associations change. As a consequence, observing a change in one synapse provides

information that other synapses have changed as well (but possibly in a different

direction).

Formally, the assumptions described above are implemented by the following

stochastic dynamics:

wt ¼ f ðwt�1Þ þ �w ð1Þ

yt ¼ wtxt þ �y, ð2Þ
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where w0¼ 0, "w�N (0,q), and "y�N (0,r). The parameter q > 0 determines the rate

of change, and r > 0 determines the observation noise. We used r¼ 0.1 for all our

simulations.

The transition function f(w) determines the rate at which wt decays back to 0 over

time. As discussed above, we want a transition function that decays asymptotically

to 0, but with slower decay for stronger associations. The following functional form

satisfies these desiderata:

f ðwÞ ¼ w

1þ expf��w2g , ð3Þ

where �� 0 is a parameter that governs the nonlinear relationship between w and

the decay rate; in particular, smaller absolute values of w decay more rapidly than

larger values. This function is shown in Figure 1C. We used �¼ 10 for all our

simulations unless otherwise mentioned. The precise form of the transition function

is not important, only that it exhibits strength-dependent decay.1

We approximate the distribution over the diffusion variance q with a discrete set

of points, fq1, . . . , qK}. Specifically, the diffusion variance is drawn according

to P(q¼ qk) / expfak�b} where a and b are constants and qk ranges over K equally

spaced values between 0.1 and 1 (note that the k superscript is an index, not

a power). This distribution embodies the assumption that a slow rate of change is

a priori more probable. For all our simulations, we used K¼ 50, a¼ 8 and b¼ 5,

but the results are not sensitive to small variations in these values. Further

explorations of the parameter space can be found in Appendix B.

It is important to note that the generative model described here is not

a description of the learning dynamics (which we describe in the next section).

Although wt evolves over time independently of xt and yt, the synaptic estimate of wt

is not independent of xt and yt. This is because the estimate of wt is formulated

in terms of the conditional distribution P(wtjxt, yt).

Synaptic plasticity as statistical inference

Given the generative model described in the previous section, the computational

problem is to infer both the associative weight w and the diffusion variance q after

observing data (x1:t, y1:t). The optimal statistical inference is stipulated by Bayes’

rule:

Pðwt, qjx1:t, y1:tÞ / Pð ytjwt, xtÞPðqÞPðwtjx1:t�1, y1:t�1, qÞ, ð4Þ

where x1:t and y1:t are the pre- and post-synaptic (respectively) histories from time 1

to t. When there are multiple synapses, the likelihood becomes a product over

the different synapses: P(ytjxt, wt)¼
Q

d P(ytdjxtd, wtd), where d indexes synapses. For

ease of exposition, we present the posterior computations for a single synapse.

The posterior distribution admits a simple approximation scheme. We first

describe the exact Bayesian update equations when q is known—i.e., the

computation of P(wtjx1:t, y1:t, q). If f(w) were linear, then Bayes’ rule could be

implemented by the Kalman filtering equations (Kalman, 1960). However, the

nonlinearity in f(w) forces us to make an approximation; we follow the standard

practice in engineering and use the extended Kalman filter (Anderson and Moore,

1979), which linearizes around the previous estimate, yielding recursive
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updates for the parameters (mean and variance) of a Gaussian posterior over

the weights (see Appendix A for more details). We denote this posterior by

P(wtjx1:t, y1:t, q)¼N (wt;ŵt, vt), with mean and variance defined as follows:

Posterior mean: ŵt ¼ f ðŵt�1Þ þ �txtð yt � ŵt�1xtÞ ð5Þ

Posterior variance: vt ¼ ð1� �tx
2
t Þ�2

t ð6Þ

where �2
t ¼ f 0ðŵt�1Þ½ �2vt�1 þ q is the predictive variance after weight decay f(ŵt�1)

but before observing (xt, yt):

Pðwtjx1:t�1, y1:t�1, qÞ ¼ N ðwt; f ðŵt�1Þ, �2
t Þ: ð7Þ

The derivative of the transition function with respect to the weight, f 0(w), is given

in Appendix A. When �2
t is high, there is greater uncertainty about the associative

strength, and therefore observing new data (xt, yt) will have a greater impact on the

weight posterior.

The learning rate �t is given by �t ¼ �2
t =�t, where �t ¼ x2

t �
2
t þ r is the variance

of the posterior marginal likelihood:

Pð ytjx1:t�1, y1:t�1, qÞ ¼
Z

wt

Pð ytjxt, wtÞPðwtjx1:t�1, y1:t�1, qÞdwt

¼ Nð yt; ŵt�1xt,�tÞ: ð8Þ

Intuitively, �t expresses the overall unpredictability (or noisiness) of the data; this

unpredictability grows monotonically with the noise variance. The expression

for the learning rate given above indicates that learning will be faster to the extent

that the weight uncertainty is high (large �2
t ) relative to the overall unpredictability

(low �t).

The learning rule for synaptic strength can be viewed as a form of predictive

Hebbian learning (Montague and Sejnowski, 1994) in which the pre-synaptic

neuron is associated with the prediction error yt� ŵt�1xt. Intuitively, ŵt�1xt

represents a prediction of the post-synaptic firing rate, and the synaptic strength

is increased when the post-synaptic firing rate is greater than expected, or

decreased when less than expected. Another way to look at this learning rule is

as a Hebbian rule with a sliding plasticity threshold ŵt�1xt, similar to the

Bienenstock-Cooper-Munro (BCM) theory (Bienenstock et al., 1982). According

to BCM theory, the plasticity threshold increases monotonically with the

previous activity of the post-synaptic cell; according to the theory presented here,

the plasticity threshold increases monotonically with the predicted post-synaptic

activity.

This learning rule has a number of neurobiologically plausible properties:

(1) As mentioned above, the transition function induces a form of cellular

consolidation (McGaugh, 2000), whereby sufficiently strong synapses become

resistant to decay; (2) synapses are metaplastic (Abraham, 2008), with a plasticity

threshold that adjusts dynamically based on the state of the synapse; (3) the learning

rate adjusts in response to environmental volatility, as observed behaviorally

and neurally (Behrens et al., 2007; Roesch et al., 2010). In particular, the learning

rate �t will increase when the uncertainty due to weight diffusion (expressed by �2
t )

is high relative to the overall noisiness of the data (expressed by �t).
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Inferring the diffusion variance

With q unknown, the posterior marginal over wt is a mixture of Gaussians:

Pðwtjx1:t, y1:t, qÞ ¼
XK
k¼1

Pðq ¼ qkjx1:t, y1:tÞPðwtjx1:t, y1:t, q ¼ qkÞ

¼
XK
k¼1

Pðq ¼ qkjx1:t, y1:tÞN ðwt; ŵk
t , vk

t Þ: ð9Þ

where we have indexed ŵ and v by k to indicate their implicit dependence on q¼ qk.

To obtain P(q¼ qkjx1:t, y1:t), we apply the update equations 5 and 6 for each qk

in parallel, and use Bayes’ rule to compute the posterior over q:

Pðq ¼ qkjx1:t, y1:tÞ / Pðq ¼ qkÞPðy1:tjx1:t, qÞ

¼ Pðq ¼ qkÞ
Yt

�¼1

Nð y� ; ŵk
��1x� ,�

k
� Þ, ð10Þ

where the second line was obtained by plugging in Eq. 8.

We can think of this model as positing for each synapse a set of K ‘‘micro-

weights’’ that vary in their learning rates (�t monotonically increases with qk). This is

similar to the idea that neurons have a ‘‘reservoir’’ of time constants (La Camera

et al., 2006; Bernacchia et al., 2011; Shankar and Howard, 2012); in our theory,

each neuron undergoes plasticity over a range of temporal scales, and the

contribution of scale k depends on the posterior probability P(q¼ qkjx1:t, y1:t).

When one synapse changes its micro-weights, the posterior over q (which is shared

across synapses) shifts its mass onto higher values. In this way, information about

the diffusion variance is propagated across synapses.

There are two important aspects of this architecture that are worth highlighting.

First, the change in q does not depend on the direction of the weight change: Both

increases and decreases shift the posterior towards higher values of q. Second, shifts

in the posterior over q affect not only subsequent learning but also previous learning,

such that weak synapses can be retroactively strengthened. Both of these aspects

have interesting empirical implications, as we explore in the next section.

We propose that the availability of plasticity-related proteins at time t is

proportional to the mean of q under the posterior P(qjx1:t, y1:t). The logic of this

proposal is that L-LTP (which depends on plasticity-related proteins) should occur

only when change is likely (i.e., q is high). If change is unlikely, a perturbation of the

firing rates should be treated as noise and no learning should occur. Since the

diffusion variance is treated as a global variable, different synapses can influence

each other through their affect on the posterior over q. Protein capture, on this view,

is the mechanism by which synapses share information about environmental change,

modulating the learning rate at other synapses.

Although any change in the inferred diffusion variance should in principle

influence other synapses, there are a number of situations in which this will have

no discernible effect. First, there must be some stimulation of a synapse in order

for that synapse to be affected by changes in the inferred diffusion variance.

These changes modulate the learning rate, but if nothing has been learned at all

then such modulation will have no effect. Second, strong stimulation of a
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synapse will increase the inferred diffusion variance, but this change will have

little impact on the inferred synaptic weight, since a sufficiently strong synapse

(e.g., after a standard LTP protocol) will achieve L-LTP regardless of the learning

rate.

Results

Illustrations

We begin by illustrating the behavior of the model on random draws from

the generative process described above (Figure 2). Two different settings of the

diffusion variance q were explored: fast diffusion (q¼ 0.4) and slow diffusion

(q¼ 0.05). The presynaptic firing rates xt were drawn independently from a zero-

mean Gaussian with a variance of 3. These random draws provide a sense of what

kind of data would be generated under the statistical assumptions the model makes

about the environment.

Figure 2 also shows that the model is able to track the weights over time and that

posterior mean of q converges to the true diffusion variance (although convergence

is slower when the environment changes more quickly). It is important to note that

the model converges to the correct answer even when the true diffusion variance

is much higher than the mean of the prior P(q); thus, the prior provides a transient

bias that dissipates as more data are observed.
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Figure 2. Illustration of the model. The top row (A, B) shows simulations with q¼ 0.4 and the
bottom row (C, D) shows simulations with q¼ 0.05. The left panels show two random weight
trajectories drawn from the generative process (solid line) along with the posterior mean
estimator (dashed line). The right panels show the posterior mean diffusion variance; ground
truth is indicated by a dashed horizontal line. (A color version of this figure is available in the
online edition of this article.)
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One advantage of our model, relative to a model which assumes fixed q, is that

it can flexibly adapt to the appropriate timescale of neuronal events. This adaptation

is facilitated by sharing of information between neurons in the form of plasticity-

related proteins; as described above, the model postulates that the level of plasticity-

related proteins represents an inference about the diffusion variance. We can

quantify the advantage of this sharing by formulating a learning task and then

measuring how performance changes as a function of population size. We drew

random data (associative strength and neuronal firing rates) from the generative

model described above for populations varying in size from 2 neurons to 20 neurons

and with different settings of the diffusion variance. We then applied the synaptic

update equations to estimate the associative strength and diffusion variance.

For each random draw we computed the ‘‘prediction error’’ between the actual

post-synaptic firing rate yt and the predicted post-synaptic firing rate xtŵt�1 using

the associative strength estimate. Performance was measured by the mean squared

prediction error (lower squared error indicates better performance). We compared

our model to a version with the same parameters, except the diffusion variance was

fixed to 0.2 rather than inferred.

The results, shown in Figure 3, reveal that the fixed variance model always

performs better than the inferred variance model when the actual variance is in the

vicinity of the fixed variance (Figure 3A). However, this vicinity is relatively small,

and importantly it shrinks as the population size grows (Figure 3B). This shrinking

is the result of sharing information about the diffusion variance across neurons,

allowing the population to efficiently home in on the true diffusion variance.

Overall, the advantage of the inferred variance model increases with the number

of neurons (Figure 3C).

Simulations of synaptic tagging and capture

In the simulations reported here, the post-synaptic neuron’s firing rate is clamped

at yt¼ 1, while the pre-synaptic neuron’s firing rate varies between� 1 (below

baseline) andþ 1 (above baseline). Strong stimulation is modeled as 3 pulses

of xt¼ 1, and weak stimulation is modeled as a single pulse.

Simulations of the classic synaptic tagging paradigm are shown in Figure 4 (left),

along with the posterior mean diffusion variance (right). Weak stimulation produces

a transient potentiation of the synapse (E-LTP) which decays back to baseline

(Figure 4A). The transience of potentiation occurs due to the non-linear nature of

the decay function: Weak weights decay much faster than strong weights. Because

weak stimulation produces a weak synaptic strength, the synapse decays rapidly.

Another consequence of weak stimulation is that the inferred diffusion variance

is low (Figure 4B). This occurs because a weakly potentiated synapse has highest

likelihood under the hypothesis that the environment is changing slowly. The low

value of the inferred diffusion variance mirrors the low level of plasticity-related

proteins observed cellularly in this paradigm.

Strong stimulation at another synapse can rescue E-LTP if applied shortly after

(Figure 4C,D) or before the weak stimulation (Figure 4E,F). Strong stimulation

provides evidence that the environment is changing more quickly. As a

consequence, the contribution of the ‘‘fast’’ weights (those associated with higher
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values of q) is amplified by the posterior P(qjx1:t, y1:t). Also notice that the inferred

diffusion variance only increases substantially once both pathways are stimulated.

This occurs because the data must overcome a prior that is biased towards a low

diffusion variance.

To demonstrate the importance of inferring q, we ran the same simulations with q

fixed to 0.2 (Figure 5). This resulted in all stimulation protocols (both weak and

strong) producing L-LTP, contrary to the empirical observations described above.

Following the seminal work of (Frey and Morris, 1997), and parallel

investigations in the invertebrate sea slug Aplysia (Martin et al., 1997), subsequent

studies have revealed several other properties of synaptic tagging and capture.

We address each in turn.
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Figure 3. Performance of the model. Prediction error as a function of true diffusion variance
with 2 synapses (A) and 20 synapses (B), shown for the full model in which the diffusion
variance is inferred, as well as with the diffusion variance fixed to 0.2 (indicated by the dashed
vertical line). Results are averaged across 1000 random draws from the generative model.
(C) Average error across all values of the true diffusion variance, shown as a function of the
number of synapses. (A color version of this figure is available in the online edition of this
article.)
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Cross-capture. Repeated low-frequency stimulation induces a sustained weakening

of synaptic strength known as long-term depression (LTD). Synaptic tagging and

capture can also be observed in the LTD protocol, although the molecular tags for

LTP and LTD may be different (Sajikumar et al., 2007). Capture, on the other

hand, does not distinguish between potentiation and depression: E-LTD can be

transformed into L-LTD by LTP at another synapse, and vice versa (Sajikumar and

Frey, 2004b). As shown in Figure 6, weak low-frequency stimulation (modeled as

xt¼� 1) induces E-LTD, which can then be rescued by strong high-frequency

stimulation at another synapse. This reflects the fact that the inferred diffusion

variance increases for both above-baseline and below-baseline perturbations. In

other words, both LTD and LTP provide evidence that the environment is

changing, leading to a higher value of q and hence amplification of weakly

potentiated synapses.

Tag resetting. Low-frequency stimulation shortly following E-LTP induction at the

same synapse resets the tag, preventing subsequent capture (Sajikumar and Frey,

2004a). Figure 7A shows simulations of this paradigm. Despite the inferred

diffusion variance increasing (Figure 7B), the low-frequency stimulation causes the
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Figure 4. Tagging and capture. Each plot on the left shows the evolution of the posterior
mean estimator of synaptic strength (Eq. 5) over time as a function of transient high-
frequency stimulation, indicated by filled circles along the abscissa. ‘‘Weak’’ stimulation
refers to a single stimulus train (i.e., a single circle), whereas ‘‘strong’’ stimulation
refers to three trains. Each plot on the right shows the mean of the posterior over diffusion
variance, q. (A,B) Weak stimulation results in E-LTP, a transient increase in synaptic
strength that then decays back to baseline. E-LTP can be transformed into L-LTP if followed
(C,D) or preceded (E,F) by strong stimulation at another synapse. (A color version of this
figure is available in the online edition of this article.)
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Figure 5. Tagging and capture with fixed diffusion variance. Plots are in the same format as
Figure 2, with the left plots showing the posterior mean estimator of synaptic strength (Eq. 5)
and the right plots showing the posterior mean diffusion variance. Here the diffusion variance
q is fixed to 0.2 rather than inferred by the model. The result is that all stimulation protocols
produce L-LTP, contrary to empirical observations. (A color version of this figure is available
in the online edition of this article.)
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Figure 6. Cross-capture. Each plot shows the posterior mean estimator of synaptic strength.
(A) Weak low-frequency stimulation (unfilled circles) induces E-LTD that decays back
to baseline (dashed line). (B) E-LTD can be transformed to L-LTD if followed by strong
high-frequency stimulation (filled circles) of another synapse. (A color version of this figure is
available in the online edition of this article.)
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synaptic strength to drop below baseline, and increasing the diffusion variance

following strong stimulation pushes the synapse even further below baseline.

Protein-synthesis inhibitors. We next examined the effects of protein-synthesis

inhibition, which we modeled by resetting the posterior over q back to the

prior (thereby inducing a belief that change is unlikely). This fits with our

characterization of plasticity-related protein levels as signaling the inferred diffusion

variance. When applied to the weakly stimulated pathway just before stimulation,

protein synthesis inhibition has no effect (Figure 8A), consistent with experimental

findings (Frey and Morris, 1997). This happens because at this time point

the inferred diffusion variance is already low; protein-synthesis inhibition (since it is

transient) does not affect the increase in diffusion variance following strong

stimulation, which comes later. However, when applied prior to strong stimulation,

protein-synthesis inhibition prevents the transformation of E-LTP to L-LTP

(Figure 8B), due to the fact that the inferred diffusion variance is reduced by

the resetting of the posterior, consistent with experimental findings (Frey and

Morris, 1997).

Memory maintenance. A number of experiments have suggested that the main-

tenance of LTP depends on the activity of an autonomously active isoform of protein

kinase C, known as PKMz (Sacktor, 2010). One computational interpretation of this

molecule is that it maintains LTP by regulating the decay rate, controlled by the

parameter � (see Eq. 3). We modeled PKMz inhibitors by transiently decreasing �
from 10 to 0.1, which has the effect of making memories decay faster. (Sajikumar

et al., 2005) found that while E-LTP was preserved under PKMz inhibition following

weak stimulation, L-LTP was abolished despite prior strong stimulation at another

synapse, a finding reproduced in our simulations (Figure 9). This occurs because low

values of � cause even strong synapses to decay back to zero.
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Figure 7. Tag resetting. (A) If low-frequency stimulation (unfilled circles) is applied following
induction of E-LTP, the posterior mean synaptic strength falls below baseline. (B) Evolution
of the posterior mean diffusion variance. (A color version of this figure is available in the
online edition of this article.)
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New predictions

The model presented in this paper makes a number of new, untested predictions.

First, the availability of plasticity-related proteins should be correlated not with

novelty per se but with inferred environmental volatility—i.e., the rate of change.
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Figure 8. Effects of protein-synthesis inhibitors. Each plot shows the posterior mean
estimator of synaptic strength. Protein synthesis inhibition was modeled by resetting the
posterior to the prior. (A) The transformation of E-LTP to L-LTP is insensitive to protein-
synthesis inhibition at the time of weak stimulation. (B) Protein-synthesis inhibition at the
time of strong stimulation prevents the transformation of E-LTP to L-LTP. (A color version
of this figure is available in the online edition of this article.)
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Figure 9. Memory maintenance. Application of a PKMz inhibitor (modeled as decreasing �)
following weak stimulation prevents the transformation of E-LTP to L-LTP. (A color version
of this figure is available in the online edition of this article.)

Penumbra of learning 109

N
et

w
or

k 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
M

IT
 L

ib
ra

ri
es

 o
n 

08
/2

7/
14

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



If the environment is very noisy but slowly changing, then protein availability

should fluctuate around zero and learning should remain low. Figure 10A shows

a simulation of this hypothetical experiment, using the weak-before-strong protocol.

We set r¼ 0.3 (three times the level used in the simulations reported above) to

simulate a noisy environment. The simulation shows that LTP is reduced following

both strong and weak stimulation, and no rescuing of E-LTP is observed following

strong stimulation.

A similar outcome should occur if the noise level is low but the prior over q

is strongly biased towards slow rates of change. This predicts that pre-exposing

animals to an unchanging context should reduce subsequent sensitivity to

synaptic tagging and capture protocols. We simulated this by setting the parameters

of the prior over q to more strongly favor small values of q (and hence slower rates

of change); specifically, we set a¼ 15 and b¼ 5. This produced weakened LTP and

no rescuing of early LTP following strong stimulation (Figure 10B).

Discussion

The model developed in this paper rationalizes the penumbra of learning as a

consequence of optimal statistical learning. In the process, we have shed new light

on the putative cellular underpinning of the penumbra, synaptic tagging and

capture. Simulations demonstrated that the model reproduces main properties of

synaptic tagging and capture, including tag resetting, cross-capture and the effects

of protein-synthesis inhibitors.

Several other computational theories have been developed to account for

synaptic tagging and capture (Clopath et al., 2008; Barrett et al., 2009; Päpper

et al., 2011). The existing theories share in common the idea that a synapse

can be in one of several abstract states, representing different phases of LTP

(Smolen et al., 2012). Transitions between these states determine the dynamics
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Figure 10. New predictions. Synaptic tagging and capture is reduced in a noisy (A) or slowly
changing (B) environment. (A color version of this figure is available in the online edition of
this article.)
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of synaptic tagging and capture. Computational investigations suggest that

tagging and capture functions to prolong memory lifetimes, and may also aid in

learning associations between experiences and distal rewards (Päpper et al., 2011).

In contrast to these essentially descriptive models, our point of departure is a

normative characterization of the learning problem: Starting from a probabilistic

description of the environment, we derive the optimal synaptic learning rules

(Fiser et al., 2010).

The idea that learning rates are modulated by the inferred rate of change is

central to many theories of learning (Pearce and Hall, 1980; Dayan et al., 2000;

Courville et al., 2006; Behrens et al., 2007; Kording et al., 2007; Wilson et al.,

2010) and is supported by abundant behavioral and neural data (Roesch et al.,

2012). These theories typically consider only a single association. However, synaptic

tagging and capture indicates that learning rates are also modulated by the inferred

global rate of change (i.e., across associations). According to the model developed

here, the functional role of synaptic tagging and capture is to compute the inferred

global rate of change (operationalized here as the diffusion variance) and propagate

this signal across synapses.

While our simulations focused on phenomena studied with in vitro slice

preparations, we believe that the penumbra of learning serves a more general

function. Whenever there is uncertainty about the global rate of change, one should

see the effect of change in one task on the learning rate in another task. For example,

(Nassar et al., 2012), using a number prediction task, observed that a surprising

(but task-irrelevant) change in an auditory cue accelerated learning. There is

some evidence that a surprising word in a sequentially-presented list can improve

verbal memory for words in neighboring serial positions (Wallace, 1965). Thus, the

penumbra of learning appears to be a general phenomenon.

There are a number of limitations of the theory as it currently stands.

(1) It seems implausible that all synapses are parameterized by the same

diffusion variance. A more sophisticated approach would be a hierarchical

model in which each synapse is parameterized by a unique diffusion variance

drawn from a higher-level distribution; in this way, the synapses can still

share statistical strength, but can also diverge from one another.

(2) There is evidence suggesting that low-frequency stimulation of one synapse

can reset the tag on another synapse (Young and Nguyen, 2005); this finding

poses a challenge to the theory, which only accounts for homosynaptic tag

resetting.

(3) We have not explicitly modeled the critical time window in which tagging

and capture are effective (Frey and Morris, 1997); we have instead implicitly

assumed in our simulations that events occurred within this time window.

In fact, the results are relatively insensitive to the interval between the two

stimulations. A more complete theory should explicitly incorporate the time

window into the generative model (e.g., by having the diffusion variance

decay back to zero).

(4) (Fonseca et al., 2004) have shown that when the level of plasticity-related

proteins in a cell is low, synapses compete with one another such that L-LTP

at one synapse comes at the expense of L-LTP at another synapse.

This finding does not seem to fit with our purely statistical characterization

of synaptic tagging and capture.
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(5) The theory assumes that synaptic weights decay to zero, but empirically

decay asymptotes at pre-stimulation levels.2 One way to accommodate

this observation is to add a neuron-specific baseline constant to the weight

dynamics, such that each weight will eventually decay back to its baseline.

This baseline could itself be learned through statistical inference by defining

the input to be x0t ¼ ½xt, 1� and w0t ¼ ½wt, w0�, where w0 is the baseline

constant, and the output to be yt¼wtxtþw0 (i.e., the inner product of w0t and

x0t). The Kalman filtering equations can be applied to the augmented weight

vector, thereby adapting the baseline over time.

Many molecules participate in synaptic tagging and capture; the theory described

in this paper has not yet assigned computational roles to most of these. Of special

relevance is the role of dopamine, a neuromodulator that is known to be necessary

for producing the penumbra of learning in behavioral tagging experiments

(Moncada and Viola, 2007; Wang et al., 2010). Activation of D1/D5 dopamine

receptors in hippocampal neurons stimulates local protein synthesis (Smith et al.,

2005), suggesting that dopamine might underlie diffusion variance estimation in our

theory. This view resonates with recent ideas about dopamine function, particularly

its role as an alerting signal for salient or novel sensory events (Bromberg-Martin

et al., 2010), and may point towards a deeper computational synthesis of

dopamine’s multifaceted role in learning.
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Notes

[1] The weight dynamics in their current form violate Dale’s Law (Eccles, 1964), which

in its abstract form states that a synapse can only be either excitatory or inhibitory.

If we wish to make the dynamics more biologically plausible, we could introduce

a rectification that prevents the weight from changing sign. This modification is not

explored here.

[2] We thank an anonymous reviewer for pointing this out.
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Appendix A: The extended Kalman filter

When conditioned on the diffusion variance q, the posterior distribution over the

synaptic weight wt is given by:

Pðwtjx1:t, y1:t, qÞ / Pð ytjwt, xtÞPðwtjx1:t�1, y1:t�1, qÞ
¼ N ð yt; wtx, rÞN ðwt; f ðŵt�1Þ, qÞ: ð11Þ

This expression follows directly from the definition of the generative model

(equations 1 and 2). The extended Kalman filter approximates the transition

function with a first-order Taylor series expansion around the previous weight

estimate, ŵt�1:
f ðwt�1Þ � f ðŵt�1Þ þ f 0ðŵt�1Þðw� ŵt�1Þ, ð12Þ

where f 0(ŵt�1) is the first derivative of f(wt�1) with respect to ŵt�1:

f 0ðŵt�1Þ ¼ f ðŵt�1Þ 2�ŵt�1ð1� f ðŵt�1ÞÞ þ 1½ �: ð13Þ

The Taylor series expansion approximates the transition function as a linear

function of the previous weight estimate. This yields a linear-Gaussian dynamical
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system:

wt ¼ f ðŵt�1Þ þ f 0ðŵt�1Þðwt�1 � ŵt�1Þ þ �w
yt ¼ wtxt þ �y:

ð14Þ

We can then apply the standard Kalman filtering equations (see for example

Anderson and Moore, 1979) to this linearized system. The result is the posterior

approximation given by equations 5 and 6.

Appendix B: Exploring the parameter space

This appendix considers the effects of parameter variations on synaptic tagging

and capture. For illustration we use the weak-before-strong protocol described in

the main text. We first varied the parameters of the prior, a and b, and measured

the posterior mean weight of the weakly-stimulated synapse after strong stimulation

of another synapse. Recall that a large value of w is indicative of successful synaptic

tagging and capture (i.e., L-LTP occurs at the weak synapse). Figure 11A shows

that there is a fairly large plateau of parameter values for which L-LTP occurs.

We next investigated the effect of the noise variance r. When this parameter is

close to 0, synapses exert a stronger influence upon each other, because posterior

uncertainty is lower. Accordingly, making r smaller results in stronger synaptic

tagging and capture (Figure 11B). We can infer from this simulation that firing rate

noise must be relativelyb small in order to observe synaptic tagging and capture.

Notice of correction:

Redundant text has been removed from the opening paragraph of this

article.

0

5

10

0

5

10
0.65

0.7

0.75

0.8

0.85

0.9(A)

ab

w

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1(B)

r

w

Figure 11. Parameter explorations. Effects of changing the parameter settings on the weakly-
stimulated synapse in a weak-before-strong protocol. Each plot shows the posterior
mean weight of the weakly-stimulated synapse after strong stimulation of another synapse.
(A) Dependence of tagging and capture on the prior parameters a and b. (B) Dependence
of tagging and capture on the observation noise variance r. (A color version of this figure is
available in the online edition of this article.)
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