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Midbrain dopamine neurons are commonly thought to report a reward predic-

tion error (RPE), as hypothesized by reinforcement learning (RL) theory. While

this theory has been highly successful, several lines of evidence suggest that

dopamine activity also encodes sensory prediction errors unrelated to

reward. Here, we develop a new theory of dopamine function that embraces

a broader conceptualization of prediction errors. By signalling errors in both

sensory and reward predictions, dopamine supports a form of RL that lies

between model-based and model-free algorithms. This account remains con-

sistent with current canon regarding the correspondence between dopamine

transients and RPEs, while also accounting for new data suggesting a role

for these signals in phenomena such as sensory preconditioning and identity

unblocking, which ostensibly draw upon knowledge beyond reward

predictions.
1. Introduction
The hypothesis that midbrain dopamine neurons report a reward prediction error

(RPE)—the discrepancy between observed and expected reward—enjoys a see-

mingly unassailable accumulation of support from electrophysiology [1–5],

calcium imaging [6,7], optogenetics [8–10], voltammetry [11,12] and human

brain imaging [13,14]. The success of the RPE hypothesis is exciting because the

RPE is precisely the signal a reinforcement learning (RL) system would need to

update reward expectations [15,16]. Support for this RL interpretation of dopa-

mine comes from findings that dopamine complies with basic postulates of RL

theory [1], shapes the activity of downstream reward-predictive neurons in the

striatum [11,17] and plays a causal role in the control of learning [8–10,13].

Despite these successes, however, there are a number of signs that this is

not the whole story. First, it has long been known that dopamine neurons respond

to novel or unexpected stimuli, even in the absence of changes in value [7,18–20].

While some theorists have tried to reconcile this observation with the RPE

hypothesis by positing that value is affected by novelty [21] or uncertainty [22],

others have argued that this response constitutes a distinct function of dopamine

[23–25], possibly mediated by an anatomically segregated projection from

midbrain to striatum [7]. A second challenge is that some dopamine neurons

respond to aversive stimuli. If dopamine responses reflect RPEs, then one

would expect aversive stimuli to reduce responses (as observed in some studies

[26,27]). A third challenge is that dopamine activity is sensitive to movement-

related variables such as action initiation and termination [28,29]. A fourth

challenge is that dopamine activity [30] and its putative haemodynamic correlates

[31] are influenced by information, such as changes in stimulus contingencies,

that should in principle be invisible to a pure ‘model-free’ RL system that updates

reward expectations using RPEs. This has led to elaborations of the RPE hypo-

thesis according to which dopamine has access to some ‘model-based’

information, for examples in terms of probabilistic beliefs or samples from a

model-based simulator [22,32–36].
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While some of these puzzles can be resolved within the

RPE framework by modifying assumptions about the inputs

to and modulators of the RPE signal, recent findings have

proven more unyielding. In this paper, we focus on three of

these findings: (1) dopamine transients are necessary for learn-

ing induced by unexpected changes in the sensory features of

expected rewards [37]; (2) dopamine neurons respond to unex-

pected changes in sensory features of expected rewards [38];

and (3) dopamine transients are both sufficient and necessary

for learning stimulus–stimulus associations [39]. Taken

together, these findings seem to contradict the RPE framework

supported by so much other data.

Here we will suggest one possible way to reconcile the

new and old findings, based on the idea that dopamine com-

putes prediction errors over sensory features, much as was

previously hypothesized for rewards. This sensory prediction

error (SPE) hypothesis is motivated by normative consider-

ations: SPEs can be used to estimate a predictive feature

map known as the successor representation (SR) [40,41]. The

key advantage of the SR is that it simplifies the computation

of future rewards, combining the efficiency of model-free RL

with some of the flexibility of model-based RL. Neural and

behavioural evidence suggests that the SR is part of the

brain’s computational repertoire [42,43], possibly subserved

by the hippocampus [44,45]. Here, building on the pioneering

work of Suri [46], we argue that dopamine transients pre-

viously understood to signal RPEs may instead constitute

the SPE signal used to update the SR.
2. Theoretical framework
(a) The reinforcement learning problem
RL theories posit an environment in which an animal

accumulates rewards as it traverses a sequence of ‘states’ gov-

erned by a transition function T(s0js), the probability of

moving from state s to state s0, and a reward function R(s),

the expected reward in state s. The RL problem is to predict

and optimize value, defined as the expected discounted

future return (cumulative reward),

V(st) ¼ E
X1
k¼0

gkrtþk

" #
, (2:1)

where rt is the reward received at time t in state st, and g [ [0, 1]

is a discount factor that determines the weight of temporally

distal rewards. Because the environment is assumed to obey

the Markov property (transitions and rewards depend only

on the current state), the value function can be written in a

recursive form known as the Bellman equation [47]:

V(st) ¼ E[rt þ gV(stþ1)]: (2:2)

The Bellman equation allows us to define efficient RL

algorithms for estimating values, as we explain next.
(b) Model-free and model-based learning
Model-free algorithms solve the RL problem by directly esti-

mating V from interactions with the environment. The

Bellman equation specifies a recursive consistency condition

that the value estimate V̂(st) must satisfy in order to be accu-

rate. By taking the difference between the two sides of the

Bellman equation, E[rt þ gV̂(stþ1)]� V̂(st), we can obtain a
measure of expected error; the direction and degree of the

error is informative about how to correct V̂(st).

Because model-free algorithms do not have access to

the underlying environment model (R and T) necessary

to compute the expected error analytically, they typically

rely on a stochastic sample of the error based on experienced

transitions and rewards:

dt ¼ rt þ gV̂(stþ1)� V̂(st): (2:3)

This quantity, commonly known as the temporal difference

(TD) error, will on average be 0 when the value function has

been perfectly estimated. The TD error is the basis of the classic

TD learning algorithm [47], which in its simplest form updates

the value estimate according to DV̂(st)/ dt. The RPE

hypothesis states that dopamine reports the TD error [15,16].

Model-free algorithms like TD learning are efficient because

they cache value estimates, which means that state evaluation

(and by extension action selection) can be accomplished by

simply inspecting the values cached in the relevant states.

This efficiency comes at the cost of flexibility: if the reward func-

tion changes at a particular state, the entire value function must

be re-estimated, since the Bellman equation implies a coupling

of values between different states. For this reason, it has been

proposed that the brain also makes use of model-based algor-

ithms [48,49], which occupy the opposite end of the

efficiency–flexibility spectrum. Model-based algorithms learn

a model of the environment (R and T) and use this model to

evaluate states, typically through some form of forward simu-

lation or dynamic programming. This approach is flexible,

because local changes in the reward or transition functions

will instantly propagate across the entire value function, but

at the cost of relying on comparatively inefficient simulation.

Some of the phenomena that we discuss in the Results

section have been ascribed to model-based computations

supported by dopamine [50], thus transgressing the clean

boundary between the model-free function of dopamine and

putatively non-dopaminergic model-based computations. The

problem with this reformulation is that it is unclear what exactly

dopamine is contributing to model-based learning. Although

prediction errors are useful for updating estimates of the

reward and transition functions used in model-based algor-

ithms, these do not require a TD error. A distinctive feature of

the TD error is that it bootstraps a future value estimate (the

gV̂(stþ1) term); this is necessary because of the Bellman

recursion. But learning reward and transition functions in

model-based algorithms can avoid bootstrapping estimates

because the updates are local thanks to the Markov property.

To make this concrete, a simple learning algorithm (guar-

anteed to converge to the maximum-likelihood solution

under some assumptions about the learning rate) is to

update the model parameters according to

DR(s)/ rt � R(st) (2:4)

and

DT(s0 j st)/ I(stþ1 ¼ s0)� T(s0 j st), (2:5)

where I( � ) ¼ 1 if its argument is true, and 0 otherwise [51].

These updates can be understood in terms of prediction errors,

but not TD errors (they do not bootstrap future value estimates).

The TD interpretation is important for explaining phenomena

like the shift in signalling to earlier reward-predicting cues

[16], the temporal specificity of dopamine responses [52,53]
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and the sensitivity to long-term values [54]. Thus, it remains

mysterious how to retain the TD error interpretation of dopa-

mine, which has been highly successful as an empirical

hypothesis, while simultaneously accounting for the sensitivity

of dopamine to SPEs.
cietypublishing.org
Proc.R.Soc.B

285:20181645
(c) The successor representation
To reconcile these data, we will develop the argument that

dopamine reflects sensory TD errors, encompassing both

reward and non-reward features of a stimulus. In order to intro-

duce some context to this idea, let us revisit the fundamental

efficiency–flexibility trade-off. One way to find a middle-

ground between the extremes occupied by model-free and

model-based algorithms is to think about different ways to

compile a model of the environment. By analogy with program-

ming, a compiled program gains efficiency (in terms of runtime)

at the expense of flexibility (the internal structure of the

program is no longer directly accessible). Model-based algor-

ithms are maximally uncompiled: they explicitly represent the

parameters of the model, thus providing a representation that

can be flexibly altered for new tasks. Model-free algorithms

are maximally compiled: they only represent the summary stat-

istics (state values) that are needed for reward prediction,

bypassing a flexible representation of the environment in

favour of computational efficiency.

A third possibility is a partially compiled model. Dayan

[40] presented one such scheme, based on the following

mathematical identity:

V(st) ¼
X

s0
M(st, s0)R(s0), (2:6)

where M denotes the SR, the expected discounted future state

occupancy,

M(st, s0) ¼ E
X1
k¼0

g kI(stþk ¼ s0)

" #
: (2:7)

Intuitively, the SR represents states in terms of the frequency

of their successor states. From a computational perspective,

the SR is appealing for two reasons. First, it renders value

computation a linear operation, yielding efficiency compar-

able to model-free evaluation. Second, it retains some of the

flexibility of model-based evaluation. Specifically, changes

in rewards will instantly affect values because the reward

function is represented separately from the SR. On the

other hand, the SR will be relatively insensitive to changes

in transition structure, because it does not explicitly represent

transitions—these have been compiled into a convenient but

inflexible format. Behaviour reliant upon such a partially

compiled model of the environment should be more sensitive

to reward changes than transition changes, a prediction

recently confirmed in humans [42].

The SR obeys a recursion analogous to the Bellman

equation:

M(st, s0) ¼ E[I(st ¼ s0)þ gM(stþ1, s0)]: (2:8)

Following the logic of the previous section, this implies that a

TD learning algorithm can be used to estimate the SR,

DM̂(st, s0)/ dM
t (s0) ¼ I(st ¼ s0)þ gM̂(stþ1, s0)� M̂(st, s0),

(2:9)

where M̂ denotes the approximation of M.
One challenge facing this formulation is the curse of
dimensionality: in large state spaces, it is impossible to accu-

rately estimate the SR for all states. Generalization across

states can be achieved by defining the SR over state features

(indexed by j) and modelling this feature-based SR with

linear function approximation,

M̂(st, j) ¼
X

i

fi(st)Wij, (2:10)

where fi(s) denotes the ith feature of state s and W is a weight

matrix that parametrizes the approximation. In general, the

features can be arbitrary, but for the purposes of this paper,

we will assume that the features correspond to distinct stimu-

lus identities; thus fi(s) ¼ 1 if stimulus i is present in state s,

and 0 otherwise. Linear function approximation leads to the

following learning rule for the weights:

DWij / dM
t ( j)fi(st), (2:11)

where

dM
t (j) ¼ fj(st)þ gM̂(stþ1, j)� M̂(st, j) (2:12)

is the TD error under linear function approximation. We will

argue that dopamine encodes this TD error.

One issue with comparing this vector-valued TD error to

experimental data is that we do not yet know how particular

dopamine neurons map onto particular features. In order to

make minimal assumptions, we will assume that each neuron

has a uniform prior probability of encoding any given feature.

Under ignorance about feature tuning, the expected TD error is

then proportional to the superposition of feature-specific TD

errors,
P

j d
M
t (j). In our simulations of dopamine, we take this

superposition to be the ‘dopamine signal’ (see also [32]), but

we wish to make clear that this is a provisional assumption

that we ultimately hope to replace once the feature tuning of

dopamine neurons is better understood.

There are several notable aspects of this new model of

dopamine. First, it naturally captures SPEs, as we will illus-

trate shortly. Second, it also captures RPEs if reward is one

of the features. Specifically, if fj(st) ¼ rt, then the corresponding

column of the SR is equivalent to the value function, M(s, j) ¼
V(s), and the corresponding TD error is the classical RPE,

dM
t (j) ¼ dt. Third, the TD error is now vector-valued, which

means that dopamine neurons may be heterogeneously

tuned to particular features (as hypothesized by some authors

[55]), or they multiplex several features [56], or both. Notably,

although the RPE correlate has famously been evident in

single units, representation of these more complex or subtle

prediction errors may be an ensemble property.
3. Simulations
Some of the most direct evidence for our hypothesis comes

from a recent study by Chang et al. [37], who examined

whether dopamine is necessary for learning about changes

in reward identity (figure 1a). Animals first learned to associ-

ate two stimuli (XB and XUB) with different reward flavours.

These stimuli were then reinforced in compound with other

stimuli (AB and AUB). Critically, the XUBAUB trials were

accompanied by a change in reward flavour, a procedure

known as ‘identity unblocking’ that attenuates the blocking

effect [57–59]. This effect eludes explanation in terms of

model-free mechanisms, but is naturally accommodated by

http://rspb.royalsocietypublishing.org/


XB AB

conditioning compound training probe test

XUB AUBXUB/AUB

%
 ti

m
e 

in
 m

ag
az

in
e

XB/AB

model

0

0.1

0.2

0.3

V

data

exp ITI exp ITI
0

20

40

60
AB

AUB

*

n.s.

(b)

(a)

(c)
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squares denote distinct reward flavours. Orange light symbol indicates
when dopamine neurons were suppressed optogenetically to disrupt any posi-
tive SPE; this spanned a 5 s period beginning 500 ms prior to delivery of the
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tal group, receiving inhibition during reward outcome. ITI: control group,
receiving inhibition during the intertrial interval. Asterisk indicates significant
difference ( p , 0.05). Error bars show standard error of the mean. Data
replotted from [37]. (c) Model simulation of the value function. (Online
version in colour.)
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Figure 2. Dopamine neurons respond to changes in reward identity. (a) Time
course of stimuli presented to the animal on each trial. Dotted line indicates
reward omission, solid line indicates reward delivery. At the start of each ses-
sion, one well was randomly designated as short (a 5 s delay before the
reward) and the other long (a 1 – 7 s delay before the reward; see Block
1). In Block 2, these contingencies were switched. In Block 3, the delay
was held constant, while the number of rewards was manipulated; one
well was designated a big reward, in which a second bolus of reward was
delivered (big reward), and a small (single bolus) reward was delivered in
the other well. In Block 4, these contingencies were switched again. (b)
Firing rate of dopamine neurons on trials that occurred early (first 5 trials)
or late (last 5 trials) during an identity shift block. Error bars show standard
error of the mean. Data replotted from [38]. (c) Model simulation of TD error.
(Online version in colour.)
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the SR since changes in reward identity induce SPEs. Chang

et al. [37] showed that optogenetic inhibition of dopamine at

the time of the flavour change prevents this unblocking effect

(figure 1b). Our model accounts for this finding (figure 1c),

because inhibition suppresses SPEs that are necessary for

driving learning.

One discrepant observation is a simulated increase in V in

the ITI condition relative to the Exp condition for AB, which

does not appear in the experimental data. During the second

stage of learning, XUB, AUB and the sensory features of both

pellet types are presented together. Because of the co-occur-

rence of these features, associations develop between them

such that the sensory features of the pellets now have slight

associations with one another as well as the cues that predict

them. This causes AB and XB to have a slight association with

the sensory features of the pellet that it never predicted since

both pellets now have mild associations with one another.

Electrophysiological experiments have confirmed that

dopamine neurons respond to changes in identity, demon-

strating a neural signal that is capable of explaining the

data from Chang et al. [37]. We have already mentioned the

sizable literature on novelty responses, but the significance

of this activity is open to question, because the animal’s

prior value expectation is typically unclear. A study reported

by Takahashi et al. [38] provides more direct evidence for an

SPE signal, using a task (figure 2a) in which animals experi-

ence both shifts in value (amount of reward) and identity

(reward flavour). Takahashi and colleagues found that indi-

vidual dopamine neurons exhibited the expected changes in

firing to shifts in value (figure 2b, reward addition and

omission) and also showed a stronger response following a

value-neutral change in reward identity (figure 2b, identity

switch), changes in firing similar to those predicted by the

model under these conditions (figure 2c).

A strong form of our proposal is that dopamine transients are

both sufficient and necessary for learning stimulus–stimulus
associations. Recent experiments using a sensory pre-

conditioning paradigm [39] have tested this using sensory

preconditioning. In this paradigm (figure 3a), various stimuli

and stimulus compounds (denoted A, EF, AD, AC) are associ-

ated with another stimulus X through repeated pairing in an

initial preconditioning phase. In a subsequent conditioning

phase, X is associated with reward (sucrose pellets). In a

final probe test, conditioned responding to a subset of the indi-

vidual stimuli (F, D, C) is measured in terms of the number of

food cup entries elicited by the presentation of the stimuli.

During the preconditioning phase, one group of animals

received optogenetic activation of dopamine neurons via chan-

nelrhodopsin (ChR2) expressed in the ventral tegmental area of

the midbrain. In particular, optogenetic activation was applied

either coincident with the onset of X on AC! X trials, or (as a

temporal control) 120–180 s after X on AD! X trials. Another

control group of animals received the same training and opto-

genetic activation, but expressed light-insensitive enhanced

yellow fluorescent protein (eYFP).

A blocking effect was discernible in the control (eYFP)

group, whereby A reduced acquisition of conditioned

responding to C and D, compared to F, which was trained

in compound with a novel stimulus (figure 3b). The blocking

effect was eliminated by optogenetic activation in the exper-

imental (ChR2) group, specifically for C, which received

activation coincident with X. Thus, activation of dopamine

neurons was sufficient to drive stimulus–stimulus learning

in a temporally specific manner.

These findings raise a number of questions. First, how

does one explain blocking of stimulus–stimulus associations?

http://rspb.royalsocietypublishing.org/
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Second, how does one explain why dopamine affects this

learning in the apparent absence of new reward information?

In answer to the first question, we can appeal to an analogy

with blocking of stimulus–reward associations. The classic

approach to modelling this phenomenon is to assume that

each stimulus acquires an independent association and that

these associations summate when the stimuli are presented in

compound [60]. While there are boundary conditions on this

assumption [61], it has proven remarkably successful at captur-

ing a broad range of learning phenomenon, and is inherited by

TD models with linear function approximation (e.g. [16,22,62]).

Summation implies that if one stimulus (A) perfectly predicts

reward, then a second stimulus (C) with no pre-existing associ-

ation will fail to acquire an association when presented in

compound with A, because the sum of the two associations

will perfectly predict reward and hence generate an RPE of

0. The same logic can be applied to stimulus–stimulus learning

by using linear function approximation of the SR, which

implies that stimulus–stimulus associations will summate

and hence produce blocking, as observed by Sharpe et al. [39].

In answer to the second question, we argue that dopamine is

involved in stimulus–stimulus learning because it reflects a mul-

tifaceted SPE, as described in the previous section. By assuming

that optogenetic activation adds a constant to the SPE (see

Methods), we can capture the unblocking findings reported by

Sharpe and colleagues (figure 3c). The mechanism by which

optogenetic activation induces unblocking is essentially the

same as the one suggested by the results of Steinberg et al. [9]

for conventional stimulus–reward blocking: by elevating the

prediction error, a learning signal is engendered where none

would exist otherwise. However, while the results of Steinberg

and colleagues are consistent with the original RPE hypothesis

of dopamine, the results of Sharpe et al. [39] cannot be explained
by this model and instead require the analogous dopamine-

mediated mechanism for driving learning with SPEs.

In addition to establishing the sufficiency of dopamine

transients for learning, [39] also established their necessity,

using optogenetic inactivation. In a variation of the sensory

preconditioning paradigm (figure 4a), two pairs of stimulus–

stimulus associations were learned (A! X and B! Y). Sub-

sequently, X and Y were paired with different reward

flavours, and finally conditioned responding to A and B was

evaluated in a probe test. In one group of animals expressing

halorhodopsin in dopamine neurons (NpHR), optogenetic

inhibition was applied coincident with the transition bet-

ween the stimuli on B! Y trials. A control group expressing

light-insensitive eYFP was exposed to the same stimulation

protocol. Sharpe and colleagues found that inhibition of

dopamine selectively reduced responding to B (figure 4b), con-

sistent with our model prediction that disrupting dopamine

transients (a negative prediction error signal) should attenuate

stimulus–stimulus learning (figure 4c).
4. Limitations and extensions
One way to drive a wedge between model-based and model-

free algorithms is to devalue rewards (e.g. through pairing

the reward with illness or selective satiation) and show effects

on previously acquired conditioned responses to stimuli that

predict those rewards. Because model-free algorithms like

TD learning need to experience unbroken stimulus–reward

sequences to update stimulus values, the behaviours they sup-

port are insensitive to such reward devaluation. Model-based

algorithms, in contrast, are able to propagate the devaluation

to the stimulus without direct experience, and hence allow

behaviour to be devaluation-sensitive. Because of this, deva-

luation-sensitivity has frequently been viewed as an assay of

model-based RL [48].

However, such sensitivity can also be a property of SR-based

RL, since the SR represents the association between the stimulus

and food, and is also able to update the reward function of the

food as a result of devaluation. Thus, like model-based accounts,

an SR model can account for changes in previously learned

behaviour to reward-predicting stimuli after devaluation, both

in normal situations [42,43] and when learning about those

stimuli is unblocked by dopamine activation [63]. However,

the SR model cannot spontaneously acquire transitions between

states that are not directly experienced [42,43]. With this in mind,

we consider the finding that reward devaluation alters the

learning induced by activation of dopamine neurons in the

sensory preconditioning paradigm of Sharpe et al. [39].

A key aspect of the reward devaluation procedure is that

the food was paired with illness after the end of the entire pre-

conditioning procedure and in the absence of any of the stimuli

(and in fact not in the training chamber). In the SR model, only

stimuli already predictive of the food can change their values

after devaluation. In the paradigm of Sharpe and colleagues, X

was associated with food but C was not. Moreover, C was

associated with X before any association with food was

established. Because of this, C is not updated in the SR

model to incorporate an association with food. It follows

that, unlike the animals in Sharpe et al. [39], the model will

not be devaluation-sensitive when probed with C (figure 5c).

It is possible to address this failure within our theoretical

framework in a number of different ways. One way we
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considered was to allow optogenetic activation to increment

predictions for all possible features, instead of being restricted

to recently active features by a feature eligibility trace (see

Methods), as in the simulations thus far. With such a promiscu-

ous artificial error signal, the model can recapitulate the

devaluation effect, because C would then become associated

with food (along with everything else) in the preconditioning

phase itself. The problem with this work-around is that it

also predicts that animals should develop a conditioned

response to the food cup for all the cues during precondition-

ing, since food cup shaping prior to preconditioning seeds

the food state with reward value. As a result, any cue paired

with the food state immediately begins to induce responding

at the food cup. Such behaviour is not observed, suggesting

that the artificial update caused by optogenetic activation of

the dopamine neurons is locally restricted.

A second, more conventional way to address this failure

within our theoretical framework is to assume that there is

some form of offline rehearsal or simulation that is used to

update cached predictions [33,64,65]. Russek et al. [43] have

shown that such a mechanism is able to endow SR-based

learning with the ability to retrospectively update predictions

even in the absence of direct experience. A minimal imple-

mentation of such a mechanism in our model, simply by

‘confabulating’ the presence of X during reward devaluation,

is sufficient to capture the effects of devaluation following

optogenetic activation of dopamine neurons (figure 5d). This

solution makes the experimental prediction that the devalua-

tion-sensitivity of this artificially unblocked cue should be

time-dependent, under the assumption that the amount of

offline rehearsal is proportional to the retention interval.
5. Discussion
The RPE hypothesis of dopamine has been one of theoretical

neuroscience’s signature success stories. This paper has set

forth a significant generalization of the RPE hypothesis
that enables it to account for a number of anomalous phenom-

ena, without discarding the core ideas that motivated the

original hypothesis. The proposal that dopamine reports

a SPE is grounded in a normative theory of RL [40], motiva-

ted independently by a number of computational [43,66],

behavioural [42,67,68] and neural [44,45,69,70] considerations.

An important strength of the proposal is that it extends

the functional role of dopamine beyond RPEs, while still

accounting for the data that motivated the original RPE

hypothesis. This is because, if reward is treated as a sensory fea-

ture, then one dimension of the vector-valued SPE will be the

RPE. Indeed, dopamine SPEs should behave systematically

like RPEs, except that they respond to features: they should

pause when expected features are unexpectedly omitted, they

should shift back to the earliest feature-predicting cue, and

they should exhibit signatures of cue competition, such as over-

expectation. SPEs are used to update cached predictions,

analogous to the RPE in model-free algorithms. However,

these cached predictions extend beyond value to include infor-

mation about the occupancy of future states (the SR). The SR

can be used in a semi-flexible manner that allows behaviour

to be sensitive to changes in the reward structure, such as

devaluation by pairing a reward with illness. As a result,

even if dopamine is constrained by the model proposed here,

it would support significantly more flexible behaviour than

supposed by classical model-free accounts [15,16], even with-

out moving completely to an account of model-based

computation in the dopamine system [50].

Nevertheless, the theory proposed here—particularly if it

incorporates offline rehearsal in order to fully explain the

results of Sharpe et al. [39]—does strain the dichotomy between

model-based and model-free algorithms that has been at the

heart of modern RL theories [48]. However, as noted earlier,

SR requires offline rehearsal to incorporate the effects of deva-

luation after preconditioning in Sharpe et al. or manipulations

of the transition structures of tasks [42]. If these effects, and par-

ticularly dopamine’s involvement in them, are mediated by an
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SR mechanism, then we should be able to interfere with it by

manipulating retention intervals or attention [33]. For example,

the strength of devaluation sensitivity in Sharpe et al. should

be diminished by a very short retention interval prior to

the probe test, since this would reduce time available for

rehearsal. If these effects do not show any dependence on the

length of the retention interval, then this would be more con-

sistent with model-based algorithms, which do not require

any rehearsal.

Another testable prediction of the theory is that we

should see heterogeneity in the dopamine response, reflect-

ing the vector-valued nature of the SPE. Importantly, such

tuning need not be statistically evident in the spiking of an

individual neuron. It might show up in the pattern of

response across the entire population or even in subpopu-

lations determined by target or other criteria. Indeed,

target-based heterogeneity is already evident in some studies

of dopamine release or function in downstream regions

[63,71,72]. Related to this, the theory also predicts the existence

of a negative SPE to allow reductions in the strength of weights

in the SR. In its simplest form, the omission of an expected

stimulus could result in suppression of firing, analogous to

reward omission responses [16]. However, this effect might

be subtle if SPEs are population-coded by the dopamine

signal, as suggested above; the negative SPE may simply

reflect a particular pattern across the population rather than

overt suppression at the level of single neurons. Distinctive

patterns of activity identifying the source of the error and dif-

ferentiating the addition of information versus its omission

sets our proposal apart from explanations based on salience

signals, which are typically thought to be both non-specific

and unsigned [73]. These predictions set an exciting new

agenda for dopamine research by embracing a broader

conception of dopamine function.

While we have focused on dopamine in this paper,

a complete account will obviously need to integrate the compu-

tational functions of other brain regions. Where does

information relevant to computing SPE’s come from? One

obvious possibility is from sensory regions. Sensory areas

respond both to and in expectation of external events [74,75],

and these areas send input to brainstem, thus they are posi-

tioned to feed information to the dopaminergic system.

Beyond this, the hippocampus and orbitofrontal cortex seem

likely to be particularly important. Many lines of evidence

are consistent with the idea that the hippocampus encodes a

‘predictive map’ resembling the SR [44]. For example, hippo-

campal place cells alter their tuning with repeated experience

to fire in anticipation of future locations [76], and fMRI studies

have found predictive coding of non-spatial states [45,77]. The

orbitofrontal cortex has also been repeatedly implicated in pre-

dictive coding, particularly of reward outcomes [78,79], but

also of sensory events [80], and the orbitofrontal cortex is criti-

cal for sensory-specific outcome expectations in Pavlovian

conditioning [81]. Wilson et al. [82] have proposed that the orbi-

tofrontal cortex encodes a ‘cognitive map’ of state space, which

presumably underpins this diversity of stimulus expectations.

Thus, evidence suggests that both hippocampus and orbito-

frontal cortex encode some form of predictive representation

[83]. Further, dopaminergic modulation of these regions is

well-established [84,85]. It is tempting to speculate that afferent

input from and dopaminergic modulation of the hippocampus

and orbitofrontal cortex may be especially critical to the SPE

function proposed here.
The influence of these representations may be filtered

through interactions with more basic value representations in

striatum. This proposal fits with the observation that the hippo-

campus and orbitofrontal cortex appear to confer stimulus

specificity on value-sensitive neurons in the striatum [86,87].

Striatal value representations are already proposed to influence

activity in VTA [88]. By this model, dopamine would still pro-

vide the RPE signal that drives striatal plasticity related to

actions or ‘value’, as in most contemporary accounts, but in

addition it would provide an SPE signal to update associative

representations, perhaps in striatum but also in upstream orbi-

tofrontal and hippocampal areas, which feed into the striatum.

While speculative, this idea is consistent with findings showing

heterogeneity of dopamine function based on projection target,

at least within striatum [63,71]. It is also consistent with recent

human imaging work, confirming the presence of an SPE-like

signal in human VTA, and reporting that the strength of this

signal during learning is correlated with the strength of new

sensory-sensory correlates developed in the orbitofrontal

cortex [70].

The view that dopamine reports the SR prediction error

provides a bridge between sensory and RPE accounts of dopa-

mine function. The tension between these views has long vexed

computational theories, and has posed particular problems for

pure RPE accounts of dopamine. We see our model as the first

step towards resolving this tension. While we have shown that

the notion of a generalized prediction error is consistent with a

wealth of empirical data, this is just the beginning of the

empirical enterprise. Armed with a quantitative framework,

we can now pursue evidence for such prediction errors with

greater precision and clarity.
6. Methods
(a) Linear value function approximation
Under the linear function approximation scheme described in the

Results, the value function estimate is given by

V̂(st) ¼
X

i

fi(st)
X

j

U(j)Wij, (6:1)

where U( j ) is the reward expectation for feature j, updated

according to a delta rule,

DU(j) ¼ aUfj(st)[rt � V̂(st)], (6:2)

with learning rate aU.

In the electronic supplementary material’s figures, we report

simulations of the value-based TD learning algorithm, TD(0),

which approximates the value function using linear function

approximation

V̂(st) �
X

j

wjfj(st), (6:3)

and updates the weights according to

Dwj ¼ afj(st)[rt þ gV̂(stþ1)� V̂(st)]: (6:4)
(b) Excitatory and inhibitory asymmetry in the TD
error term

There is a large body of evidence in associative learning

suggesting an imbalance between excitatory and inhibitory

learning [89,90]. Mirroring this imbalance is an asymmetry
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in the dynamic range of the firing rate of single dopaminergic

neurons in the midbrain [2]. In accordance with these obser-

vations, we assume that the error terms (DWij and DUj) are

rescaled by a factor of 1
4 for negative prediction errors. This is

equivalent to assuming separate learning rates for positive and

negative prediction errors [91]. Note that, following prior theor-

etical work (e.g. [16]), we consider negative prediction errors to

be coded by real neurons relative to a baseline firing rate,

acknowledging the fact that neurons cannot produce negative

firing rates.

(c) Simulation parameters
We used the following parameters in the simulations of SR:

g ¼ 0:95, aW ¼ 0:06, aU ¼ 0:03, where aW is the learning rate

for the weight matrix W, aU is the learning rate for the reward

function, and g is the discount rate. For the model-free TD learn-

ing algorithm simulations, we used the following parameters:

g ¼ 0:95, a ¼ 0:05. We used the same set of parameters across

all simulations. However, our results are largely robust to

variations in these parameters.

(d) Modelling optogenetic activation and inhibition
Optogenetic intervention was modelled by modifying the TD

error as follows:

dM
t (j) ¼

(1þ h)dM
t (j) h, 0

[fj(st)hþ dM
t (j) h. 0,

8<
: (6:5)
where h ¼ 1.0 for optogenetic activation and 2 0.8 for inhibition.

The asymmetry between the functions for activation and inacti-

vation was chosen to better match the hypothesized function of

optogenetic stimulation based on empirical findings. For positive

stimulation of dopamine, it is thought that the increased dopa-

mine activity should enhance learning with the currently active

features, which in the SR model is the fj(st) term. For optogenetic

inhibition of dopamine, we have found that punctate versus pro-

longed inhibition causes differential effects, with punctate

inhibition resulting in negative prediction errors and prolonged

inhibition resulting in shunting of the error signal [10]. Our inhi-

bition in the experiments included in this paper were prolonged,

necessitating a different model of the inhibitory optogenetic

manipulation.
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