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Temporal difference learning models of dopamine assert that phasic lev-
els of dopamine encode a reward prediction error. However, this hypoth-
esis has been challenged by recent observations of gradually ramping
stratal dopamine levels as a goal is approached. This note describes condi-
tions under which temporal difference learning models predict dopamine
ramping. The key idea is representational: a quadratic transformation of
proximity to the goal implies approximately linear ramping, as observed
experimentally.

1 Introduction

Temporal difference (TD) learning is arguably the most successful account
of dopamine function in the basal ganglia (Glimcher, 2011; Niv & Schoen-
baum, 2008; Schultz, Dayan, & Montague, 1997). According to this account,
phasic dopamine signals a reward prediction error—the discrepancy be-
tween observed and predicted reward—and this signal is used to improve
future predictions. Recently, Howe, Tierney, Sandberg, Phillips, & Graybiel
(2013) reported a form of dopaminergic activity that appears (at first glance)
to fly in the face of the prediction error hypothesis: as a rat approaches the
goal in a maze, dopamine levels in the striatum gradually ramp up, peaking
when the rat arrives at the goal. As Niv (2013) pointed out, this observation
is unanticipated by existing TD models.

In this note, we describe conditions under which the TD model predicts
ramping. The essential assumption pertains to the representation of space:
provided that proximity to the goal is encoded by a convex transforma-
tion, ramping will be observed. In particular, the near-linear ramping that
Howe et al. (2013) observed occurs when the proximity transformation is
quadratic.

2 Temporal Difference Learning

TD learning is an algorithm for estimating the value function (expected
discounted future return):

Vt = E

[ ∞∑
k=0

γ krt+k

]
, (2.1)
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where t indexes time, rt is the reward delivered at time t, and γ ∈ [0, 1) is
a discount factor. Here the expectation is taken over possibly random se-
quences of rewards; in the remainder of this note, we assume for simplicity
that rewards and transitions are deterministic.

TD models of the dopamine system typically assume a linear approxi-
mation of the value function

Vt =
∑

k

xt (k)wt (k), (2.2)

where xt (k) is the kth feature of the state at time t and wt (k) is the feature
weight. The weight vector is updated according to

wt+1(k) = wt (k) + αδtxt(k), (2.3)

where α ∈ [0, 1) is a learning rate and δt is the reward prediction error:

δt = rt + γVt+1 − Vt . (2.4)

TD models of the dopamine system assert that δt is represented by the firing
of midbrain dopamine neurons and, by extension, dopamine levels in the
striatum.

3 Modeling Spatial Navigation

To model the experiment of Howe et al. (2013), we assume a very simple
feature representation consisting of a single feature encoding proximity
to the goal. Thus, xt = 1 when the rat has reached the end of the maze,
declining with distance from the end. Letting pt denote the proximity to
the goal, we define xt = f (pt ), where f is a transformation that encodes
the neural representation of proximity. We assume that pt monotonically
increases with t (i.e., the rat is continuously progressing toward the goal).
Under the assumption of a deterministic environment, we can analytically
solve for the asymptotic value of the feature weight (Bradtke & Barto,
1996),

w∞ =
∑T

t=1 xtrt∑T
t=1 xt(xt − γ xt+1)

, (3.1)

where T denotes the goal state. Here rt = 1 if t = T, and 0 otherwise. Note
that w∞ ≥ 0 provided that xt ≥ 0 and rt ≥ 0 for all t.
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Figure 1: Illustration of dopamine ramping. (A) Proximity representation.
(B) Prediction error as a function of proximity.

4 Why Does Ramping Occur?

We can express the asymptotic prediction error as

δt = rt + w∞[γ f (pt+1) − f (pt )]. (4.1)

We will focus on the time points prior to the goal, t < T, and thus the reward
term is always 0. To get a ramping prediction error as the rat approaches
the goal, we require that γ f (pt+1) − f (pt ) is a monotonically increasing
function of t (recall that pt is a monotonically increasing function of t).
This is satisfied by any strictly convex proximity transformation when
γ ≈ 1. We obtain an approximately linear ramp when the proximity trans-
formation is quadratic, f (p) = κp2, where κ is a constant. To see this, note
that f ′(p) = 2κp, which coincides with γ f (pt+1) − f (pt ) in the limit γ → 1
and |pt+1 − pt | → 0.

The predicted ramping behavior is illustrated in Figure 1 using γ =
0.99 and κ = 1. For comparison, we also show the results for linear and
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exponential proximity transformations. Although there is a slight ramping
predicted by the exponential transformation (and this ramping can be made
stronger by increasing the slope of the exponential transformation), the
ramping is always convex, which is inconsistent with the near-linear (and
sometimes slightly concave) ramping observed by Howe et al. (2013).

Several assumptions were made in these simulations for convenience
rather than mathematical necessity. First, the proximity transformation was
configured to monotonically increase from 0 to 1, but ramping will occur for
any monotonically increasing convex transformation. Second, we assumed
a one-dimensional proximity representation, but this can be generalized:
any nonnegative combination of convex functions is convex, and therefore
ramping will occur as long the asymptotic weights are nonnegative and
each feature is computed by a convex transformation. A corollary of this
assumption is that the spatial representation is not a form of table look-up
(Sutton & Barto, 1998), since table look-up is incompatible with a graded
representation of space. Although earlier TD models of dopamine used
a form of table look-up (e.g., Daw, Courville, & Touretzky, 2006; Schultz
et al., 1997), more recent models have emphasized the importance of graded,
distributed representations (e.g., Gustafson & Daw, 2011; Kurth-Nelson &
Redish, 2009; Ludvig, Sutton, & Kehoe, 2008).

Howe et al. (2013) made a number of other observations that are con-
sistent with this model: (1) ramps leading to similar rewards peaked at
similar levels despite differences in running speed; (2) ramps leading to
large rewards exceeded ramps leading to small rewards; and (3) the ramps
dynamically changed when large and small rewards switched locations.
The insensitivity to running speed (and hence time until the goal is reached)
arises because the prediction errors near the goal will be the same regardless
of how long it took to get there. The model is reward sensitive because
the asymptotic weight scales with reward, as stipulated by equation 3.1.
When rewards switch locations, the corresponding asymptotic weights will
switch, leading to the observed ramp dynamics.

5 Conclusion

The gradual ramping of dopamine activity as a rat approaches a goal is
consistent with the basic predictions of TD models. The special ingredient
is a convex transformation of proximity to the goal. This transformation
implies a spatial compression of the value function similar to Weber’s law,
such that values of locations far from the goal are closer together than values
of locations near the goal. Interestingly, landmark-based compression of
space has been reported in several species (Cheng, 1990; Cheng, Srinivasan,
& Zhang, 1999), as well as in the hippocampal representation of space
(O’Keefe & Burgess, 1996). We may speculate that the source of ramping
lies in the hippocampal inputs to the striatum, which are thought to provide
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the features for value functions defined over space (Foster, Morris, & Dayan,
2000; Gustafson & Daw, 2011).
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