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The Generative Adversarial Brain
Samuel J. Gershman*

Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA, United States

The idea that the brain learns generative models of the world has been widely

promulgated. Most approaches have assumed that the brain learns an explicit density

model that assigns a probability to each possible state of the world. However, explicit

density models are difficult to learn, requiring approximate inference techniques that

may find poor solutions. An alternative approach is to learn an implicit density model

that can sample from the generative model without evaluating the probabilities of those

samples. The implicit model can be trained to fool a discriminator into believing that the

samples are real. This is the idea behind generative adversarial algorithms, which have

proven adept at learning realistic generative models. This paper develops an adversarial

framework for probabilistic computation in the brain. It first considers how generative

adversarial algorithms overcome some of the problems that vex prior theories based on

explicit density models. It then discusses the psychological and neural evidence for this

framework, as well as how the breakdown of the generator and discriminator could lead

to delusions observed in some mental disorders.

Keywords: bayesian inference, delusions, consciousness, generative adversarial networks, perception

1. INTRODUCTION

Our sensory inputs are impoverished, and yet our experience of the world feels richly detailed.
For example, our fovea permits us access to a high fidelity region of the visual field only twice the
size of our thumbnail held at arm’s length. But we don’t experience the world as though looking
through a tiny aperture. Instead, our brains feed us a “grand illusion” of panoptic vision (Noë et al.,
2000; Chater, 2018; Odegaard et al., 2018). Similarly, we receive no visual input in the region of
the retina that connects to the optic nerve, yet under normal circumstances we are unaware of this
blind spot. Moreover, even when we receive high fidelity visual input, we may still fail to witness
dramatic changes in scenes (Simons, 2000), as though our brains have contrived imaginary scenes
that displace the true scenes.

There is a standard inferential explanation of these and many other illusions (e.g., Gregory,
1980), which holds that our percepts reflect beliefs about the world rather than raw sensory
information. In modern computational models of perception, these beliefs are typically
conceptualized as probability distributions over some hypothesis space conditional on the sensory
input, as stipulated by Bayes’ rule (Knill and Richards, 1996):

P(z|x) =
P(x|z)P(z)

∑

z′ P(x|z
′)P(z′)

, (1)

where P(x|z) is the likelihood of the data x given hypothesis z, P(z) is the prior probability of z, and
P(z|x) is the posterior probability. While the Bayesian framework has considerable merit, it does
not seem to provide adequate answers to several questions.

First, how can we explain the phenomenology of illusion: why do some illusions feel real, as
though one is actually seeing them, whereas other inferences carry information content without
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the same perceptual experience. For example, Ramachandran
and Hirstein (1997) use the example of gazing at wallpaper in a
bathroom, where the wallpaper in your visual periphery is “filled
in” (you subjectively experience it as high fidelity even though
objectively you perceive it with low fidelity), but the wallpaper
behind your head is not filled in. In other words, you infer that the
wallpaper continues behind your head, and you may even know
this with high confidence, but you do not have the experience
of seeing the wallpaper behind your head. Thus, the vividness or
“realness” of perceptual experience is not a simple function of
belief strength. So what is it a function of?

Second, how can we explain the peculiar ways that
the inferential apparatus breaks down? In particular, how
can we understand the origins of delusions, hallucinations,
and confabulations that arise in certain mental disorders?
While Bayesian models have been developed to explain these
phenomena, they fall short in certain ways that we discuss
later on.

In this paper, we argue that these issues can be addressed by
thinking about Bayesian inference from a different algorithmic
perspective. The basic idea is that a “generator” draws samples
from the generative model, which are then fed, along with
samples of real sensory data, into a “discriminator” that tries
to figure out which samples are real and which are fake. These
two components are in a kind of arms race: the generator
is trying to produce samples that trick the discriminator into
incorrectly classifying them as real, and the discriminator is
trying to learn how to detect these fakes. If the visual system
plays the role of the generator, and our perceptual experience
reflects the judgment of the discriminator, then we can begin
to understand why the visual system might report things that
aren’t there, or fail to report things that are there, and why
our perceptual experience endorses these false or incomplete
reports (see also Lau, 2019). Furthermore, breakdown of the
generator and discriminator may explain the origin of false
beliefs and percepts in certain mental disorders: a dysfunctional
generator can produce abnormal content, and a dysfunctional
discriminator can endorse that content as real.

This “generative-adversarial” interplay is motivated by recent
advances in machine learning, which have produced algorithms
for learning generativemodels based on the same idea. In the next
section, we summarize the idea more formally. What follows is a
rampantly speculative discussion of implications for psychology
and neuroscience (note that the article is not proposing any novel
computational ideas from the perspective of machine learning).
Finally, we apply these ideas to understanding delusions observed
in some mental disorders.

2. GENERATIVE MODELS: EXPLICIT AND
IMPLICIT

Generative models can be understood as stochastic “recipes” for
generating observed data: first draw a latent variable z from
the prior P(z), then draw data from the conditional distribution
P(x|z). This generative model can then be inverted according to
Bayes’ rule to recover a posterior belief P(z|x) about the latent

variable conditional on the data. There are two basic problems
that any probabilistic information processing system (artificial or
biological) must face. The inference problem is how to compute
the posterior efficiently given constraints on computational
resources. The learning problem is to update the generative model
P(x, z) in order to better match the empirical data distribution.
Learning is limited both by the amount of training data and
by the difficulty of searching through the space of probability
distributions (typically via gradient-based techniques).

Exact Bayesian inference is intractable for most moderately
complex generative models. This means that if we are going
to consider expressive generative models, we will need to
also consider approximate inference. Historically, approximate
inference algorithms have fallen into two families (Gershman and
Beck, 2017). One family, Monte Carlo algorithms, approximates
the posterior via stochastic simulation. Provided enough samples
are drawn, Monte Carlo algorithms can, at least in theory,
approximate the posterior arbitrarily well. They can account for
a wide range of neural (Buesing et al., 2011; Haefner et al., 2016;
Orbán et al., 2016), and behavioral (Sanborn and Chater, 2016;
Dasgupta et al., 2017) data. Their main limitation is that they can
be woefully inefficient for complex distributions, unless one uses
more sophisticated variants that pose challenges for neural and
psychological plausibility.

The second family, variational algorithms, approximate the
posterior with a simpler parameterized form that is easier to
optimize. Variational algorithms have figured prominently in
neuroscience, where they underpin the free-energy principle
(Friston, 2009), and have also been proposed as psychologically
plausible process models (Sanborn and Silva, 2013; Dasgupta
et al., 2019). These algorithms are often much more efficient
compared to Monte Carlo, which is why they are widely
used in machine learning. However, because of the simplified
parameterization, the optimal approximation will typically be
biased (i.e., it won’t perfectly capture the true posterior).

A basic limitation of both Monte Carlo and variational
algorithms is that they are mainly designed to work with explicit
generative models: they assume that the likelihood can be
evaluated for any data sample. However, there are many complex
models that are implicit in the sense that they can only be
simulated. For example, the drift-diffusion model does not have
a tractable closed-form expression for the likelihood function,
but samples can be drawn from the generative model. This has
motivated various forms of “likelihood-free” algorithms (e.g.,
Diggle and Gratton, 1984; Csilléry et al., 2010; Hartig et al., 2011;
Gutmann and Corander, 2016).

Recently, a new approach to likelihood-free approximate
inference has emerged based on a minimax game between
a generator G and a discriminator D (Donahue et al., 2016;
Dumoulin et al., 2017).1 Both the generator and discriminator
are typically implemented as differentiable neural networks.

1The space of generative-adversarial algorithms is much broader than what is

covered in this paper. The original formulation (which did not involve inference

at all) is due to Goodfellow et al. (2014). The relationship between generative-

adversarial inference algorithms and other approximate inference algorithms is

discussed in Huszár (2017).
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The discriminator takes as input data x and latent variable
z, and outputs the probability that (x, z) was drawn from
the joint distribution P(x, z) vs. the generator distribution
G(x, z). The generator consists of two components (Figure 1):
a “feedforward” component G(z|x) that samples inferred latent
variables ẑ conditional on empirical data x∼P(x), and a
“feedback” component G(x|z) that samples simulated data x̂
conditional on draws from the prior z∼P(z). The feedforward
component implements the approximate inference engine,
efficiently mapping data to samples from the approximate
posterior over latent variables. The feedback component
implements the learned generative model, mapping latent
variables to samples from the observation distribution.

The generator and discriminator are jointly trained to
optimize the following “adversarial” objective function:

min
G

max
D

EG(z|x)P(x)

[

logD(x, z)
]

+ EG(x|z)P(z)

[

log(1− D(x, z))
]

.

(2)

Intuitively, the generator is trying to fool the discriminator into
placing high probability on simulated data and low probability
on empirical data, while the discriminator is trying to do the
opposite. It can be shown (Dumoulin et al., 2017) that the optimal
discriminator for a fixed generator is given by:

D∗(x, z) =
G(x, z)

G(x, z)+ P(x, z)
. (3)

Thus, the discriminator will be at chance when the generator has
perfectly approximated the true joint distribution. The optimal
generator can also be understood as minimizing the Jensen-
Shannon divergence between G and P (Goodfellow et al., 2014;
Dumoulin et al., 2017)2.

Adversarially learned inference has two important advantages
over standard Monte Carlo and variational approaches. First, as
already noted, it can be applied to implicit generative models,
which means that these models can be more complex (e.g.,
parameterized as a deep neural network with an intractable
likelihood function). The result is that the quality of the
generative model is higher, as measured (for example) in terms
of simulated data quality. Second, inference is more efficient than
standard Monte Carlo algorithms (it is “amortized” in the form
of a learned function that can be quickly evaluated) and can
use more flexible approximate posteriors compared to standard
variational algorithms3.

3. PSYCHOLOGICAL IMPLICATIONS

3.1. The Puzzle of Phenomenology
We began this paper with examples from visual perception in
which people have the subjective experience of seeing things

2Note that the product rule of probability implies that G(x, z) = G(z|x)P(x) =

G(x|z)P(z). However, because the two generator components are parameterized

independently, this equality may not hold in practice, except at the optimum of the

objective function (provided both components are sufficiently expressive).
3Note that amortization can also be applied to variational inference in explicit

generative models, so this advantage is not unique.

that are objectively not there (e.g., high acuity in the periphery
or in the retinal blind spot). This is sometimes discussed
as perceptual “filling-in,” though this term is theoretically
tendentious: it suggests something like a neural paintbrush
that fills in missing segments on an internal screen, an idea
that (Dennett, 1992) has argued is highly implausible. As
an alternative, Dennett suggests something more like “paint-
by-numbers,” where surfaces are symbolically labeled, and
these symbols are interpreted appropriately by downstream
computations. Indeed, this is roughly how digital computers
typically deal with surfaces.

As a matter of neurophysiology, it turns out that Dennett
was incorrect: there really is an interpolation process in low-
order visual areas that is retinotopically organized (De Weerd,
2006). The more important point for present purposes is
that Dennett’s argument doesn’t really explain the subjective
experience of perceptual filling-in. Either interpolative or
symbolic implementations could be compatible with this
subjective experience. In essence, the question is why the down-
stream interpreter of these representations ascribes “realness”
to some representations (wallpaper in front of you, to again
use Ramachandran and Hirstein’s example) and not others
(wallpaper behind you).

Noë et al. (2000) have offered a different line of argument, that
we don’t actually have the subjective experience of seeing stimuli
in the periphery or the blind spot, but rather our phenomenology
reflects the knowledge that the relevant stimulus information
is available in the environment, and we could (e.g., with eye
movements) apprehend that information. This seems somewhat
unsatisfactory, because it is basically denying the introspective
observation that we experience ourselves as really seeing stimuli
in the periphery. It also seems to conflict with psychophysical
experiments demonstrating that people are overconfident about
how much they see in the periphery (Odegaard et al., 2018). If it
was simply a matter of knowing that we could see something, not
that we actually do see something, then there’s no reason why we
should feel overconfident about our perceptual acuity.

The adversarial framework leads to another way of thinking
about these issues. The discriminator is, by design, making
ascriptions of “realness” to inputs that are both real and
simulated. Meanwhile, the generator is trying its best to feed the
discriminator realistic simulations. Thus, if subjective perceptual
experience corresponds to perceptual content that has been
endorsed as real by the discriminator, then we would have an
explanation for why we feel that we see more than we do.
Simulations of peripheral visual input are highly compelling. On
the other hand, simulations of visual inputs outside the field
of vision are not. The generator can trick the discriminator
into thinking that it sees wallpaper in front of us, but
not behind us.

This perspective has some resonance with higher-order
theories of consciousness (Lau and Rosenthal, 2011; Lau,
2019), which hold that conscious awareness is a particular
kind of mental state that represents other mental states. The
discriminator can be understood as a higher-order representation
that represents beliefs (real vs. imagined) about lower-level
perceptual representations. On this view, conscious awareness
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FIGURE 1 | Schematic of the adversarially learned inference architecture mapped onto the brain.

occurs when a decision is made that a perceptual representation
is veridical (see also Dehaene et al., 2014).

The adversarial framework contrasts with the interoceptive
predictive coding account of Seth et al. (2012), according
to which the sense of reality derives from the perception
of sensorimotor contingency. While sensorimotor contingency
might be one piece of information that the discriminator
uses to make its decisions, it can also use other sources of
information. For example, people who are unable to move their
eyes may experience low sensorimotor contingency, but can still
discriminate real from imagined stimuli.

3.2. Discriminating Between Reality and
Imagination
The adversarial framework posits that a mechanism for
discriminating between reality and imagination plays an
important computational role in learning and inference. In
the psychology literature, the discrimination problem has been
studied in the context of reality testing (discriminating between
real and imagined stimuli in perception) and reality monitoring
(discriminating between real and imagined stimuli in memory).
The most famous example of reality testing is the Perky effect.
Perky (1910) presented subjects with dimly illuminated images
of objects while subjects were asked to describe the objects, and
found that subjects falsely reported these as imagery rather than
perception. Segal and Fusella (1970) examined this effect with
signal detection techniques, finding that sensitivity was reduced
under mental imagery conditions, particularly for perceived and
imagined stimuli in the same sensory modality. Many subsequent
studies have documented interactions between imagery and
perception. For example, Farah and Smith (1983) demonstrated
that imagery can facilitate stimulus detection (see also Farah,
1985; Ishai and Sagi, 1995).

The study of reality monitoring has been championed by
Johnson and her collaborators (see Johnson and Raye, 1981, for
a review of the early literature), who have called attention to

the problem that mental images leave traces in memory, and
therefore some mechanism must exist to discriminate between
these memories and memories of observed stimuli. As we
discuss below, this mechanism appears to have a dedicated
neural substrate, and dysfunction of this mechanism may
underpin cognitive and perceptual symptoms in certain mental
disorders. One important set of findings from research on reality
monitoring is the identification of factors that people use to
discriminate reality from imagination. For example, real stimuli
are richer in perceptual and semantic detail, and contain less
information about cognitive operations. These are all factors we
would expect that a well-designed discriminator could exploit.

4. NEURAL IMPLICATIONS

The architecture shown in Figure 1 lends itself naturally to a
systems-level interpretation. The discriminator corresponds to a
realitymonitoringmechanism that has been frequently attributed
to the median anterior prefrontal cortex (see Simons et al.,
2017, for a review). For example, this region is activated when
subjects are asked to discriminate whether a visual object was
previously seen or imagined (Kensinger and Schacter, 2006),
and morphological features of this region covary with individual
differences in reality monitoring performance (Buda et al., 2011).
Moreover, patients with schizophrenia (Garrison et al., 2017)
and healthy individuals prone to expression of psychotic and
schizotypal traits (Simons et al., 2008) both show reduced
activation in this area during reality monitoring.

The “feedback” and “feedforward” terminology was chosen
to suggest a mapping onto feedback and feedforward pathways
in posterior cortical regions. This is consistent with theories of
cortical function that posit a role for feedforward pathways in
computing inferences about the latent causes of sensory data,
and a role for feedback pathways in computing predictions
about upcoming sensory data (e.g., Dayan et al., 1995; Lee
and Mumford, 2003; Lochmann and Deneve, 2011). Some
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theories (e.g., Rao and Ballard, 1999; Friston, 2008) have argued
that feedforward pathways convey prediction errors rather than
predictions. This can be understood as an efficient way to pass
predictions up the cortical hierarchy while removing redundant
information (see Huang and Rao, 2011).

At the circuit level, an implicit generative model could
be implemented as a probabilistic population code (PPC; Ma
et al., 2006), which represents a probability distribution via
the distribution of spikes across a population. One challenge
facing PPCs is that they only support exact inference for
relatively simple generative models, such as Kalman filtering and
multi-sensory cue combination. Some authors have attempted
to generalize PPCs to the approximate inference setting, for
example by having the PPCs encode the sufficient statistics of a
factorized variational approximation (Beck et al., 2012) or the
sufficient statistics of cliques in a graphical model that then
pass messages using loopy belief propagation (Raju and Pitkow,
2016). Both of these generalizations limit the kinds of generative
models that can be represented. Adversarially learned inference
provides potentially another way to work with more flexibly
parameterized models. An open problem is to determine what
kinds of biologically plausible learning rules could implement
optimization of the adversarial objective function.

5. DELUSIONS

In the field of cognitive neuropsychiatry, some authors have
invoked inferential explanations of delusion formation (Hemsley
and Garety, 1986; Corlett et al., 2009; Coltheart et al., 2010;
McKay, 2012; Sterzer et al., 2018). According to the “two-factor”
version of this idea (see Coltheart et al., 2010), two underlying
factors must break down: (i) the input data must be abnormal,
and (ii) the hypotheses suggested by the abnormal data must
be defectively evaluated. Some patients have an impaired first
factor but an intact second factor; these patients have abnormal
experiences but do not develop delusions. Coltheart et al. (2010)
viewed the evaluation factor as a form of Bayesian inference, but
conceded that Bayes’ rule is silent about the origin of abnormal
data (the first factor). Moreover, the conjectured impairment
in the evaluation factor—that patients are unable to assimilate
evidence contradicting the delusional belief—runs into trouble.
As pointed out by McKay (2012), it doesn’t really make sense
chronologically why patients would be able to assimilate the
abnormal data but not the subsequent contradictory data. As an
alternative,McKay suggests that the impairment in the evaluation
factor is a bias toward “explanatory adequacy,” whereby the
likelihood is overweighted at the expense of the prior. This
alternative still leaves the origin of abnormal data unexplained.

In support of the two-factor interpretation, Coltheart et al.
(2010) discuss evidence that impairments of abnormal data
and abnormal evaluation are dissociable. For example, some
patients with damage to the ventromedial prefrontal cortex fail
to autonomically discriminate between familiar and unfamiliar
faces, as measured by skin conductance, despite their ability
to recognize the familiar faces (Tranel et al., 1995). Coltheart
et al. view these cases as analogous to Capgras patients, in

the sense that both syndromes produce abnormal content,
but with the critical difference that Capgras patients develop
delusions because of their impaired ability to evaluate the
abnormal content, whereas ventromedial prefrontal patients do
not develop delusions.

Another example is the Fregoli delusion, which is essentially
the opposite of the Capgras delusion: patients perceive strangers
as familiar people in disguise. It has been suggested that
the underlying mechanism of abnormal content generation is
the opposite of the putative mechanism underlying Capgras
delusion, namely an over-responsive autonomic response to faces
(Ramachandran et al., 1998). Importantly, there are patients who
show the same abnormal content generation (strange faces are
perceived as highly familiar) but who do not develop delusions
(Vuilleumier et al., 2003).

Some theorists have advocated for a “one-factor” predictive
coding version of the inferential account (e.g., Corlett et al., 2009;
Sterzer et al., 2018), according to which delusion formation arises
from a single cause: noisy prediction errors, which register the
discrepancy between observations and expectations and drive
updating of beliefs. Noise in the prediction errors furnishes
the abnormal input data, which in turn drives aberrant belief
updating. One potentially problematic aspect of this account is
that it seems to require the noise to be quite large in order to
produce the kinds of dramatic delusions that have been observed
(e.g., believing that family members have been replaced by
imposters, as in Capgras syndrome). Although there is evidence
for noisy neural signaling in schizophrenia (Winterer and
Weinberger, 2004), signal detection analyses of psychophysical
performance have indicated that internal noise levels do not
differ between schizophrenics and healthy controls (Collicutt
and Hemsley, 1981; Bentall and Slade, 1985). Moreover, some
disorders (e.g., autism; see Dinstein et al., 2012; Park et al.,
2017) have been associated with elevated noise levels but are
not reliably associated with delusions (though see van Schalkwyk
et al., 2017). Two-factor theorists sometimes posit that the first
factor results from a specific neurological impairment (e.g.,
disconnection between autonomic signaling and face recognition
in Capgras syndrome) rather than a general increase in noise,
which would be expected to produce a much wider variety of
abnormal experiences.

Adversarially learned inference provides a different
perspective on these issues. Abnormal content arises from
defects in the generator, which cause it to produce simulated data
x̂ and simulated interpretations ẑ that have low probability under
P(x, z). These simulations are accepted by delusional patients
because those patients also have a defect in their discriminator
that impairs its ability to tell apart true and simulated samples.
Thus, adversarially learned inference can be considered similar to
two-factor theory, in the sense that it posits distinct impairments
of abnormal content and abnormal evaluation.

The generative adversarial perspective offers a way to correct
some of the shortcomings of prior Bayesian accounts. First,
it suggests a broad hypothesis about the origin of delusional
content (via an abnormal generator), whereas Bayesian models
are silent on the origin of delusional content beyond the
postulate that prediction errors are noisy. As discussed above,
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noisy prediction errors seem inadequate to account for both
the magnitude and specificity of delusional content. Second, the
discriminator directly formalizes ideas about reality monitoring
that have been applied to delusions, hallucinations, and
confabulations (Bentall et al., 1991; Turner and Coltheart, 2010).
In contrast, Bayesian models do not typically postulate any
kind of specialized reality monitoring mechanism. While we
have focused on delusions, the adversarial account may provide
a broader framework that accompanies other kinds of reality
distortion like hallucinations. The fact that hallucinations and
delusions covary in schizophrenia (Grube et al., 1998) suggests
that there may be a common underlying etiology.

6. DISCUSSION

This paper has assembled evidence across several disparate
domains (perceptual phenomenology, neurobiology, and
neuropsychiatry) in favor of a generative adversarial framework
for approximate inference. In closing, we consider some broader
issues and open questions.

6.1. Learning From the Imagination
Adversarially learned inference uses imagination to drive
learning, exemplifying a broader class of imagination-based
learning models that have been studied in cognitive science. The
effects of imagination on learning have been widely documented
(see Kappes and Morewedge, 2016, for a review). For example,
Tartaglia et al. (2009) demonstrated that perceptual learning can
occur through mental imagery, and related results have been
observed across many different cognitive and behavioral tasks
(Driskell et al., 1994; Gershman et al., 2017). It is unlikely that
all imagination-based learning phenomena can be subsumed by
the generative adversarial perspective. There are many ways that
imagination could be involved in learning that don’t involve
adversarial interactions between a generator and a discriminator.
For example, Niyogi et al. (1998) described how to use image
transformations to produce “virtual examples” that can be
used as additional training data, and Sutton (1990) developed
related ideas for reinforcement learning. Both of these examples
are forms of data augmentation, a technique widely used in
machine learning to improve performance when data are limited
(for some recent examples, see Hauberg et al., 2016; Ratner
et al., 2017). Interestingly, generative adversarial algorithms
have also ben employed for this purpose (Antoniou et al.,
2017).

A key assumption of data augmentation algorithms is that
the augmented data share certain properties with the true data
distribution. In supervised learning, the augmented data must
have the same labels as the true data. For example, Niyogi’s
technique is based on the idea that rigidly defined objects are
invariant to rotations and translations. In reinforcement learning,
augmented rewards and state transitions can be sampled from a
learned model of the environment, as in Sutton’s technique. The
challenge, then, is to devise a scheme for producing augmented
data with the right properties. Adversarially learned inference

can be understood as one particular approach to this problem.
The generator is not learning directly from the data distribution,
but rather from a supervised signal (discriminator inaccuracy)
that tells the generator how convincingly it has emulated the
data distribution.

6.2. Toward a Synthesis of Approximate
Inference Algorithms
Another broad issue concerns how we should make sense, and
perhaps bring together, themenagerie of ideas about approximate
inference in the brain. Adversarially learned inference shares
elements of both Monte Carlo and variational algorithms.
It uses samples to approximate expectations (as in Monte
Carlo algorithms). But it also optimizes an objective function
(the Jensen-Shannon divergence) that is closely related to
standard variational algorithms (see Nowozin et al., 2016).
Some generative adversarial approaches to inference make
the connection even more explicit (Huszár, 2017; Mescheder
et al., 2017). An interesting direction for future work will
be to see whether some more systematic synthesis of these
ideas is possible.

6.3. Predictions
Generative adversarial approaches to inferencemake a number of
testable predictions. One is that impairment in the discriminator
should lead to systematic distortions in learning, since imagined
stimuli will be treated as real data. This should lead to generators
that produce unrealistic samples, which could be tested by
studying statistical learning in patients with prefrontal damage
or with schizophrenia.

More broadly, the neural networks that have been developed
for artificial intelligence tasks are designed to operate on high-
dimensional data like natural images and videos, which opens up
the possibility to make predictions about reality monitoring and
subjective experience for real-world sensory inputs. For example,
one could use them to predict which images are more likely to
produce reality monitoring errors or meta-cognitive illusions in
the periphery.
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