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Humans spontaneously organize a continuous experience into discrete events and use the learned
structure of these events to generalize and organize memory. We introduce the Structured Event
Memory (SEM) model of event cognition, which accounts for human abilities in event segmentation,
memory, and generalization. SEM is derived from a probabilistic generative model of event
dynamics defined over structured symbolic scenes. By embedding symbolic scene representations in
a vector space and parametrizing the scene dynamics in this continuous space, SEM combines the
advantages of structured and neural network approaches to high-level cognition. Using probabilistic
reasoning over this generative model, SEM can infer event boundaries, learn event schemata, and use
event knowledge to reconstruct past experience. We show that SEM can scale up to high-
dimensional input spaces, producing human-like event segmentation for naturalistic video data, and
accounts for a wide array of memory phenomena.
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Although sensory input arrives continuously, our subjective
experience is punctuated by the perception of events with
identifiable beginnings and ends (Radvansky & Zacks, 2014).
These event representations are abstract and schematic, tran-
scend specific sensory details, and allow us to generalize our
knowledge across time and space. By distilling the latent struc-
ture underlying the sensory stream, event representations can be

used to reconstruct the past, comprehend the present, and pre-
dict the future.

Despite the centrality of events in human cognition, there has
been a notable dearth of formal models. This speaks in part to
the scope and complexity of the modeling challenge; in some
ways, a theory of event cognition is a theory of cognition writ
large. In this study, we take on the challenge, developing an
integrated model that explains how humans segment, remember
and generalize events. We frame event cognition in the lan-
guage of statistical theory and argue that events serve to orga-
nize and structure continuous experience. This structure, and
the generalization it affords, explains many of the empirical
phenomena observed in event cognition. Along the way, we
touch upon broader issues in cognitive science, including the
need for structured representation, probabilistic reasoning, and
parallel distributed processing. Our approach synthesizes ideas
from symbolic and neural network modeling traditions, dem-
onstrating how these ideas can work together to produce
human-like competence in event cognition.

In what follows, we first summarize key empirical findings in
the human event cognition literature and discuss existing the-
oretical treatments. We then lay out a general computational-
level analysis, framing event cognition in terms of a common
probabilistic generative model of events that can be inverted for
different computations. This analysis forms the basic architec-
ture of our model, which we then elaborate with a number of
specific assumptions about the underlying dynamics, represen-
tations, storage and retrieval processes, and inductive biases. In
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the Results, we put the model to work, simulating a range of
empirical phenomena. In the Discussion, we consider the
strengths and weaknesses of our modeling framework, how it
compares to previous theoretical treatments, and directions for
future work.

Theoretical and Empirical Background

A comprehensive theory of human event cognition must address
the following questions:

• Segmentation: How do people identify event boundaries
from the continuous sensory stream?

• Learning: How do people acquire knowledge about the
internal structure of events from experience?

• Inference: How do people use their knowledge of events to
make inferences about unobserved properties of the
world?

• Prediction: How do people use their knowledge of events
to make predictions about the future?

• Memory: How do people use their knowledge of events to
reconstruct the past?

Here we briefly review the empirical data and theoretical ideas
pertaining to each of these questions.

Segmentation

Event segmentation has been primarily studied using subjective
judgments about event boundaries in movies and text. These
judgments are consistent between subjects (Newtson & Engquist,
1976; Zacks, Tversky, & Iyer, 2001) and tend to track feature
changes (Hard, Tversky, & Lang, 2006) or important statistical
(Baldwin, Andersson, Saffran, & Meyer, 2008; Schapiro, Rogers,
Cordova, Turk-Browne, & Botvinick, 2013) and causal boundaries
(Baldwin et al., 2008; Radvansky, 2012). This process appears to
happen automatically and is identifiable in fMRI signals even in
the absence of an explicit segmentation task (Baldassano et al.,
2017; Speer, Zacks, & Reynolds, 2007).

According to Event Segmentation Theory (EST; Radvansky &
Zacks, 2011; Zacks, Speer, Swallow, Braver, & Reynolds, 2007),
people maintain an active representation of the event structure (the
current model) that they use both to interpret the current situation
and to predict what will happen within each event. When these
predictions are violated, a prediction error signals the occurrence
of an event boundary (Zacks et al., 2001; Zacks, Kurby, Eisenberg,
& Haroutunian, 2011). This idea has been implemented in a neural
network model of event segmentation (Reynolds, Zacks, & Braver,
2007), which used a context layer within a recurrent neural net-
work to represent an event model. The activity of the context layer
modulates the activity of the hidden layers of the network, thus
varying the predicted dynamics by events. This architecture is
similar to gating mechanisms long used in recurrent network
models (Hochreiter & Schmidhuber, 1997). When simulated on a
three-dimensional motion capture data set consisting of several
short movements of a single person (e.g., chopping wood) concat-
enated together, prediction error in the model corresponded with
transitions between events, and was used to signal updates of the
context layer.

Other models of events have applied recurrent neural networks
to the task of predicting the next item in a sequence. Schapiro and

colleagues (2013) examined whether transition uncertainty in the
environment was necessary for an event boundary. One prediction
of the Reynolds model is that if a transition between two scenes is
highly unpredictable then this will correspond to an event bound-
ary. Alternatively, Schapiro and colleagues proposed that human
event boundaries respect graph community structure, which can be
dissociated from the predictability of scene transitions. They de-
signed a task in which stimuli were drawn from a graph with
multiple communities and, crucially, transitions between and
within communities were equally probable. Thus, if people learn
the underlying transition dynamics, then transitions between
scenes will not generate a larger prediction error crossing a com-
munity boundary than other transitions. Nonetheless, subjects were
able to identify community boundaries. Using a recurrent neural
network model, they found that the network represented stimuli
from the same community as more similar to each other, poten-
tially signaling an event boundary between communities through a
decrease in similarity.

A recent model by Elman and McRae (2019) considered how
events are learned and play out over time for certain classes of
well-defined events. They used a simple recurrent network (El-
man, 1990) with localist scene representations to model the se-
quential dependencies that constitute an event, and probed the
model’s internal representation. Trained on both toy events and
human-generated sequences, the model was able to generalize
between related events through co-occurrence statistics and devel-
oped meaningful internal representations.

Learning

The process by which people learn event structure is not well
understood, though several related lines of research offer some
suggestive clues. One such line of research is statistical learning,
proposed to explain how language learners come to delineate word
boundaries in continuous speech through unsupervised observation
(Aslin, Saffran, & Newport, 1998; Saffran, Aslin, & Newport,
1996) and since extended to nonlinguistic and nonauditory stimuli
(Fiser & Aslin, 2001; Kirkham, Slemmer, & Johnson, 2002; Saf-
fran, Johnson, Aslin, & Newport, 1999). In a typical statistical
learning task, subjects are presented with a sequence of objects and
tested on successively or simultaneously presented objects without
feedback. The probability distribution over sequences is poten-
tially an important cue for learning latent temporal structure, and
children and adults are able to use this structure when learning
(Saffran et al., 1996, 1999). Computational models of statistical
learning problems, such as word segmentation (Goldwater, Grif-
fiths, & Johnson, 2009), feature learning (Austerweil & Griffiths,
2011), and visual chunking (Orbán, Fiser, Aslin, & Lengyel, 2008)
have used Bayesian inference to group features into coherent
chunks.

We contrast the temporal structured learned in auditory statis-
tical learning tasks with relational structure, which considers sym-
bol binding and the relationship between objects (Halford, Wilson,
& Phillips, 1998; Hummel & Holyoak, 2003; Kemp, Tenenbaum,
Niyogi, & Griffiths, 2010). Arguably, visual statistical learning
requires relational structure (Austerweil & Griffiths, 2011), but
temporal and relational structure are nonetheless distinct. Events
are thought to contain both temporal and relational structure (Tver-
sky, Zacks, & Hard, 2008), and we would expect this structure to
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be unpredictable from low-level features (Richmond & Zacks,
2017). Bayesian models have been developed to explain relational
structure learning (Kemp et al., 2010; Kemp & Tenenbaum, 2008),
and we develop a variant of these models for learning event
schemata.

Neural networks also provide convenient models for learning
the types of sequential dependencies that constitute events. Typi-
cally, the sequential dependencies that constitute an event are
modeled with recurrent networks (Elman, 1990; Hochreiter &
Schmidhuber, 1997), which have strong theoretical guarantees in
terms of what they can learn (Siegelmann & Sontag, 1991, but see
Geman, Bienenstock, & Doursat, 1992), and have been empirically
effective in computational domains with long-term sequential de-
pendencies, such as language and reinforcement learning (LeCun,
Bengio, & Hinton, 2015). Because neural networks rely on distrib-
uted representations, they provide a basis for representing conceptual
similarity though vector similarity (Hinton, McClelland, & Rumel-
hart, 1986), and are well suited for smooth generalization. These
distributed representations can in some cases support symbolic struc-
ture via algebraic manipulation (Doumas & Hummel, 2005; Hummel
& Holyoak, 2003; Plate, 1995; Smolensky, 1990), which allows them
to encode the higher-order symbolic processes that constitute events.

Inference

Event structure can inform inferences people make about parts
of their environment they did not experience. As we move through
our natural world, we do not always have immediate perceptual
access to relevant features of our immediate surroundings. For
example, if a person hears a door open behind them, they can make
several inferences about the current scene that are relevant to the
ongoing event, even though they do not have full perceptual access
to each feature.

Inferences about events have historically been investigated with
reading and memory tasks in which a subject reads a narrative and
either reading time (Altmann & Mirković, 2009; McKoon &
Ratcliff, 1992) or memory (Bower, Black, & Turner, 1979; Brans-
ford, Barclay, & Franks, 1972) is used as a probe for their infer-
ences about unstated aspects of the event. One of the main themes
in the reading comprehension literature is that only a subset of
inferences are made online, specifically those that are necessary
for satisfying some notion of coherence in the text, although there
is disagreement about what exactly this entails (Graesser, Singer,
& Trabasso, 1994; McKoon & Ratcliff, 1992; Trabasso & Van
Den Broek, 1985). In the constructionist account (Graesser et al.,
1994), elements of the event model are used to fill in aspects of the
event when they are likely to be relevant, and these inferred
portions of the event are more quickly accessed and less surprising
when they subsequently occur. This implies an averaging effect
where inferences about the unstated aspects of an event reflect
commonly experienced configurations. This is conceptually simi-
lar to adaptive statistical biases seen in other domains, such as the
estimation of spatial location (Huttenlocher, Hedges, & Duncan,
1991).

Prediction

Event structure shapes predictions about the future. This can be
seen in serial reaction time (RT) tasks, in which subjects respond

to cues more quickly when they are generated from repeated,
predictable patterns than when they are generated as a random
sequence (Nissen & Bullemer, 1987). This form of prediction has
been argued to be implicit (Reber, 1989; Robertson, 2007) and is
consistent with earlier ideas that people learn dynamic schemata
such as scripts to guide their actions (Lashley, 1951; Schank &
Abelson, 1977).

There is also a long history of studying prediction in language
comprehension. While reading, subjects fixate less often and for
shorter durations on highly predictable words (Ehrlich & Rayner,
1981) and are slower to process unexpected words (Schwanenflu-
gel & Shoben, 1985). Words completing sentences in a nonsensi-
cal way elicit an N400 event-related potential, thought to signify a
surprising or unexpected stimulus (Kutas & Hillyard, 1984). Event
knowledge specifically appears to influence language comprehen-
sion (McRae & Matsuki, 2009); individual words cue event-based
knowledge (Altmann & Kamide, 1999; Hare, Elman, Tabaczynski,
& McRae, 2009; McRae, Hare, Elman, & Ferretti, 2005), and
combinations of words narrow the scope of perceived events
(Matsuki et al., 2011).

Neural measures also offer support for the proposal that people
continually leverage sequential structure to make online predic-
tions about upcoming experiences (Cohn, Jackendoff, Holcomb, &
Kuperberg, 2014; Schiffer & Schubotz, 2011). These predictions
are influenced by event structure. Behaviorally, people make better
predictions within an event than across event boundaries (Zacks et
al., 2011), and unpredictability across event boundaries is associ-
ated with prefrontal cortex, striatum, and hippocampus (Axmacher
et al., 2010; Lisman & Grace, 2005; Ranganath & Rainer, 2003;
Zacks et al., 2011). These findings are consistent with the hypoth-
esis that failure in prediction is used to signal event boundaries
(Reynolds et al., 2007; Zacks et al., 2007).

Memory

Memory can be both aided and impaired by knowledge of event
structure. Event boundaries induce selective trade-offs in memory
that depend on the exact study design and memory measure.
Sequential recall and temporal order memory are worse across
event boundaries than within events (DuBrow & Davachi, 2016,
2013; Heusser, Ezzyat, Shiff, & Davachi, 2018), but memory for
specific items has been found to be higher at event boundaries
(Heusser et al., 2018), and the presence of an event boundary can
increase overall recall (Pettijohn, Thompson, Tamplin, Krawietz,
& Radvansky, 2016). Moreover, individuals with better event
segmentation ability perform better on subsequent memory tests
(Sargent et al., 2013; Zacks, Speer, Vettel, & Jacoby, 2006). An
ongoing event appears to have a privileged role in memory as well,
as memory for items within an ongoing event is often better than
immediately following an event boundary in a way that is not
recovered by returning to the original context (Radvansky &
Copeland, 2006; Radvansky, Krawietz, & Tamplin, 2011).

The Event Horizon Model (Radvansky, 2012; Radvansky &
Zacks, 2014) offers a conceptual explanation for these findings.
According to this model, people track the causal structure of events
and use this structure to aid memory retrieval. This causal structure
leads to better memory for items overall but can lead to memory
interference under certain conditions, such as when recall depends
on retrieval of a single event model and the presence of multiple
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events can introduce noise. The Event Horizon Model further
hypothesizes that working memory maintains privileged access to
the current model, which thus results in better memory retrieval.
According to this account, sequential recall might be impaired
across event boundaries because it relies on two competitive event
models, whereas overall recall would be improved because it is
noncompetitive.

Event knowledge has also been implicated in false memory
paradigms (Bower et al., 1979; Bransford et al., 1972). In these
paradigms, subjects report remembering unstated details of a story
that were nonetheless consistent with the narrative. This effect is
parametric, such that more experiences with similar stories in-
crease script-consistent false memories (Bower et al., 1979). This
suggests that people use event knowledge to fill in the gaps of their
memory and are consistent with script theory in which people
organize sequential processes in terms of an abstract schema, or
script, that organizes perception and influences memory (Schank
& Abelson, 1977). Conceptually, this is similar to the idea of
pattern completion, where a partial memory trace is reconstructed
with reference to learned pattern of activity (McClelland, Mc-
Naughton, & O’Reilly, 1995; Norman & O’Reilly, 2003), and may
be adaptive if it facilitates inference about unobserved aspects of
an event.

Limitations of Previous Theoretical Accounts

Most previous theoretical accounts of event cognition have been
noncomputational (Radvansky, 2012; Radvansky & Zacks, 2014;
Zacks et al., 2007). Although these accounts provide valuable
theoretical insight into event perception and memory, they do not
offer the same level of detailed prediction as a computational
model. Computational accounts of events have typically focused
on event segmentation and learning the sequential dependencies
within events, often using recurrent neural networks. A model by
Reynolds, Zacks, et al. (2007) proposed that recurrent neural
networks could be used to learn event dynamics and event bound-
aries using prediction error as a signal for both. In this account,
event boundaries are driven by prediction error, or a discontinuity
in what was expected by the event model and what was observed.
This model was challenged by Schapiro et al. (2013), who argued
that the Reynolds model implied event boundaries driven by
environmental unpredictability. Schapiro and colleagues demon-
strated empirically that subjects delineate event boundaries reflect-
ing underlying community structure even when equated for uncer-
tainty. They further showed that a recurrent neural network would
implicitly learn this community structure in the absence of an
explicit segmentation mechanism and argued against the predic-
tion error account.

Although the Reynolds et al. (2007) and Schapiro et al. (2013)
models provide competing accounts of event segmentation, neither
model fully explores the generalization of event dynamics nor
incorporates structure into their representations. This limits their
ability to explain data on script memory and text comprehension,
and it has been further argued that structured event representations
are a better account of human generalization (Goodman, Ullman,
& Tenenbaum, 2011; Kemp & Tenenbaum, 2008; Richmond &
Zacks, 2017).

A recent model by Elman and McRae (2019) proposes a simple
recurrent network as a model of event dynamics and examines how

the representation in the network changes across time in a toy
structured world. Interestingly, the model can infer missing fillers
in their appropriate roles based on historical co-occurrence statis-
tics. When the model is trained on multiple event types, it can
generalize between them by leveraging a shared representational
space. This model uses localist representations of symbolic struc-
ture, which may not scale to naturalistic data sets. Furthermore,
because the model is concerned with learning the internal structure
of events, there is no explicit mechanism to identify an individual
event or determine its boundaries.

In all of these computational models, events are modeled as
dynamical processes that unfold over time. To our knowledge,
how these processes interact with memory has not been addressed
with computational modeling. The Temporal Context Model
(Howard & Kahana, 2002) and the related Context Maintenance
and Retrieval model (Polyn, Norman, & Kahana, 2009) treat
memory as a dynamical process in which an evolving context
induces a temporal organization in memory. These models suggest
dynamics similar to what we would expect when learning events
but do not provide a mechanism for partitioning events. Related
models of memory support some forms of inference (e.g., Nelson
& Shiffrin, 2013; Shiffrin & Steyvers, 1997), but these models
tend not to incorporate the dynamical processes that define events.

Finally, no prior computational model of event cognition has
attempted to explain naturalistic data (e.g., real videos). Although
the use of naturalistic data is not a theoretical challenge to any
prior model of event segmentation, it is nonetheless an important
practical consideration. To validate our computational theories of
cognition, we should strive to show that they scale to real-world
problems. Otherwise, it is not clear whether our models of cogni-
tion work only when constrained to artificial tasks. More broadly,
although several computational models have addressed parts of
event cognition, to our knowledge no model has attempted to
address all aspects of the problem.

The Structured Event Memory Model

We propose a model, Structured Event Memory (SEM), which
systematically addresses the five desiderata for understanding
event cognition (segmentation, learning, inference, prediction,
memory), overcoming the limitations of prior models.

Our model is a computational-level analysis of event segmen-
tation and memory that frames these tasks in terms of probabilistic
reasoning. At a high level, our model assumes that people organize
scenes into events that are defined by a shared temporal structure.
People use the temporal structure of events to organize their
perception, simultaneously learning this structure while using it to
predict. We further propose that people use this learned event
structure to aid reconstructive memory by compensating for infor-
mation loss with the predictable temporal structure of events.

The model has several key computational mechanisms. First, we
use a distributed representation to encode the structure of individ-
ual scenes. By scenes, we mean a description of the environment
containing a relevant set of objects and the relations between them
(similar to a situation in a situation model). For example, for a
person watching a movie, a scene might be the experience of
sitting in a dark room holding popcorn, or it might describe the
arrangement of characters on the screen and its setting. In the
context of a psychological study, a scene might describe stimuli
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currently on a screen and the context of sitting in front of a
computer.

We model events as stochastic dynamical processes over these
scenes. Each event token is a sample from this process, associated
with a sequence of scenes. The learned event dynamics are used to
organize scenes into distinct event types (analogous to a script or
event schema) via a clustering process where the statistics of
similar event tokens are pooled for the purpose of learning and
generalization. Finally, we assume these learned structures are
used to improve a capacity limited, and thus noisy, memory by
regularizing noisy memory traces toward prototypes defined by
each event type.

Each of these computational mechanisms has a different math-
ematical instantiation, and their interlocking behavior is key to our
normative account of events (see Figure 1). To embed the structure
of individual scenes as vectors, we use holographic reduced rep-
resentations (Plate, 1995), allowing us to encode logical structure
while maintaining the advantages of distributed systems. We
model event dynamics with a recurrent neural network defined
over the holographic embeddings. Scenes are assigned to particular
events via a Bayesian clustering process. Event dynamics and
clustering scenes into events are two distinct forms of temporal
structure that complement each other. Clustering scenes into
events allows for rapid generalization and efficient credit assign-
ment whereas learning the dynamics of events with recurrent
neural networks represents an internal temporal structure within
each event. Memory is instantiated through a form of Bayesian
smoothing, in which a set of noisy memory traces is combined
with learned event dynamics in a probabilistic reconstruction pro-
cess. We now discuss these components in more detail.

A Generative Model of Events

We make the following assumptions about events:

1. Humans do not know a priori how many distinct event
types there are; this must be discovered from the data.

2. Humans attempt to reuse previously learned event mod-
els whenever possible. This constitutes a simplicity bias
in the sense of Ockham’s razor, which facilitates gener-
alization between events.

3. Events are temporally persistent, such that there is a high
probability that any two consecutive moments in time are
in the same event.

4. Events define dynamical systems, generating predictions
of successor scenes as a function of the current scene.

5. Events have latent structure: each instance of an event (and the
scenes within events) may be unique with respect to specific
percepts but nonetheless shares a latent structure (such as the
relationships between objects) with similar events.

6. Events are used in memory retrieval to regularize noisy
memory traces. Event knowledge can compensate for
missing or corrupted information in a memory trace by
filling in the gaps using knowledge about event structure.

Assumptions 1, 2, and 3 stipulate constraints on the genera-
tive process that produces observed scenes. We now describe

Figure 1. Generative model of events. Events are assumed to follow their own evolution, defined by a sticky
Chinese Restaurant Process (sticky-CRP), and to constrain the dynamics of scenes. These scenes combine both
structured and unstructured information in distributed representations using holographic reduced representations
(HRRs). Recurrent neural networks are used to learn the nonlinear dynamical system that defines the dynamics
within individual events.
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how these constraints can be translated into a mathematical
model.

A simple Bayesian nonparametric process known as the sticky
Chinese restaurant process satisfies the first three assumptions (sticky-
CRP; Fox, Sudderth, Jordan, & Willsky, 2011; Gershman, Radulescu,
Norman, & Niv, 2014).1 The sticky-CRP is a generative process that
sequentially assigns time points to events according to past event
frequency and recency while, as a nonparametric process, maintaining
some probability that a new event will be generated at each moment
in time (cf. assumption 1). The sticky-CRP and related processes are
commonly used as the prior in nonparametric clustering algorithms, in
which they function as a probability distribution over partitions (Fox
et al., 2011). Later, we will invert our generative model of events for
the same purpose and use the sticky-CRP as a prior over the assign-
ment of scenes into events.

Under the sticky-CRP, higher-frequency events are more likely
to be repeated than low-frequency events, and events are likely to
be repeated sequentially (Figure 2). Formally, at time n the next
event en is drawn from the following distribution:

Pr(en � k | e1:n�1) � �Ck � �I[en�1 � k] if k � K
� if k � K � 1

(1)

where en is the event assignment, K is the number of distinct event
types in e1:n�1, I [·] � 1 if its argument is true (0 otherwise), and
Ck is the number of previous time points assigned to event k. The
concentration parameter � � 0 determines the simplicity bias (cf.
assumption 2); smaller values of � favor fewer distinct events. The
stickiness parameter � 	 0 determines the degree of temporal
autocorrelation (cf. assumption 3); higher values of � favor stron-
ger autocorrelation.

The remaining assumptions relate to the nature of event
schemata (assumptions 4 and 5) and memory retrieval (assump-
tion 6). In the following sections, we discuss how these as-
sumptions can be instantiated in a computational model. First,
we discuss the representational space in which event models, as
dynamical systems, operate (cf. assumption 4). Representation
is critical for generalization, and to that end, we discuss a
structured representation in vector space that facilitates gener-
alization via continuous functions. We then discuss event dy-
namics and how they are learned, how event segmentation
occurs in the model. Finally, we present our model of event
memory.

Scene Representations

We assume that event schemata define dynamical processes over
scenes, in which the event model is used to generate a prediction
about the next scene given the recent history of scenes. Formally, we
define a function that takes in a scene s � S and returns a successor
scene s�. We further assume that for each scene s, there exists a
distributed (vector) representation x � �d. Whereas a scene can be
thought of as a ground-truth description of the external world, x can
be thought of as a representation of the features of s relevant to an
agent.

A core assumption is that the vector representation of the scene
is distributed and encodes features in a similarity space (Goodfel-
low, Bengio, & Courville, 2016). For example, if cat and dog have
meaningful representations, they may share several features en-
coded in the space, such as isSmall and isFurry. As pure symbols,

cat and dog are as distinct from each other as any other pair of
symbols. As a consequence of this similarity space, similar scenes
have similar vectors such that the vector representation of dog is
close in Euclidean space to the vector representation of cat.

A primary motivation for using distributed representations is
that they facilitate smooth generalization. As we will discuss in the
next section, defining scenes in vector space allows us to param-
etrize event dynamics over arbitrary scenes. We will assume that
these event dynamics are smooth, such that if f is a function that
represents the event dynamics and x � y, then f will generally have
the property f(x) � f(y) (Goodfellow et al., 2016). An embedding
space that encodes similar scenes with similar vectors will facili-
tate this type of generalization naturally with parameterized func-
tions; by contrast, were we to use a tabular representation, we
would have to define transitions over an intractably large discrete
space that does not permit smooth generalization.

Distributed representations have the further advantage that they
are representationally compact. A purely symbolic representation
encodes a dimension for each binary feature, whereas a distributed
representation can take advantage of the correlational structure to
encode scenes in a lower-dimensional space (Goodfellow et al.,
2016). This is related to dimensionality reduction, in which a
representation is projected into a low-dimensional space that pre-
serves relevant features and discards irrelevant features. This prop-
erty is important for computational reasons, as it is computation-
ally intractable to estimate dynamical systems in high dimensional
spaces, and event dynamics may be more easily learnable in an
appropriately chosen low-dimensional representation (Richmond
& Zacks, 2017). As a practical matter, we need a principled way
to construct a low-dimensional scene representation to model
naturalistic data sets. Later in the paper we will present simulations
with video data and show that convolutional neural networks are
well suited to this task for visual domains (Fukushima, 1980;
Kietzmann, McClure, & Kriegeskorte, 2018); LeCun et al., 2015.
Low-dimensional representations can be learned in visual data
with unsupervised methods (Hou, Shen, Sun, & Qiu, 2017; Rad-
ford, Metz, & Chintala, 2015). In our simulations, we use a
variational autoencoder (VAE; Kingma & Welling, 2013), an
unsupervised convolutional neural network, to learn the represen-
tational space (see Appendix A for details). We note that although
the representation of scenes is important for our theoretical model,
we are agnostic to the specific details of how it is learned in the
brain.

In addition to these unstructured features of scenes, we further
assume that scenes encode relational structure. By this, we mean
that scenes contain relational information about how particular
fillers are bound to particular roles (Radvansky & Zacks, 2011).
For example, if a person is holding a phone, the scene would
contain not just a reference to the objects person and phone, but
also a specific binding between the objects and their roles in the
relationship holding. A faithful vector representation of structured
scenes would contain this structure when relevant. There are
several ways binding can be implemented in vector spaces, such as
using tensor products (Smolensky, 1990), holographic reduced
representations (Plate, 1995), or binding by synchrony (Hummel &

1 For an explanation of this culinary metaphor, see Gershman and Blei
(2012).
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Holyoak, 2003). To be clear, we are not claiming that symbolic
computation is necessary for all event representations. Undoubt-
edly, unstructured (nonrelational) features play an important role.
One might expect, for example, that a sudden change in the
amount of ambient light might correspond to an event boundary.
The importance of these unstructured features partially motivates
encoding symbolic structure in distributed representations, as it
allows us to combine both in a single scene representation.

In this paper, we will focus on holographic reduced representa-
tions (HRRs), a member of a family of representations known as
vector symbolic architectures (Gayler, 2004). Unlike scalar mul-
tiplication, the tensor (outer) product of two vectors is not com-
mutative, such that the tensor product of two vectors encodes order
information. This property is sufficient for a binding operation, but
tensor products do not scale well with multiple terms. Vector
symbolic architectures get around this problem by using a com-
pressed form of the tensor product as a binding operation. The
HRR, for example, uses circular convolution. In addition, inde-
pendent terms can be combined with vector addition, thus allowing
a scene with multiple bound terms to be represented with a vector
of fixed dimensionality, regardless of the complexity of the un-
derlying formula.

Concretely, consider the expression “dog chases cat.” This takes
the logical form chase(dog, cat), where dog occupies the agent role

and cat occupies the patient role. If we have vectors representing
both roles and fillers (where our fillers are dog, cat and chase and
our roles are agent, patient and verb), then the scene vector is
constructed according to:

x � dog ⊛ agent � chase ⊛ verb � cat ⊛ patient

where ⊛ denotes circular convolution. The underlying compo-
nents can be approximately decoded using circular correlation, a
simple algebraic operation, directly from the composed scene
vector (see Plate, 1995, for details).

The HRR is convenient because both the encoding operation
and approximate decoding operation can be accomplished by
efficient algebraic manipulations. Furthermore, the operations of
HRRs preserve the similarity of the composed terms (see Appen-
dix B for details), meaning that structural properties can be en-
coded as features of the embedding space. For example, we can
decompose a term as a linear combination of structured and
unstructured features, such as

cat � acceptAgent � acceptPatient � isSmall � isFurry � . . .

where the features acceptAgent, acceptPatient correspond to valid
relational roles isSmall, isFurry are unstructured features. If the
term dog corresponds to a similar vector with shared composed
features, then a scene composed with dog will be similar to a scene

Figure 2. Samples from the generative process of events under different parameter regimes. Each row in each panel
is a single draw from the process across time. Colors indicate when different event schemata are active. High values
of the concentration parameter � (bottom row) lead to more unique events. High values of the stickiness parameter
� (right column) lead to longer event durations. See the online article for the color version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

333STRUCTURED EVENT MEMORY



composed with cat. Concretely, the scene chase(cat, mouse) will
be close in vector space to the scene chase(dog, mouse) because of
the similarity of the fillers. We assume that each unique object is
represented as the same vector across multiple scenes. For exam-
ple, two different cats would be represented with two different (but
similar vectors) whereas a single cat would be represented across
time with a single vector. This encoding scheme also allows
properties of an individual token to change, for example, if a cat is
dry in one scene and wet in the next, the vector representation of
the dry cat can be modified to encode this new property by adding
a new feature isWet through vector addition. These representations
would be similar but nonetheless distinct, representing the change
in the token over time. As noted above, this representation facil-
itates smooth generalization of event dynamics by parameterized
functions. Finally, it is worth noting that the composed terms of an
HRR are not precisely equivalent to a logical representation, but
are approximations, as the circular convolution necessarily loses
information to preserve dimensionality. In practice, these concerns
are minor, as the capacity of HRRs to encode unique symbols is
quite high (Eliasmith, 2013) and can be augmented through per-
mutation of the underlying terms (Kelly, Blostein, & Mewhort,
2013).

An important question that we have not addressed is how
structured representations can be learned. For the purpose of the
current work, we are largely concerned with how structured vector
spaces are important in event cognition and are not making strong
commitments as to how they are learned. We assume these repre-
sentations where noted and construct them by drawing Gaussian
random vectors for each independent feature, conjoining these
features with vector addition. In the cat example above, we would
draw the random vectors for all of the features acceptAgent,
acceptPatient, isSmall, and isFurry and compose them with vector
addition to create the full symbol cat. This creates the desired
vector space in which symbols have independent linear compo-
nents. Similar predicate representations are common in connec-
tionist models of semantic cognition (Rogers & McClelland,
2005). Moreover, vector spaces with independent linear compo-
nents are learnable with fully unsupervised methods, as both word
(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013) and visual
scene embeddings (Radford et al., 2015) often have this property.

Event Dynamics

We model event schemata as dynamical systems over sce-
nes: the probability of observing a successor scene sn	1 given
the current scene sn is conditioned on the event en such that
Pr(Sn	1 | Sn, e), where sn is the scene at time index n. In SEM, we
assume this probability distribution is defined with a smooth
function f over the embedded scenes and parameterized by 
e, such
that

Pr(xn�1 | x1:n, e) � N(xn�1; f(x1:n; 
e), diag(�)) (2)

where � is a vector of noise variance parameters (one for each
feature dimension), and xn	1 and x1:n are the vector embeddings
for the successor scene sn	1 and all of the previous scenes,
respectively. As a consequence of this formulation, scenes that are
highly similar to the prediction of an event schema have high
probability under the schema, naturally allowing for smooth gen-
eralization.

We are agnostic to the shape of the function f and the form of the
parameters 
e. We only require that 
e is learnable from observa-
tions, and we assume that 
e is a set of parameters unique to each
event. In our simulations, we model f as a recurrent neural network
(see Figure 3), and 
e is a set of weights and biases that determine
the activity of the network. At each time-step, the network takes
the vector embedding for the current scene, xn, as an input, and
generates a prediction of the successor scene, xn	1 as its output.
The network also maintains an internal state that is updated on
each time-step and that used when making its prediction.

Except where noted, we used a fully connected, four-layer
network with gated recurrent units (GRUs; Cho et al., 2014) with
a leaky rectified linear activation function (� � .3; Maas, Hannun,
& Ng, 2013) as a nonlinearity and 50% dropout for regularization
(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov,
2014). The GRU has two gates that control its recurrent activation,
an update gate that controls whether the current hidden state is
updated with new information and a reset gate that controls
whether to use the previous hidden state in this update. We have
chosen the GRU because it is a simplified variant of the Long-
Short Term Memory network (Hochreiter & Schmidhuber, 1997)
that is computationally less demanding to train but nevertheless
performs well on natural data sets (Chung, Gulcehre, Cho, &
Bengio, 2014). Gating networks maintain an internal state that the
network learns to update (or gate) through backpropogation (Fig-
ure 3, right). This internal state allows the network to maintain a
representation of previous stimuli, which it can use to earn long-
term sequential dependencies (Hochreiter & Schmidhuber, 1997)
and problems that require memory (O’Reilly & Frank, 2006).
Reynolds et al. (2007) previously found that gating networks were
better able to learn event structure than feed-forward networks. A
second, nonrecurrent hidden layer with a linear output is used to
produce the output. The networks were implemented in Keras
(Chollet, 2015) and were trained with batch updates of cached
observations using the Adam stochastic optimization algorithm
(Kingma & Ba, 2014). Parameter values for this optimization are
listed in Table 1.

We chose a recurrent network so that the event schema would be
sufficiently flexible to learn the event dynamics. Previous theoret-
ical modeling suggests that event dynamics can be represented
with recurrent neural networks (Elman & McRae, 2019; Reynolds
et al., 2007; Schapiro et al., 2013), and similar recurrent neural
networks are thought to be biologically plausible (O’Reilly &
Frank, 2006). Furthermore, Reynolds et al. (2007) found that
recurrence improved learning event dynamics when compared
with otherwise identical feed-forward networks. Nonetheless, we
do not believe that any of these specific implementation details are
critical, and other variants may make similar predictions.

The noise over scene transitions in Equation 2 is assumed to be
Gaussian with a diagonal covariance matrix, parametrized by the
vector of noise parameters � � ��

d . This diagonal covariance
matrix allows us to model the noise of each dimension indepen-
dently, while still allowing this noise distribution to be learnable.
In contrast, a spherical covariance matrix could result in a single
dimension driving segmentation and estimates of the full covari-
ance matrix of a high-dimensional Gaussian are not reliable in
small sample sizes due to the curse of dimensionality. The vector
� is estimated using maximum a posteriori estimation, assuming
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an inverse-�2 prior parametrized by � degrees of freedom and a
scale of s2 (Gelman et al., 2013).

We separately define an initial condition f0 for the function f,
which is estimated from the data with a uniform prior over f0. The
transition probability for scene st	1 following an event boundary is
thus:

Pr(sn�1 | sn, en�1 � en) � � N(xn�1; f0, diag(�))Pr(f0)df0 (3)

Importantly, this initial condition probability is different for expe-
rienced and novel events. The prior over f0 is important for novel
events, as it allows us to define a scene transition probability for an
unseen event by integrating over the prior. When the event en	1 is
a previously unseen event, enew, the transition probability in Equa-
tion 3 reduces to a constant. For experienced events, we simplify
this probability function by ignoring the prior Pr(f0) and instead
use a point estimate of f0. As we discuss in the following section,
we use the probability Pr(sn	1 | sn, enew) to infer the event bound-
aries and therefore require a definition of this term for unseen
events.

Event Segmentation

Having defined the generative process for events, the represen-
tational space for scenes, and the scene dynamics, we can now
pose questions for the computational model. A primary challenge
for the model presented above is how it can learn and segment
events without an external training signal. We define event seg-
mentation as the process of assigning an event label to each scene,
and in terms of statistical estimation, event segmentation is an
unsupervised learning problem. A key claim of the model is that it
can learn event dynamics while simultaneously segmenting scenes
into events. To solve both of these problems simultaneously, we
perform inference over the generative model.

As we assume that events are not directly observable, their
identity and boundaries must be inferred (segmented). Given a
history of scenes s � �sn�n�1

N , Bayes’ rule stipulates the posterior
over events e � �en�n�1

N is:

Pr(e | s) � 1
ZPr(s | e)Pr(e) (4)

where Pr(s | e) is the likelihood of the scene history under a
hypothetical event segmentation, and Pr(e) is the prior probability
of the event sequence (i.e., the generative process for events,
Equation 1) and Z is the normalizing constant. The likelihood can
be decomposed according to:

Pr(s | e) � �
n�1

N

Pr(sn�1 | sn, en) (5)

where Pr�sn�1sn, en� � N�xn�1; f�x1: n; 
e�, diag���� is given by
Equation 2.

As the likelihood has a Gaussian form, it can be viewed as a way
of encoding (inverse) prediction error, which has been suggested

Figure 3. Event dynamic neural network. A four-layer network took in the current scene as the input and
predicted the next scene as the output. The network has two hidden layers: one with gated recurrent units (GRU;
Cho et al., 2014) and a leaky rectified linear output and a second layer of fully connected, linear units. GRUs
provide recursion by maintaining an internal state of the network. This state is controlled by two gates, an update
gate and a reset gate, which control the degree to which the hidden layer is updated or reset with new input,
respectively.

Table 1
Neural Network Optimization Parameter Values

Learning
rate �1 �2  Decay n_epochs

.01 .9 .999 1e-
08

.0 10

Note. Parameter values for the Adam optimization algorithm used to train
the recurrent neural network used to estimate event dynamics. Each sim-
ulation used the same optimization parameters.
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as a key determinant of event segmentation (Reynolds et al., 2007;
Zacks et al., 2011). Here, we define prediction error as the Eu-
clidean distance between the observed and predicted outcomes.
This can be thought of as a multivariate generalization of univar-
iate prediction errors, which are typically defined as the distance
between two scalar values. The Gaussian likelihood between two
successor scenes (Equation 2) is a function of the distance between
the predicted scene, f(x1:n; 
e), and the observed successor scene,
xn	1. To make this point more explicit, we can express the
log-likelihood for a single transition sn ¡ sn	1 as follows:

logPr(sn�1 | sn, en) � � 1
2�

| | xn�1 � f(x1:n; 
e) | |2 � const. (6)

Thus, the log probability is inversely proportional to the prediction
error. A low likelihood indicates a high prediction error, favoring
the inference of an event boundary. Because low prediction errors
correspond to high probability under the likelihood, an event
model with small prediction errors will tend to be considered
highly probable.2 It is worth noting that a prediction error can also
be derived from the prior (i.e., the sticky-CRP) as well. This
component of the model makes predictions as well, these predic-
tions can be violated to varying degrees, and these violations are
used to update the predictions. The posterior over segmentation
considers both sources of prediction error.

Mathematically, this framing of event segmentation casts the
problem as a form of clustering, in which scenes are organized into
events by how well the event dynamics predict them. This is
similar to prior categorization and clustering models, in which
exemplars are compared with the members of previously encoun-
tered clusters and either assigned to a cluster with similar members
or assigned to a new cluster (Collins & Frank, 2013; Gershman,
Blei, & Niv, 2010; Love, Medin, & Gureckis, 2004; Sanborn,
Griffiths, & Navarro, 2010). The key difference between these
clustering models and SEM is that SEM uses event dynamics, not
a set of exemplars, to determine the assignment (segmentation) of
events. Because of this, two identical scenes experienced at dif-
ferent points in time can be assigned to different events depending
on the history of scenes and events that preceded them.

In principle, event segmentation requires inference over the
intractably large discrete combinatorial space of partitions. To
comply with the cognitive constraint that inference is carried out
online (i.e., without resegmenting past experiences), we employ a
local maximum a posteriori (MAP) approximation (Anderson,
1991; Gershman et al., 2014):

Pr(en�1 | s1:n) � 	
e1:n�1

Pr(en | s1:n, e1:n�1) (7)


 Pr(en | s1:n, ê1:n�1) (8)

where s1:n denotes the sequence of scenes observed from Time 1
to n and ê1:n�1 is a point estimate of the prior event segmentation
defined recursively as follows:

ên � argmax
en

Pr(en | s1:n, ê1:n�1) (9)

In other words, we approximate the intractable summation over
e1:n with a single high probability hypothesis about the prior
segmentation. For each new scene, however, we still evaluate the
full posterior conditioned on this estimate. As a practical matter,
this entails generating a predicted successor scene for each event in

the hypothesis space and using this prediction to evaluate the
likelihood of the observed scene transition. For all but the case
en � en	1, this approximation assumes an event boundary (Equa-
tion 3), substantially reducing the computational cost.

The local-MAP approximation is commonly used in Dirichlet
process mixture models of clustering (Collins & Frank, 2013;
Franklin & Frank, 2019; Gershman, Monfils, Norman, & Niv,
2017; Gershman et al., 2014), and previous comparisons between
the local-MAP approximation and more exact forms of approxi-
mate inference have shown them to often be highly similar (L.
Wang & Dunson, 2011). It is important to note that this approxi-
mation occurs over a single forward sweep of the observed scenes,
and thus does not allow for retrospective reevaluation of the time
of event boundaries. Other methods of approximate inference,
such as particle smoothing, would allow for this phenomenon.

Event Memory

We now turn our attention from the problem of event segmen-
tation to consider the encoding of items into memory. We first
define the generative process of encoding items into memory and
then return to discuss how event dynamics can be used to improve
memory in a reconstructive process. Consider the paired sequences
of embedded scenes x �{x1, . . . , xN} and events e �{e1, . . . , eN}
that define the world dynamics of our generative model. Each
scene vector xn � �d is a real-valued vector encoding the features
of the scene at time n, while en � � is a label corresponding to the
event model at the same time.

Implicitly, both x and e encode time via position because they are
ordered sequences. To make this representation explicit, we define an
unordered set of memory items y � {y1, . . . , yN} that have a
one-to-one correspondence to the scene vectors x and events e. Each
element yi is defined as a 3-tuple of the features of the scene, the event
label, and its time index, such that yi � (x=, e=, n) where x= is the
vector of features, e= is the event label and n is the time index.
Equivalently, x= � xn and e= � en for the scene yi � (x=, e=, n).

We assume memory is a lossy encoding and retrieval process
such that all of the components of the memory items are corrupted.
Specifically, we assume an encoding process Pr(ỹ | y) creating
the corrupted (encoded) memory trace ỹi � �x̃�, ẽ�, ñ� where
x̃� � �x̃1, . . . , x̃d�, ẽ� and ñ corresponds to the corrupted memory
traces of the scene features, event label, and time index, respec-
tively. The assumption that memory traces are corrupted versions
of an original stimulus is common in computational models of
memory (Hemmer & Steyvers, 2009; Huttenlocher et al., 1991;
Shiffrin & Steyvers, 1997) and is analogous to a capacity-limited
compression (Brady, Konkle, & Alvarez, 2009; Nassar, Helmers,
& Frank, 2018).

For convenience, we will assume that the corruption process for
each component of each scene vector is independent, such that

Pr(ỹ | y) � Pr(x̃ | x)Pr(ẽ | e)Pr(ñ | n). (10)

We assume Gaussian noise over the features, such that

2 We could define prediction error using another similarity metric (e.g.,
angle cosine). With an alternate definition, we would nonetheless expect
prediction error to negatively correlate with the log-likelihood of scene
transitions, but this is not an axiomatic property of the model.
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Pr(x̃ | x) � N(x̃; x, �I) (11)

where the parameter � corresponds to the degree of corruption
noise of the feature. For event tokens, we assume that the corrup-
tion process is an asymmetric channel similar to a Z-channel
(MacKay, 2003), such that the event token is either correctly
encoded or that the event label is completely lost:

Pr(ẽ | e) ���e if ẽ � e
1 � �e if ẽ � e0

0 otherwise
(12)

where e0 is a null event label corresponding to no event model
(representing a loss of the event label), and where the parameter e

defines the probability of retaining the event label in memory.
Thus, when e � 0, the event label is completely lost from the
memory trace. Corruption noise over the time index n is defined as
a discrete uniform over the interval [n � b, n 	 b], such that

ñ | n  U[n � b, n � b]. (13)

We will typically assume small values of b, allowing for items
in memory to be flipped, but not allowing large jumps in time.
Taken with the corruption of event labels, time index corruption
has several consequences, including the corruption of the relative
order of items within each event and the corruption of the (im-
plicitly represented) boundary location.

We note that although we have committed to these independent
corruption processes, other forms of information loss in memory
are plausible, including event-label switching and nonuniform time
corruption, among others. We have assumed that the corruption
processes are independent of each other as a simplifying assump-
tion, but correlations between sources of corruption noise are
indeed plausible. A strong positive correlation would tend to lead
to an all-or-nothing memory trace in which a memory item was
strongly corrupted or not at all. Nonrandom forms of corruption
are also possible, such as an optimal encoding process that only
stores features in memory if they are not predicted by the current
event model. This kind of encoding would result in the memory
trace emphasizing schema-atypical features of individual scenes.

The task of the memory model is to reconstruct y given a
memory trace ỹ and the learned event dynamics. Above, we
defined a generative process by which a noisy memory trace ỹ is
created, and our model of memory is an inversion of this genera-
tive process to reconstruct the original items encoded into memory.
Knowledge of the event dynamics is helpful in memory recon-
struction because they are part of the generative process of the
original scenes and thus contain information that can be used to aid
reconstruction. This can be understood as a form of regularization:
the noisy memory trace will be regularized toward the typical
scenes under the event schema. A similar approach by Hutten-
locher and colleagues (1991) was used to model human memory
judgments of the spatial location of dots. They argued that a
category prior can be used to reduce the variance of a corrupted
memory trace. Here, we argue that event dynamics occupy the
same role, reducing the variance of the corrupted memory trace by
regularizing (that is, adding an adaptive statistical bias). This
general account of event memory is compatible with other forms
of corruption than those we have defined above.

To implement the memory model, we first consider the gener-
ative process of ỹi (and its corrupted features x̃i and time index ñ).
This is defined as:

Pr(ỹi | f, 
) � 	
e

�x
Pr(ỹi | x, e)Pr(x | e, f, 
)Pr(e)dx (14)

where x � x1:n and e � e1:n are the sequences of scenes and event
labels, respectively. The variable 
 � �
e, 
e�, . . .� denotes the sets
of all parameter sets that define each event’s dynamics (i.e., the
weights and biases of the recurrent neural network). The three
probability distributions, Pr(ỹi | x, e), Pr(x | e, f, 
), and Pr(e) cor-
respond to the encoding process, transition dynamics and prior
over events, respectively.

The goal of memory retrieval is to estimate the original scenes
ỹ using a reconstruction process over the generative model (Equa-
tion 14). Because the posterior has no closed-form expression, we
employ Gibbs sampling to draw a sample of reconstructed memory
traces. A complete description of our Gibbs sampling algorithm is
detailed in Appendix C. At a high level, Gibbs sampling takes
advantage of the conditional independence properties of the gen-
erative model, which can be seen in the graph structure (see Figure
4). At each point in time, the generative process for the memory
trace, the dynamics over scenes and the dynamics over events can
be expressed with three functions that express the conditional
independence properties (Equations 10, 2, and 1, respectively). As
such, we can draw samples of the memory traces, reconstructed
scenes and event labels one variable at a time by conditioning on
the other variables in the process. We use this sampling process as
a model of reconstruction memory and do not fit it to human data.

To capture the possibility of memory failure, we augment the set
of corrupted memory traces {ỹ} with a null memory y0 and define
a special case of the corruption process such that

Pr(y0 | y) � � (15)

where � is a free parameter that controls forgetting in the model, as
we discuss below. This choice of corruption process is convenient,
as it has the interpretation of integration over memory items,
�yPr�ỹiyi�dy � � for any arbitrary value of �.3 We assume that y0

can occur multiple times in the reconstruction process, as it does
not correspond to a specific memory trace, but the absence of one.
Finally, we also assume that the learned event models and param-
eters (f, 
) are known because they have already been learned.

Schematic Example

It can be helpful to walk through a toy example to provide an
intuition as to how these components combine. Here, we consider
a toy example with two scenes, one in which a person, Tom, asks
another person, Charan, a question and a second scene in which
Charan answers Tom. Symbolically, we can represent the two
scenes as Ask(Tom, Charan) and Answer(Charan, Tom). To pro-
vide these scenes to SEM, we assume that each of these two scenes
is encoded using the HRR (Figure 5B). To construct this repre-
sentation, we start by constructing a representation for Tom by
combining two Gaussian random vectors that represent the unique
features of Tom and the property of being a person with vector

3 Implicitly, this corruption process assumes a uniform prior over fea-
tures, Pr(x) � 1. Alternatively, we could assume a generative process
x  N�0, �I�, but this will lead to a similar result so long as the norm of
corrupted memory traces are similar, and � would likewise parameterize
the degree of forgetting in the model for reasons discussed below.
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addition. In the first scene, Tom is the agent and is bound to a
vector that represents this role with circular convolution. This
operation conserves the dimensionality of the original vectors and
produces a new vector, Tom-agent, that represents Tom in the role

of agent. We construct vectors for Charan-patient similarly, com-
bining two vectors that represent the unique features for Charan
and the property of being a person with vector addition, and
binding the resultant vector to the patient role vector with circular
convolution. Importantly, the vector that represents the person
feature is the same for both, thus encoding similarity between the
otherwise distinct symbols via vector similarity. The Tom-agent
and Charan-patient vectors are combined with an Ask-verb vector
using vector addition to create the fully embedded scene, Ask(Tom,
Charan). This results in a vector representation of the scene that
allows us to decode each component and its corresponding sym-
bolic role. The second scene, Answer(Charan, Tom) is similarly
constructed.

Given this sequence of scenes, there are two possible assign-
ments of scenes into events. Either both scenes are assigned into
one event with a learned transition between the two, or both are
assigned to a unique event with one scene (Figure 5C). How SEM
makes the determination between these two assignments is deter-
mined by the likelihood of the second scene, Answer(Charan,
Tom), under the predictions of two possible event models (Figure
5A; Equation 4). In this example, SEM will deterministically
assign the scene Ask(Tom, Charan) to one event model, and that
event model will use the first scene to make a prediction about
the upcoming successor scene using the dynamics learned via the
recurrent neural network (Figure 3; Equation 2). Assigning the
second scene to a separate event model implies an event boundary;
in this case, and SEM will use the learned initialization (f0,

Figure 4. Memory corruption. A lossy memory encoding procedure
stores the features of the original scene x, its time index n and event index
e in corrupted form ỹ � (x̃, ẽ, ñ). Memory reconstruction inverts this
generative process to infer the original memory item.

Figure 5. Schematic example. (A) The model observes a sequence of two vectors encoding the scenes
Ask(Tom, Charan) and Answer(Charan, Tom). Each event dynamics model makes a prediction for the upcoming
scene, and scenes are assigned to events as a function of their similarity to the predicted scenes. (B) Embedded
scenes are constructed with a Holographic Reduced Representation (HRR), which combines independent
features via vector addition and binds fillers to roles with circular convolution. (C) Event clustering can assign
both scenes to the same event model (top) or each scene to its own event model (middle). A learned model can
be reused to predict the dynamics of a novel event token (bottom). � circular convolution. See the online
article for the color version of this figure.
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Equation 3) to make a prediction for this (new) event model. Each
prediction is used to calculate the likelihood of each event and
combined with the sticky-CRP (Equation 1) to calculate the pos-
terior over event segmentations. When the predicted scene for a
particular event is similar to the observed scene (i.e., low predic-
tion error), then this will lead to a high posterior probability and
the scene will tend to be assigned to that event (Figure 5A).
Conveniently, learned event dynamics can be used to explain novel
events when those events are similar to previously experienced
ones. For example, if the model learns the event Ask(Tom, Charan)
followed by Answer(Charan, Tom), it can generalize this pattern to
the new event Ask(Noah, Zoe) followed by Answer(Zoe, Noah), as
this new event has a similar construction and event dynamics
(Figure 5C).

Simulations

The parameter values for all of the following simulations are
listed in Tables 1 and 2. The parameter values for the simulations
are an implementational choice, and because the choice of param-
eter values interacts with the representational space of the simu-
lations, multiple equivalent, but distinct, combinations of repre-
sentational spaces and parameter sets are likely to produce the
same behavior. Consequently, the parameter values only have
meaning in the context of a specific representational space chosen
for each task. In our simulations, the timescale of a scene, as well
as the dimensionality of the representation, vary substantially. As
such, we cannot make strong claims about the parameter values
and their relation to cognition. Where appropriate, we have none-
theless reused parameters across multiple simulations to show that
what might be interpreted as conflicting behavior falls in the same
parameter space and is not driven by choosing different values for
different simulations. These simulations are noted below.

The code for all simulations is available in our Github reposi-
tory: https://github.com/ProjectSEM/SEM.

Human-Like Segmentation on Naturalistic Stimuli

A key test of the model is whether it generates human-like
segmentation on naturalistic tasks. Operationally, event boundaries
in human studies are often defined by having subjects mark them
in a naturalistic dataset, for example, while watching a video
(Baldassano et al., 2017; Hanson & Hirst, 1989; Newtson &
Engquist, 1976; Zacks et al., 2001, 2006). Historically, this has
posed a challenge for computational models due to the difficulty of
dealing with unannotated raw video data. The computational

model proposed by Reynolds et al. (2007) attempted to circumvent
this problem by using a carefully collected, low-dimensional mo-
tion capture dataset. Reynolds et al. (2007) evaluated their recur-
rent neural network model of event processing on a set of motion
capture time-series, each of which contained 18 points in a
3-dimensional coordinate space measured across time with a 3-Hz
sampling rate. Although this model was able to provide valuable
theoretical insights, such as the feasibility of updating event models
with prediction error, it is difficult to fully validate the model without
comparing the model directly to human data.

Because of the rapid improvement in computer vision in recent
years (LeCun et al., 2015), this computational issue can now be
tackled; we can directly evaluate SEM on the same naturalistic
dataset used in human studies. In the following simulations, we
evaluate SEM on three video data sets previously used in a pair of
studies by Zacks et al. (2001, 2006) to probe human event seg-
mentation. We use the model to generate event boundaries and
compare its predictions to human behavior reported in Zacks et al.
(2006). We do so with fully unsupervised training: we first esti-
mate an unstructured scene representation with a variational auto-
encoder (VAE; see Appendix A for details) before providing this
scene representation to the model. These unstructured scene rep-
resentations are not fit to human data, but instead are used as a
dimensionality reduction tool. It is important to note that the scene
representation estimated by the VAE does not explicitly encode
objects or bound relations between objects but can be better
thought of as a dimensionality-reduction technique that takes ad-
vantage of spatial correlations in the pixel data. (And is thus
simpler than the structured representational scheme presented
above.) Consequently, in a video of a person making a bed, the
model is not told what a person or a bed is, but has access only to
what can be learned from a limited dataset. We are not claiming
that people only use unstructured information while performing
this task, but we nonetheless believe it is important to validate the
model’s performance in an end-to-end, fully unsupervised process
on naturalistic data to argue that SEM scales to realistic problems.
Having said this, SEM is clearly at a disadvantage relative to
human participants, who presumably have substantial prior expe-
rience with the everyday objects and actions in these videos. We
will return to the role structure plays in segmentation with later
simulations.

The stimulus set in Zacks et al. (2001, 2006) consists of five
videos of a single person completing an everyday task, such as
washing dishes, shot from a single, fixed camera angle with no
edits. At a resolution of 240 � 320 � 3 pixels, each frame has

Table 2
Model Parameter Values

Simulation Embedding dim. �0 s0
2 � � � � e

Zacks, Speer, Vettel, and Jacoby (2006) 100 10 .06 104 .1 — — —
Schapiro, Rogers, Cordova, Turk-Browne, and Botvinick (2013) 25 1 1.0 105 .01 — — —
Structured event boundaries 266 100 .305 1.0 1.0 — — —
Bower, Black, and Turner (1979) 185 10 .24 1.0 10.0 2 .15 .75
Radvansky and Copeland (2006) 25 1 .2 10.0 1.0 2 .1 .25/.75
Pettijohn and Radvansky (2016) 25 1 .2 10.0 1.0 2 .1 .25
DuBrow and Davachi (2013, 2016) 25 1 .2 10.0 1.0 2 .1 .25

Note. The parameter values for each simulation are listed separately in each row.
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more than 230,000 dimensions. We used a variational auto-
encoder to generate an unstructured scene representation of 100
dimensions. We evaluated the model on each of the three videos
used as stimuli in Experiment 1 of Zacks et al. (2006). The model
was trained on each video independently with the parameter values
listed in Table 2 with 25 batches of randomly initialized weights.
Figure 6 depicts a comparison between human and model bound-
ary locations in the washing dishes video as well as a quantitative
comparison over all three videos. Both human and model event
boundaries have been binned in 1-s intervals, as was reported in
Zacks et al. (2006). Qualitatively, there is good agreement between
the model’s maximum a posteriori (MAP) estimates of boundaries
and the population of human subjects, with several of the major
peaks in the group data corresponding to a model boundary (Figure
6, Top). For example, the most commonly marked boundary for
human subjects in the washing dishes video occurs at 34 s, when
the actor in the video approaches the sink. At this time point, both
43.8% of humans and 44% of model batches mark a boundary.
Both frequently note a boundary at 131 s (humans boundary
frequency: 29.2%, model boundary frequency: 48%), when the
actor opens the dishwasher. Notably, both of these changes corre-
spond to larger changes in the visual scene. The model tends to
miss more subtle changes that rely on prior knowledge. For ex-
ample, the human-rated boundary at 79 s during which the actor
turns on the sink (boundary frequency: 27.1%), is missed by the
model (boundary frequency: 0%).

We assessed the model predictions quantitatively using the
point-biserial correlation between the model’s MAP boundary
estimates and the grouped subject data. Point-biserial correlation is
a similar metric to the one used by Zacks et al. (2006) to assess the
segmentation of each subject. In this naturalistic dataset, human
subjects had an average point-biserial correlation of rpb � 0.29
(SEM � 0.014), reflecting both a meaningful relationship between
rated boundaries across the population as well as substantial be-
tween subject variability. The point-biserial correlation of the
model was rpb � 0.168 (SEM � 0.013), which places the model
below the average value of human segmentation but within the
middle 75% of the distribution of human ratings (Figure 6, Bottom
Left; middle 75% of observations: [0.139, 0.400]). Thus, by falling
within the same range of observed values, the model’s perfor-
mance is comparable to that of human subjects. We further as-
sessed how likely this result would occur by chance by means of
permutation testing: we permuted the order of the MAP boundaries
of each batch 1000 times and calculated the point-biserial corre-
lation for the permuted samples to create a chance (null) distribu-
tion. The model’s average point-biserial correlation of 0.168 was
larger than would be expected by chance (95% CI of null permu-
tation distribution: [�0.067, 0.080]).

Because the model produces a boundary probability at each time
step, we can make a more sensitive comparison between model
and human behavior by correlating the model’s log-probability of
an event boundary with human boundary frequency. Doing so, we
find a correlation coefficient of r � .22 (SEM � 0.017), which we
evaluated for statistical significance via permutation testing (again,
creating 1000 permutations and calculating the correlation co-
efficient of the permuted data) and find that the mean correla-
tion coefficient of r � .22 was well above what we would
expect by chance (95% CI of null permutation distribution:
[�0.071, 0.074]; Figure 6, Right). Thus, these two quantitative

measures suggest that the model’s segmentation captures mean-
ingful variance in the human data.

Event Boundaries and Community Structure

A natural pair of questions to ask is how SEM determines an
event boundary and what features in the environment influence
segmentation. In the task simulated above, this is difficult to
ascertain as the environment was not directly manipulated to probe
these questions. Thus, although we demonstrated that the model
and human participants delineate similar boundaries in a natural-
istic task, we are not able to draw strong conclusions about which
statistical features of the dataset precipitate segmentation. We
therefore turn our attention to controlled experiments to charac-
terize segmentation in SEM and examine its determinants.

One such determinant that has previously been identified is
prediction error (Reynolds et al., 2007). Humans show a decrease
in predictive accuracy across an event boundary in naturalistic
tasks (Zacks et al., 2011) and generally respect statistical structure
(Avrahami & Kareev, 1994; Baldwin et al., 2008). Moreover,
surprising occurrences in human tasks influence event perception
(Newtson, 1973), suggesting that the predictability of scenes is
important for segmentation. Given the formulation of event seg-
mentation in our model as probabilistic inference (Equation 4), the
property that surprising or unpredicted stimuli will produce event

Figure 6. Video segmentation. Top: SEM generates human-like bound-
aries. The model’s MAP estimated boundaries are shown for the washing
dishes video averaged over all batches and compared with human segmen-
tation frequency. Bottom Left: Point biserial correlation coefficient for
human subjects, the model, and a permutation distribution, comparing
discrete boundaries to aggregated human data. Model segmentation falls
within the range of human performance and is above that expected by
chance. Bottom Right: Correlation coefficient between model boundary
log-probability and human-rated boundaries compared with correlations
generated by permutation testing. For clarity, only five of the 1000 per-
mutations are shown. � � statistical significance under a permutation
distribution. See the online article for the color version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

340 FRANKLIN, NORMAN, RANGANATH, ZACKS, AND GERSHMAN



boundaries is axiomatic. The model is sensitive to both prediction
error and the uncertainty of prediction, a property that can be
derived analytically (see Equation 6).

Less apparent, however, is how the model responds to other
types of statistical structure. At first glance, the role of predictive
inference in event segmentation might suggest that humans rely
strictly on surprising outcomes to drive segmentation. However,
Schapiro et al. (2013) identified community structure as a feature
that drives human event segmentation, even when controlling for
predictability. In this context, a community refers to a group of
nodes in a graph that is densely interconnected. Schapiro et al.
(2013) showed subjects a sequence of stimuli drawn from a graph
that had multiple communities, and subjects were asked to note
transition points between stimuli. An important feature of the task
is that transitions were equated for probability, such that a com-
munity transition was no more or less likely than any other
individual transition. This was done to rule out the possibility that
subjects rely solely on unpredictability in the environment to
identify event boundaries.

Nonetheless, subjects preferentially marked event boundaries at
community transition points, respecting the graph structure. Scha-

piro and colleagues further demonstrated that a recurrent neural
network trained on the same sequence of stimuli developed inter-
nal representations that were similar for community members.
Within the network, representational similarity between sequential
items decreases at event boundaries, potentially acting as a signal
that a boundary has occurred.

Like the Schapiro model, SEM is also sensitive to community
structure. To demonstrate this, we simulated the model on 1,400
stimuli generated by a random walk on the graph used in Schapiro
et al. (2013) in a sequence exposure phase, followed by 600 stimuli
from randomly drawn Hamiltonian paths in a parsing phase.4

Consistent with the previously reported human behavior and the
Schapiro model, SEM has higher boundary probability for a com-
munity transition than a noncommunity transition, across both the
training trials and in the Hamiltonian paths of the parsing phase
(Figure 7b).

4 A Hamiltonian path is a path through the graph that visits each node
exactly once.

Figure 7. Event boundaries at graph community boundaries. (a) The graph structure of the transition matrix,
adapted with permission from “Neural Representations of Events Arise From Temporal Community Structure,”
by A. C. Schapiro, T. T. Rogers, N. I. Cordova, N. B. Turk-Brown, and M. M. Botvinick, 2013, Nature
Neuroscience, 16, p. 487. Copyright 2013 by Springer Nature. Sequences of stimuli were generated by drawing
from walks through this graph. (b) The probability of a parse (event boundary) is shown between pairs of items
that reflect a community transition (dark gray) or within a community (light gray) for Hamiltonian paths through
the graph (left) and all other trials (right). (c) Pearson’s r coefficient between the log posterior predictive density
of each scene and the boundary probability is shown for the sample of simulations. (d) The log posterior
predictive density for each scene. Lower values correspond to greater surprise under the model. See the online
article for the color version of this figure.
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It is important to note that boundary probability and predic-
tion error are related in SEM, such that more surprising scenes
are more likely to lead to an event boundary (Figure 7c).
Consequently, the average log probability of each successive
scene, a Bayesian measure of prediction error,5 is lower at
community transitions than at other transitions, meaning that
community transitions are more surprising than noncommunity
transitions (Figure 7d). This might be seen as surprising giving
the equating of transition probability in the task. However,
predictability in the environment is not the same as predictabil-
ity from the point of view of an agent, and SEM’s generative
model is not equivalent to the generative process of the task.
Furthermore, the recurrent neural network model proposed by
Schapiro and colleagues relies on similar computational prin-
ciples as the recurrent neural network we used to model event
dynamics. Thus, the two should be sensitive to similar features
of the task. In short, this simulation reconciles the apparently
conflicting claims that segmentation can be driven by prediction
error (Reynolds et al., 2007) and that prediction can be driven
by community structure even when objective predictability is
equated (Schapiro, Turk-Browne, Norman, & Botvinick, 2016):
even after equating the objective predictability for an all-
knowing agent, an agent who has learned the structure of the
environment using an approximate model may well experience
spikes in prediction error at community transitions.

Generalizing Structure

Thus far, we have shown the model can segment data in line
with human judgments, and does so in a way that reflects graph
community structure. However, this should be an unsurprising
result: simpler computational models either relying on recurrent
neural networks alone (Reynolds et al., 2007; Schapiro et al.,
2013) or latent state inference alone (Baldassano et al., 2017;
Goldwater et al., 2009) can produce human-like segmentation in
multiple domains. This is because both recurrent neural networks
and latent state inference encode temporal structure, and although
they represent this structure differently, for segmentation alone
either is sufficient. This raises the natural question of why is it
valuable to encode multiple different types of structure and under
what conditions would we expect to see the benefits of that
structure?

A key insight is that temporal clustering (i.e., grouping
scenes into events) and dynamical systems (i.e., the event
dynamics) represent different forms of temporal structure. Clus-
tering models group similar observations together, allowing
them to pool information efficiently and generalize rapidly
(Collins & Frank, 2013; Gershman et al., 2010, 2014; Sanborn
et al., 2010), and this data-efficiency can be significant in
sequential problems (Franklin & Frank, 2018) like those that
define event cognition. However, clustering scenes into events
alone does not represent order information within individual
events. Were we to model events as an unordered collection of
scenes, our event model would be unable to differentiate be-
tween the beginning and end of an event, nor would it be able
to differentiate between an event and the same event experi-
enced backward in time.

The previously proposed recurrent neural network models of
event segmentation (Reynolds et al., 2007; Schapiro et al.,

2013) have a complementary set of benefits and limitations.
These models do learn the sequential transition structure of
individual events and represent event boundaries within their
representations of this structure. The demarcation of event bound-
aries in these models is implicit and these models do not have a
mechanism to encourage a data-efficient pooling of observations.
Moreover, when trained continually, these models tend to suffer
from catastrophic interference, or the tendency of newer tasks to
interfere with the knowledge of older tasks (Goodfellow, Mirza,
Xiao, Courville, & Bengio, 2013; McCloskey & Cohen, 1989).
Conditioning learned event dynamics on an event label presents a
potential solution to this. SEM represents both of these forms of
temporal structure. Combined with the third form of structure that
we have not discussed thus far—the logical structure of individual
scenes encoded in the vector space embeddings—the model is
capable of sophisticated generalization.

To demonstrate this, we present here a simple example: an event
structure that is defined by (a) a person asking a second person a
question, followed by (b) the second person responding to the first
person. Symbolically, we can represent this event as Ask(Tom,
Charan) ¡ Answer(Charan, Tom), where we have named the two
people Tom and Charan and the expression means that Tom asks
the question and Charan answers (see Figure 8).6 SEM can learn
this structure and generalize it to new fillers (i.e., other people) that
it has not encountered. Specifically, the model is sensitive to the
structural form of the event, without regard to role/filler assign-
ments, and generalizes this structural form to new events. This
depends both on the structured vector representations of scenes as
well as its internal estimate of the event dynamics. Critically, SEM
can also use this structure to detect when there is a change and
assign observations to a new event.

We examined the probability of an event boundary between
Ask(A, B) and Answer(B, A) for arbitrary fillers of A and B. Here,
we are concerned with the use of structure, and therefore have
pretrained SEM with examples of the sequence Ask(A, B),
Answer(B, A). This simulates event structures that are already
known. SEM was pretrained on 3 unique sequences of Ask(A, B),
Answer(B, A) with six unique fillers. Each scene vector was
composed using the HRR as previously described. Each indepen-
dent feature was represented with a spherical, zero-mean, Gaussian
random vector (x  N�0, d�2I�) and similarity between fillers was
encoded with a shared component. For example, the vector repre-
senting the symbol Ask is encoded by the vector addition of a
common feature to all verb-symbols (itself a random vector) and a
unique random vector to the symbol. Because of the simplicity of
the event dynamics, we estimated the event dynamics without
recursion and replaced the GRU layer in our function approxima-
tor with a nonrecurrent, but otherwise equivalent, layer.

We simulated SEM on five test sequences, probing the event
boundary probability between the first and second scenes (Table
3). We also probe the probability that the second scene belongs to
a new event model (as opposed to a new instance of the previously

5 Formally, this is defined with the density function Pr�xt�1x1:t,
̂� �

	et
Pr�xt�1, etx1:t, 
̂�.

6 We can interpret this structure linguistically, but we do not have
to—this symbolic representation is valid whether we are watching the
event occur or reading about it in a text.
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experienced event). These metrics indicate how the model parti-
tions scenes into events and are a proxy for generalization. The
first sequence, Ask(Tom, Charan) ¡ Answer(Charan, Tom), was
included in the pretraining sequences and acts as a negative control
(i.e., low probability of an event boundary and a new event). It is
worth noting that both Tom and Charan have different relational
roles in the first and second scenes. If SEM were only sensitive to
the change in relational roles, then this would precipitate an event
boundary. However, as SEM learns transitions between structured
scenes, this change is unproblematic as it is predictable.

A second sequence, Ask(Tom, Charan) ¡ Chase(Dog, Cat),
deviates from the event structure and acts as a positive control (i.e.,
high probability of an event boundary and a new event model). As
expected, SEM assigns a low boundary probability to the probe
Answer(Charan, Tom; see Figure 9) and a high probability of both
an event boundary and a new event model for the probe Chase
(Dog, Cat).

A key demonstration is generalizing the learned structure to
arbitrary fillers. To show this, we provided SEM with the sequence

Ask(Dick, Bruce) ¡ Answer(Bruce, Dick), which used fillers (Dick
and Bruce) that were held out of the pretraining set for this
purpose. Here, SEM assigns a low, but nonzero, probability both
that an event boundary has occurred (18.0%) and that the probe
belongs to a new event model (12.2%). Equivalently, this corre-
sponds to a high probability that both scenes are assigned to the
correct event with the correct model (82.0%), reflecting a gener-
alization of the relational structure. This highlights that SEM is
sensitive to both the structured and nonstructured features of the
scene. Nonstructural features are novel, and the probability of the
previously learned event under the model is relatively lower.
Consequently, SEM makes the prediction that people rely on both
structural and nonstructural features for segmentation. Nonethe-
less, we would expect the structured features to dominate for
highly familiar event types as this structure of the event is thought
to be more predictable across time (Richmond & Zacks, 2017).

Next, we look at how SEM reuses events multiple times. SEM
uses Bayesian inference to identify events and supports reusing an
event model following an event boundary. To illustrate this, we

Table 3
Stimuli for Generalization Task

Test case First scene Second scene

Training example Ask(Tom, Charan) Answer(Charan, Tom)
Structure violation Ask(Tom, Charan) Chase(Dog, Cat)
Novel role/filler binding Ask(Bruce, Dick) Answer(Dick, Bruce)
Structure reuse Ask(Tom, Charan) Ask(Tom, Charan)
Structure reuse with novel fillers Ask(Tom, Charan) Ask(Bruce, Dick)

Note. For each of the five test cases, the probability of an event boundary was measured between the first and
second scenes.

Figure 8. Holographic reduced representation (HRR) of the question/answer task. Each filler is bound to its
role by circular convolution. Role/filler bindings are composed of with vector addition to produce scene vectors.
See the online article for the color version of this figure.
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provide SEM with the sequence Ask(Tom, Charan) ¡ Ask(Tom,
Charan), in which the first item is repeated. Here, SEM infers an
event boundary (even as the two vectors are identical) but does not
assign the second item to a new event. Instead, SEM infers that the
original event has been restarted. Interestingly, this is a property of
the structure of the event, and SEM will reuse an event following
a boundary based on this structure. This can be shown by provid-
ing SEM with the sequence Ask(Tom, Charan) ¡ Ask(Bruce,
Dick), which reuses the event with a pair of novel fillers. SEM
infers an event boundary between the two items and reuses the
previous event (i.e., infers a low probability of a new event model),
again showing structure sensitivity. Thus, by inferring the event
type in addition to learning the dynamics over sequential scenes,
SEM can rapidly reuse event dynamics in novel events with a
shared relational structure.

This reuse of previous event models also highlights how SEM
uses predictions of future scenes, and not changes in the vector
from scene to scene. To demonstrate this, we also simulated a
reduced variant of SEM in which the event dynamics are simulated
as a stationary process, similar to a hidden Markov model (Rabi-
ner, 1989). We repeated the simulations of our negative (Ask(Tom,
Charan) ¡ Ask(Charan, Tom)) and positive controls (Ask(Tom,
Charan) ¡ Chase(Dog, Cat)) with this reduced model. As can be
seen in Figure 10, the model does not strongly differentiate be-
tween the two cases. For the negative control, the model infers the
probability of an event boundary at approximately chance (0.5)
and infers a low probability that the second scene is from a new
event model. This occurs because the model does not contain order
information and thus cannot differentiate between a new event
model and a new scene from the same event. For the positive
control, both the boundary probability and the probability of a new
event model are higher for the scene Chase(Dog, Cat) than for
Answer(Charan, Tom), reflecting the dissimilarity between the
scenes; however, the lesioned model is worse than the intact model
at inferring that Chase(Dog, Cat) belongs to a new event, as the
lesioned model does not learn the appropriate structure.

Event segmentation plays a further role in the structured gener-
alization by efficiently pooling similar event instances together
and separating them from irrelevant information. This has an
important protective function, as SEM is constantly learning event

dynamics. To demonstrate this, we compare SEM with a second
reduced model that does not differentiate between events or de-
lineate event boundaries,7 and examine the prediction error of the
model in a well-known event following a novel, competing event.
The model was pretrained as before and then shown the event
See(Dog, Cat) ¡ Chase(Dog, Cat) before being presented with the
previously experienced event Ask(Tom, Charan) ¡ Answer(Cha-
ran, Tom). We then measured the prediction error of the second
scene in the event Answer(Charan, Tom), normalized between
zero and one. SEM predicts the scene accurately, with a normal-
ized prediction error of 0.037 (see Figure 11). In contrast, the
reduced model does substantially worse and has a normalized
prediction error of 0.97. As SEM and the reduced model learn
event dynamics with the same function and have seen the experi-
enced the same sequence of scenes, the partitioning of data af-
forded by event clustering allows SEM to more efficiently learn
and reduce interference.

Taken together, these simulations paint a picture in which the
model learns the temporal and relational structure of individual
events and uses this both to determine event boundaries and to
generalize to novel, but structurally similar, events. Empirically,
we would expect people to pool events with the same relational
structure, both representing them more similarly and pooling their
learned transition structure. We would also expect subjects to
delineate the same boundaries for a sequence of events with a
learned relational structure but novel fillers.

Structured Memory Inference

We now turn to the memory predictions of the model. We first
focus on false memories, which have long been thought to be a
consequence of reconstructive memory (Bartlett, 1932; Roediger
& McDermott, 1995), and are a natural prediction of the recon-
structive memory model.

7 This was done by setting the stickiness parameter � and the concen-
tration parameter � of the sticky-CRP to 106 and 10�6, respectively,
effectively forcing the model to treat scenes as belonging to the same event.
Importantly, this manipulation does not affect the training of the event
dynamics.

Figure 9. Generalization task. The probability assigned by the model for an event boundary (light gray) and
a new event model (dark gray) are shown for four test events. Each event begins with the scene Ask(Tom,
Charan) and ends with the denoted scene, except for the event Ask(Bruce, Dick) ¡ Answer(Dick, Bruce). From
left to right, the probabilities are shown for an event in the training set, a structurally dissimilar event, a
structurally similar event with novel role/filler bindings, a control where the original event was restarted, and the
beginning of a structurally similar event with novel role/filler bindings.
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In a classic finding, Bower et al. (1979) found that subjects who
read multiple similar stories drawn from the same script would
falsely recall portions of the story that weren’t present in the
original story. For example, subjects might read a story in which a
character John goes to the doctor and reads a magazine before
seeing the doctor, and a second, similar story in which a character
Bill goes to the dentist and has to wait. Given these two stories,
which shared a common event structure and were drawn from the
same script, a subject might falsely recall the detail that John has
to wait to see the doctor, a likely inference that was nonetheless not
stated in the original story. This tendency to recall unstated mem-
ory items increased with the number of stories subjects read from
the same script, suggesting that subjects were recombining ele-
ments of stories with a shared event representation in the recall
process. This process may be adaptive to the degree that it reflects
inferences about unexperienced scenes that nonetheless occurred.

We use the reconstructive memory model to generate structured
false memories with a paradigm similar to the one presented in
Bower et al. (1979). In the original stimulus set, stories with the
same script had highly similar beginnings and endings and had a
combination of structurally similar sentences and distinct, story-
specific sentences in the middle that suggested a similar event
trajectory. To model this, we defined a simplified set of five stories
from three different scripts, each of which was comprised of four
scenes (see Table 4). Three stories belonged to the same script and
shared a common structure but used different fillers within the
structure. These sentences all shared the first and last scene, and
any two of the three shared a third scene.

The manipulation of interest is whether providing SEM with
multiple similar stories will increase the probability of a script
producing semantically valid false memories under the reconstruc-
tion model. Concretely, we test for the reconstructive memory
probability of the probe cue Wait(John), a scene that does not incur
in any story, but is syntactically correct and consistent with the
Goto(John, Doctor) story in script 1 (see Table 4).

We provided SEM with three stories, including either one, two,
or three stories from script one. In our simulations, we used the
HRR as previously described to encode each scene but provided no
pretraining or other semantic knowledge to the model. Each verb
(e.g., Goto) is a random Gaussian vector that can be decomposed
into two vectors, one corresponding to the unique features of the
verb and another corresponding to its structural role. For example,
the vector embeddings of GoTo and Read are each the sum of a
shared feature vector corresponding to the structural role as a verb
and a unique feature vector that distinguishes them from other
tokens. Consequently, all verb vectors are similar (close in vector
space) while nonetheless distinct due to their unique features.
Agents (e.g., Natasha) and objects (e.g., Popcorn) are encoded
similarly. SEM was first provided the scenes for each story to learn
the event dynamics and infer the event labels. Because we are not
examining segmentation with these simulations, all of the scenes
from a single story were assumed to belong to the same event and
SEM was tasked with inferring a single label for them. It is worth
noting the segmentation problem present in Bower et al. (1979) is
trivial: stories were presented with clear external cues for the
beginning and ends with intervening time between each story.

We then used the Gibbs sampling algorithm as previously
described (see Table 2 for parameter values) to simulate recon-
structive memory. We modeled a two-alternative forced-choice
recognition memory test, comparing the script-consistent false
memory probe Wait(John) with a syntactically valid but script-
inconsistent memory probe GetDressed(John). This memory score
can be described as the expectation of the comparison

�[Pr(A | ỹ) � Pr(B | ỹ)] (16)

under the memory model, where A and B are memory probes. Let
f(x) � Pr(x | ỹ) be the recognition memory probability under the
model, and the expectation above defined as an expectation over f.

Figure 10. Lesioned event dynamics. SEM was lesioned such that it does
not learn the dynamics but only a stationary distribution over scenes. The
figure shows the probability assigned by the lesioned model for an event
boundary (light gray) and a new event model (dark gray) for two test
events. Both events begin with the scene Ask(Tom, Charan) and end with
the labeled scene. From left to right, the probabilities are shown for an
event in the training set and a structurally dissimilar event. Lesioning the
model impedes its ability to see Answer(Charan, Tom) as part of the same
event as Ask(Tom, Charan), and it also impedes its ability to infer a new
event model for Chase(Dog, Cat; see text for explanation).

Figure 11. Lesioned event segmentation. Results from the intact SEM
model and a reduced model without event segmentation. The figure shows
normalized prediction error when the model is presented with the previ-
ously experienced event Ask(Tom, Charan) ¡ Answer(Charan, Tom),
following the presentation of a distractor event. Prediction error in response
to Answer(Charan, Tom) is substantially higher in the lesioned model (see
text for explanation).
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Our reconstruction samples x̂ (Equation 18) are drawn from sam-
ples of f. Thus, if we assume a function g(x, x̂) to be monotonically
related to a sample of f, we can evaluate the ordinal comparison of
the two memory probes on g and approximate the memory score
with the average of N samples:

�[Pr(A | ỹ) � Pr(B | ỹ)] 
 1
N 	

x̂��x̂�1:n

I[g(xA, x̂) � g(xB, x̂)] (17)

where I�·� � 1 when its argument is true, and 0 otherwise. Here,
we choose g�x, x̂� � exp���x � x̂2�, with � � 2.5.

Figure 12 shows the results of our simulations. The script-
consistent false memory probe Wait(John) was compared with the
script-inconsistent probe GetDressed(John). The recognition
memory probability for the script-consistent probe increased
monotonically with the number of script instances in the stimuli,
similar to the behavioral finding of Bower et al. (1979). For a
single script instance, this was below chance, as the comparison
probe GetDressed(John) was more reflective of the training set
than the script consistent probe. Additionally, the reconstruction
process improved as a function of the number of script instances.
This can be seen in the frequency with which the original memory

traces were included in the reconstruction sample, which increased
monotonically with the number of script instances (one script
instance: 0.82; two script instances: 0.88; three script instances:
0.92). Under SEM, these two effects are related due to the regu-
larizing effects of the reconstructive process.

Event Boundaries and Working Memory

An empirical consequence of event boundaries is that items that
occur in an ongoing event are better remembered than items that
occur immediately before an event boundary (Pettijohn & Rad-
vansky, 2016; Radvansky & Copeland, 2006; Radvansky et al.,
2011; Radvansky, Tamplin, & Krawietz, 2010). A study by Rad-
vansky and Copeland (2006) had subjects remember items in a
virtual environment as they moved from room to room. In each
room, subjects put an item they were carrying (but was not visible
to them) on a table and picked up a second object, before carrying
it to another room. Subjects were given a memory probe either
immediately after walking through a door (shift condition) or at an
equidistant point in a larger room (no-shift condition). Overall,
subjects remembered items better in the no-shift condition than in
the shift condition, suggesting that the act of walking through a
door interfered with the item memory. This appears to be distinct
from context-change effects that have been observed in long-term
memory (e.g., Godden & Baddeley, 1975), because returning to
the original room in the shift condition did not eliminate the
memory decrement (Radvansky et al., 2011).

According to the Event Horizon Model (Radvansky, 2012),
subjects are less able to answer the memory probe in the shift
condition because working memory has privileged access to the
ongoing event model, and walking through the door triggers an
event boundary. Why would working memory have privileged
access to the ongoing event model? From the perspective of SEM,
event models are used to predict upcoming scenes, and maintain-
ing an active representation of the most recently used event model
constitutes caching in memory the results of an expensive infer-
ence process. Put more simply, to use an event model to make
predictions, a person has to know which model to use. This
persistent representation is a source of information that a norma-
tive agent will use in any computational task where it is relevant,
including memory reconstruction.

In SEM, there is no representation of the active event model
during reconstructive memory. However, we can simulate these
effects by directly providing the model with additional information
about the identity of the ongoing event, which we simulate by
increasing the precision of the corrupted event label ̃. Specifically,
we increased the event label precision parameter e from 0.25 to

Table 4
Stimuli for Bower Task

Script First scene Second scene Third scene Fourth scene

1 Goto(John, Doctor) Checkin(John) Read(John, Magazine) Treat(Doctor, John)
Goto(Bill, Dentist) Read(Bill, Magazine) Wait(Bill) Treat(Dentist, Bill)
Goto(Natasha, Chiropractor) Checkin(Natasha) Wait(Natasha) Treat(Chiropractor, Natasha)

2 BuyTicket(Jill, Movie) FindSeat(Jill) Buy(Jill, Popcorn) Watch(Jill, Movie)
3 Wakeup(Sarah) GetDressed(Sarah) Eat(Sarah, Toast) Leave(Sarah)

Note. Each row denotes a story comprising four scenes, representing a simplified narrative containing relational structure. Each of the stories in script
1 contain common structural elements, with the same beginning and endings and a shared second or third scene, but with different fillers in the roles.

Figure 12. False memory simulations. The recognition memory proba-
bility for a script-consistent false memory probe is shown as a function of
the number of stories of the same script during learning. Chance (50%) is
denoted by a dotted black line.
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0.75 for ongoing events. This precision parameter is only used in
the creation of the corrupted memory trace and is not used during
reconstruction, and this change in memory precision acts as an
input to the model. Although we have chosen to model the active
event model with this change in memory precision, our key claim
is that the active event provides a source of information to recon-
struction. Other mechanistic implementations, such as an informa-
tive initialization point in reconstruction or as an external, sepa-
rately defined input that biases reconstruction, would also be
consistent with this account.

We simulated this hypothesis using a simplified variant of the
Radvansky and Copeland (2006) task. In the original task, subjects
navigated from room to room in a virtual environment. We sim-
plified this to a stereotyped set of scenes, using a similar sequence
of structured scenes as in the previous memory experiment and in
the generalization simulations. To model the interactions in each
room, we provided SEM with observations of (a) entering the
room, (b) putting an object down, (c) picking up the next object,
and (d) leaving/crossing the room. Each of these scenes is com-
posed of a verb (e.g., Enter) and context that corresponds to an
individual room (see Table 5). We assumed that the object to be
picked up was observed in the first two scenes. For balance, we
assumed that the object that was put down was observed in the
second two scenes. We further assumed that the pickup object was
bound to the verb Pickup in the third scene. Each of these scenes
was encoded using an HRR as outlined in Table 5 with Gaussian
random vectors for each of the features. The model was trained on
a sequence of 15 rooms and given a memory test after each room.
We assumed that event boundaries corresponded to entering and
exiting a room and constrained the model to infer an event bound-
ary only at this time. The model was free to choose to reuse an
event model or infer a new one for each room.

The key manipulation in the simulations was the shift versus
no-shift conditions, modeled as a change in event label memory
precision for the ongoing event. As we alluded to above, event
label memory precision was increased for the no-shift condition
relative to the shift condition. The two conditions were other-
wise identical. Error was assessed by the probability that a
corrupted memory trace was included in the reconstruction
sample. Mirroring the results in the human studies, the model
had lower error in the no-shift condition than in the shift
condition (see Figure 13).

Event Boundaries Improve Overall Recall

Although these short-term memory (STM) effects suggest that
event boundaries interfere with memory, the relationship between

event structure and subsequent memory is not always intuitive.
Overall, extracting relevant event structure tends to improve mem-
ory, as subjects with better segmentation judgments tend to have
better subsequent recall (Sargent et al., 2013; Zacks et al., 2006).
Similarly, studying a list of items or videotaped lectures in mul-
tiple contexts leads to better overall memory (Smith, 1982, 1984;
Smith & Rothkopf, 1984). Within the context of SEM, event
structure plays an important role in the reconstructive memory
process. Poor segmentation leads to a noisier reconstruction pro-
cess and thus worse overall memory.

Interestingly, the benefits of event boundaries within the recon-
structive memory process extend to cases where the sequence of
studied memory items are random and where there is no clear
relationship between events and studied items. In a series of
studies, Pettijohn and Radvansky (2016) demonstrated that when
subjects were given a list of items separated by a physical or
virtual event boundary, subsequent recall was higher overall. This
suggests that segmentation itself influences memory and is impor-
tant for overall memory irrespective of environmental statistics.

Here, we probe the model for these effects by simulating Ex-
periment 1 in Pettijohn et al. (2016). In this experiment, subjects
were given a list of 40 words to remember while moving between
four locations in physical space, divided into four ordered sublists
of 10 words each. Subjects read one sublist (10 words), then
moved to a new location in space, either in a new room (shift
condition) or a new space in the same room (no-shift condition)
that was equated for physical distance and read a second sublist
(10 words). Subjects were then given a distractor task and finally
asked to recall as many of the words as possible from both sublists.
Subjects had higher recall accuracy in the shift condition than in
the no-shift condition.

We simulated these effects by generating a list of 20 items, each
as a Gaussian random vector. We trained the model on the list,
either constraining the model to learn all items within a single
event (no-shift) or assuming a single event boundary halfway
through the list (shift). We then used the reconstruction procedure
to create a reconstructed memory trace and probed memory recall
as the probability that each corrupted memory item ỹi is included
in the reconstructed trace, defined by Equation 14. Overall, the
accuracy is higher in the switch than in the no-switch condition
(see Figure 14), replicating the findings of Pettijohn et al. (2016).
During the reconstruction process, the uncertainty about a single
item propagates to its neighbors as a consequence of the dynamics
of the event schema. In general, the event schemata reduce the
overall reconstruction uncertainty by regularizing the process, but
they nonetheless propagate uncertainty between noisy scene mem-
ories. Because the dynamics end at boundaries, boundaries prevent
the uncertainty from spreading.

Sequential Recall

Even as event boundaries improve memory performance over-
all, they introduce specific deficits to sequential recall. Given
narrative texts that include a temporal shift, subjects are worse
when remembering the next sentence immediately after a temporal
shift than immediately before (Ezzyat & Davachi, 2011). This
impairment of sequential order memory by boundaries occurs even
in the absence of a naturalistic event structure (DuBrow & Dava-
chi, 2013, 2016) and is not associated with an impairment of

Table 5
Scene Representation for Simulations of Radvansky and
Copeland (2006)

Scene Features

1 Enter 	 Current room
2 Object A 	 Current room
3 Object B 	 Current room
4 Leave 	 Current room

Note. Each scene was composed of vectors corresponding to the features
in the scene.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

347STRUCTURED EVENT MEMORY



associative memory (Heusser et al., 2018). This suggests that the
event structure that subjects learn (as opposed to the structure of
the task) is responsible for this memory effect. In the context of the
model, SEM continuously estimates the transition structure be-
tween scenes as the event dynamics, irrespective of the regularity
or unreliability of that structure. Introducing a boundary disrupts
learning an association between successive scenes. This becomes
apparent in the reconstruction process, where the presence of
boundaries disrupts sequential memory, even as they aid recon-
struction overall.

To demonstrate this, we simulated Experiment 1 of DuBrow and
Davachi (2013). In the original experiment, subjects were pre-
sented with 400 items sequentially (200 celebrity faces and 200
nameable objects) across 16 study-test rounds of 25 images each,
while performing a task in which subjects either made a male/
female judgment (faces) or a bigger/smaller judgment (nameable
objects). Following each round, subjects were asked to recall each
item they saw in order. Sequential recall accuracy, as measured by
direct transitions between consecutive items, was higher for items
immediately before a task/category switch than immediately after.

We simulated five events, alternating between two categories
after the presentation of five items each. Each item was embedded
by combining an item-specific factor (i.e., a random Gaussian
vector) and a shared category feature (itself a random Gaussian
vector) with addition to encode the similarity relationship between
items of the same category. As in the previous memory simula-
tions, the model inferred a single event label for all of the scenes
within an event and event boundary locations were provided to the
model as a simplifying assumption of the task. As the deficit in
serial recall can be interpreted as contradictory to the findings of
Pettijohn and Radvansky (2016), we have reused the same param-
eter values in both simulations to show that the same parameters
can result in both behaviors. The reconstruction was performed as
previously described, and SEM inferred a reconstructed memory
trace and event label for each moment in time. Order memory was
assessed by measuring the probability that two sequential probe
items were reconstructed in the correct sequential order. Thus, if
item B followed item A in the stimuli, it was scored as correct if it
appeared in this order in the reconstruction, regardless of the
position of these items in the reconstructed sequence.

Figure 15 summarizes the results of the model simulated on this
task. As expected, the model has higher serial recall accuracy for
items studied immediately prior to the category/task switch than
after, mirroring previous empirical results. Mechanistically, this
occurs because the model learns the dynamics over the scenes
within an event, whereby each item is learned as a function of the
previous item within the event, but there is no direct association
between sequential items in separate events. This reflects the
hypothesis that people are continually and automatically learning
about temporal structure. The reconstruction process, which reg-
ularizes the corrupted memory trace with the learned dynamics,
thus aids the acquisition of within-event sequence knowledge.
Overall temporal information is not otherwise lost, as the identity
of each event and the within-event dynamics help order the entire
sequence, but there is less of an association between two sequential
items across an event boundary in the reconstruction.

One potential concern is whether these results are driven by our
choice of parameter values. The temporal corruption noise param-
eter b is of particular interest because it directly controls how
veridically order information is preserved in the noisy memory

Figure 13. Simulations of the task in Radvansky and Copeland (2006).
Reconstruction memory accuracy is shown for items both after an event
boundary (Shift) and before an event boundary (No-Shift).

Figure 14. Simulations from Pettijohn et al. (2016). Left: Human subjects
have higher recall in the shift versus no-shift conditions (data reproduced
from Pettijohn et al., 2016). Right: Model has higher recall in shift versus
no-shift condition.

Figure 15. Serial recall across an event boundary. The proportion of
correct transitions between an item and the following item was worse
across an event boundary than immediately prior to the boundary.
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trace. Unsurprisingly, larger values of b lead to worse serial recall,
but—more surprisingly—larger values of b also lead to better
overall reconstruction (Appendix D, Figure D1). Intuitively, we
might expect more temporal noise to increase the uncertainty of
the reconstruction overall, but increasing temporal corruption loos-
ens a constraint on the reconstruction process. This has the result
that a corrupted memory trace is more likely to be included in the
reconstructed memory, but at a cost of worse temporal order. As a
comparison, the feature corruption noise parameter � largely in-
fluences overall reconstruction and does not meaningfully influ-
ence order memory. Importantly, changes in the parameter value
of b does not differentially affect serial recall in the boundary or
preboundary trials (see Appendix D for details), indicating that the
qualitative effect here is not driven by this parameter. This can be
seen in Figure 16, which shows the order memory in the boundary
and preboundary trials for four values of b but otherwise hold the
parameters of the simulation the same.

Discussion

In this article, we have tackled the problem of learning and
understanding events through the lens of probabilistic reasoning.
We have made three main contributions with our model: first, we
demonstrated that SEM can produce human-like segmentation of
naturalistic data, suggesting that the computational principles out-
lined here are scalable to real-world problems; second, we have
shown how events can capture generalizable structure that can be
used for multiple cognitive functions; and third, we have shown
that these principles are sufficient to explain a wide range of
empirical phenomena.

Segmentation

In the current work, we have built on previous models of
event segmentation and shown that our model can produce
human-like segmentation of naturalistic data sets. Although the
low-dimensional and often nonecological stimuli used to evaluate
previous computational models are diagnostic of computational

principles, it is important to show that these principles are suffi-
cient to account for naturalistic environments. Without this dem-
onstration, it is unclear whether the behavior produced by the
model is a consequence of the artificiality of the stimuli. Further-
more, as we can show that human event boundaries mirror the
boundaries predicted by the model, we can argue that human event
segmentation is sensitive to the same underlying regularities in the
stimuli as the model.

Previous computational models of events have, like SEM,
used recurrent neural networks to learn the event dynamics.
Even as the models differ in the specifics of the networks used,
their similarity leads to qualitatively similar predictions. This is
most evident in our simulations of community structure (see
Figure 7). SEM recreates the same qualitative pattern of behavior
as both the Schapiro et al. (2013) model and human subjects. All
three show an increased tendency to delineate an event boundary
at community transition points. It is not surprising that SEM and
the Schapiro model learn similar event boundary points given the
similar method of learning event dynamics. Nonetheless, these
event boundaries in SEM correspond with increased prediction
error, even as the Schapiro task was designed to not elicit predic-
tion errors at community transition points. As we previously noted,
this is a consequence of the distinction between the generative
process of the task (in which community transitions are equally
probable as other transitions) and what the agent learns about the
task. SEM embodies a set of assumptions and inductive biases that
differ from a direct inversion of the Schapiro task, and this leads
to the experienced prediction errors at community boundaries.

Algorithmically, SEM is closely related to the model proposed
by Reynolds et al. (2007). Both models employ a hierarchical
process where event dynamics are learned with a recurrent neural
network at the lower lever, and where a higher level event con-
strains the lower-level model. These models are also similar in that
prediction errors play a key role in determining the identity of the
higher-level event (Equation 6). Computationally, the type of
gating mechanism used in the Reynolds model is similar to non-
parametric clustering with a Chinese Restaurant Process prior
(Collins & Frank, 2013), and although we make different commit-
ments and assumptions, similar computational principles drive
computation in both models. More broadly, using a recurrent
neural network to learn temporal dependencies is a powerful
computational tool, and has become more common recently in
models of cognition. In a notable piece of recent theoretical work,
Wang et al. (2017, 2018) argue that an architecture of stacked
recurrent neural networks is sufficient to explain a host of empir-
ical findings in human reinforcement learning and serves as a good
model for the prefrontal cortex. Unlike SEM, their model requires
extensive pretraining but nonetheless generalizes to novel task-
variants efficiently. A similar architecture was also employed by
Butz, Bilkey, Humaidan, Knott, and Otte (2019) to show that
events are useful in goal-directed planning. They trained an agent
to learn a forward model of states using recurrent neural networks,
and showed that allowing these networks to be contextualized by
events leads to more efficient learning in an artificial domain.

SEM is also related to computational techniques used to model
sequential processes by inferring latent states. The hidden Markov
model (HMM) is an instructive comparison because, like SEM, it
assumes each observation is generated by a latent process associ-
ated with a discrete latent variable (Bishop, 2006; Rabiner, 1989).

Figure 16. Sensitivity analysis for serial recall. Simulations of serial
recall accuracy are shown for the boundary and preboundary trials for four
values of temporal corruption noise b. See the online article for the color
version of this figure.
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The key difference is that the HMM does not model the internal
dynamics of each latent state; instead, HMMs assume that obser-
vations are generated by a stationary process conditioned on this
latent state. While this limits the HMM as a cognitive model of
events, it is nonetheless a useful empirical model in a variety of
segmentation tasks. Goldwater et al. (2009; reviewed in Teh &
Jordan, 2010) used an HMM with a uni-gram distribution over
phonemes to segment words. Recent work by Baldassano et al.
(2017) used HMMs to model event boundaries in human fMRI
data, providing strong evidence that people spontaneously generate
event boundaries with realistic experience. A more closely related
family of models is the switching linear dynamical system (Fox,
Sudderth, Jordan, & Willsky, 2010; Ghahramani & Hinton, 1996).
These models are a generalization of the HMM and, like SEM,
assume a dynamical process associated with each latent state. As
the name implies, the model assumes a mixture of linear dynamical
systems as its underlying process. This simplifying assumption
facilitates learning the types of dynamical processes that constitute
events, albeit at the cost of strong constraints on the form of these
dynamical systems. This contrasts with SEM, which does not
impose a linearity constraint, and can be viewed as a form of
switching nonlinear dynamical system. This distinction between
linear versus nonlinear dynamics is important for our choice of
structured embedding space. SEM can learn an arbitrary sequence
of bound scenes, a problem a linear model would struggle with.

Generalization

A key difference between SEM and other computational models
of event cognition is how SEM generalizes previously learned
events to novel experiences. SEM accomplishes this via nonpara-
metric Bayesian clustering, which allows SEM to learn and reuse
events. Furthermore, because SEM assumes that events exist in a
structured and distributed representational space, this generaliza-
tion applies not only to the surface features of the event, but also
to its underlying relational structure. As such, SEM can generalize
an event dynamic even when many of the features are different,
including role/filler bindings (see Figure 9). The generalization of
the relational structure is advantageous because its dynamics are
thought to be smoother and thus easier to generalize than the
surface features of a task (Radvansky & Zacks, 2011; Richmond &
Zacks, 2017).

This places the burden of encoding structure on the representa-
tional space (in our case, an HRR), and allows the dynamics to be
learned with a parameterized function. Although we do not make
a strong commitment to how this representational system is
learned by neural systems, we note that the convolutions required
to compute an HRR are thought to be plausible in biological
networks (Eliasmith, 2013; Yamins & DiCarlo, 2016). Regardless
of how this representational space is learned, smooth functions are
sufficient to generalize because similar structures are represented
with similar vectors. This allows SEM to leverage relational struc-
ture when identifying the event boundaries, and consequently learn
more general event dynamics that abstract away some surface
features. Hence, the event dynamics SEM learns are consistent
with previous theoretical accounts in which events are encoded in
terms of abstract, high-level features (Radvansky & Zacks, 2011).

The use of nonparametric clustering (i.e., the sticky-CRP) prior
with the learned (and structured) dynamics produces novel empir-

ical predictions. It might be unsurprising that people can learn an
event schema and generalize the dynamics to a new set of role/
filler bindings, but SEM makes predictions about when those
dynamics should be generalized. Specifically, the model predicts
that unpredictable dynamics or structure violations will drive
scenes to be clustered into a new event, preventing generalization.
For example, a sequence of scenes presented in a novel order will
be assigned a new event. The model also predicts that the order in
which events are initially experienced can influence how they are
assigned to different event schema. Two instances of similar, but
predictably dissociable, events can be assigned to the same event
schema if they are learned close together in time. However, if one
of the two events is well learned, this may not happen as the
expected uncertainty of the event model (i.e., the learned value of
� in Equation 5) is low, and any small deviation from the event
model is sufficient to drive segmentation. To provide an intuitive
example, if a person has a very regular morning commute, they
might quickly notice changes in the traffic patterns caused by new
construction and form a new event, whereas in other less practiced
travel situations, they may ascribe variations in traffic conditions
to more unpredictable processes.

Neural and behavioral measures tend to support the claim that
events represent high-level information. A recent study by Baldas-
sano, Hasson, and Norman (2018) found a neural representation
for events that shared a high-level schematic structure but other-
wise had very different features. In this passive task, subjects
either watched a movie or listened to an audio narrative that
followed a shared script, such as ordering food in a restaurant, but
varied the actors, genre, and timing. Brain activity in the medial
prefrontal cortex was highly predictive of the script and could be
used to align the timing of events within the story, regardless of
modality and other features. This suggests that subjects maintained
a form of structural information about the films independent of
their low-level features. More broadly, relational information is
critical to memory (Cohen, Poldrack, & Eichenbaum, 1997), and
thus we would expect to see it in event representations. This neural
evidence is consistent with earlier memory studies in which sub-
jects tended to lose lower-level descriptive details of narrative
texts (e.g., the exact words used in order) while nonetheless
maintaining an accurate high-level description of events (Kintsch,
Welsch, Schmalhofer, & Zimny, 1990; Zwaan, 1994).

A limitation of our model is that it does not address the hierar-
chical nature of event representations. Events are thought to be
composed sequentially from multiple smaller events in a temporal
hierarchy (Radvansky & Zacks, 2011). To provide an intuitive
example, if washing dishes reliably follows dinner, a model of
event cognition should learn this relationship, potentially as a
single, larger event, even as it may be adaptive to learn separate
events for dinner and washing dishes. Behavioral evidence pro-
vides some support for hierarchical events, as events of different
timescales have temporally aligned boundaries, consistent with
what we would expect from a hierarchy (Zacks et al., 2001).
Neural evidence complements this picture: Even in the absence of
an explicit segmentation task, events of different timescales are
discoverable in fMRI data (Baldassano et al., 2017) and memory
representations of events vary in timescale along the long-axis of
the hippocampus (Collin, Milivojevic, & Doeller, 2015). Addition-
ally, there is some evidence that events of different timescales can
be joined together through learning. When shown a conjunction of
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events in a film repeatedly, subjects are less likely to mark an event
boundary between them, suggesting they may cohere smaller
events into larger events (Avrahami & Kareev, 1994). Neural
evidence also supports this hypothesis: in an fMRI study in which
subjects passively viewed separate animated stories, activity patterns
linked to distinct events in the medial prefrontal cortex and posterior
hippocampus became more similar when these events were subse-
quently linked narratively (Milivojevic, Vicente-Grabovetsky, &
Doeller, 2015). This is consistent with the proposal that people may
learn smaller-scale events and combine them to form larger events in
a hierarchy.

In the current model, we have not implemented a mechanism of
learning hierarchical events. Nonetheless, there are two ways by
which SEM could be extended to learning an event hierarchy. The
first strategy is to learn events of a fixed timescale and directly
learn the relationship between these events, either through transi-
tion dynamics between these events or through multiple levels of
hierarchy. The sticky-CRP we use to model the transition dynam-
ics does not encode this relationship, but it can be extended to do
so in principle. The second strategy is to learn events of multiple
different timescales in parallel. This is not a substantial modeling
challenge for SEM, as longer or shorter events can be learned by
scaling the prior over event noise parameter (� in Equation 2),
effectively changing each event’s sensitivity to prediction errors.
To the degree that event boundaries are driven by environmental
statistics, event boundaries from longer events naturally align with
shorter events. These events of different timescales could be, in
principle, combined in a mixture model for the purpose of making
a unified forward prediction.

A further (and related) limitation of our model is that it is not
compositional: elements of learned structure cannot be combined
across events. This contrasts with human cognition, which is
believed to be systematic, meaning that component pieces of
knowledge can be combined in a rule-like manner to give rise to
novel thoughts (Fodor & Pylyshyn, 1988; James, 1890). For ex-
ample, an event representing a lunch meeting could, in theory, be
composed of events separately representing lunches and meetings.
This requires a different form of structure than the form outlined
here, though it is worth noting that the false memory paradigm (see
Figure 12) does show aspects of a productive (or constructive)
system, creating a novel trace composed from distinct pieces,
without an explicit mechanism to do so.

To share structure between different events, these events need to
be represented compositionally. In SEM as currently instantiated,
events are learned as indivisible units with a single, learned func-
tion representing the dynamical structure. In principle, this dynam-
ical structure can be decomposed and generalized independently
between events. This may be adaptive because it simplifies the
statistical problem posed by generalization (Franklin & Frank,
2018), and thus can simplify representational demands by a com-
binatorial factor, dramatically accelerating learning.

How event dynamics can be learned compositionally and gen-
eralized between events is an open question for future research.
We can outline a few possible mechanisms for a compositional
system. Perhaps the simplest form of compositionality would be to
learn the dynamics of subsets of features independently and com-
bine the independent predictions. As an intuitive example, the
trajectory of a bird flying is generally independent of the trajectory
of cars stopping at an intersection. If we observe both in the same

scene, we might combine their previously learned patterns inde-
pendently to generate a single prediction for the next scene. In the
embedding space we’ve described, this is equivalent to linearly
combining the predictions of two different systems via vector
addition.

A second intriguing possibility coming from machine learning
and function learning is to directly combine the predictions of
multiple learned event models with composable kernel functions.
Complex functions can often be decomposed into a combination of
multiple, simpler functions (e.g., linear or periodic functions) with
kernel methods (e.g., Gaussian processes or support vector ma-
chines; Duvenaud, Lloyd, Grosse, Tenenbaum, & Ghahramani,
2013; Schulz, Tenenbaum, Duvenaud, Speekenbrink, & Gersh-
man, 2017). To the degree that we expect event dynamics to
resemble combinations of multiple simpler dynamics (e.g., the
zigzag line of a ship tacking in the wind resembles a combination
of a linear and periodic function) then these compositions may
provide a good model of how these components are learned.

An altogether different approach to decomposing the structure
of individual events is to learn all events within a single, large
event-model, for example in a neural network. Such a model,
having never segregated the representation of different events,
could potentially combine structure learned in different events
naturally. Elman and McRae (2019) demonstrated this by training
a neural network model on two different events, one in which a
person cuts food in a restaurant with a knife and another where the
same person cuts themselves with a knife and bleeds. They then
gave the model an event in which the person was in the restaurant
and cut themselves, and the model correctly inferred that the
person bleeds, combining elements of structure from the two
events. However, this approach comes at the cost of ignoring
hierarchical event structure, which can lead to generalization im-
pairments, as we show in Figure 11.

Memory

The memory component of our model builds on several previ-
ous probabilistic models of memory. Most directly, it is an exten-
sion of the Dirichlet process-Kalman filter model (DP-KF) pro-
posed by Gershman et al. (2014), a model of memory using a
nonparametric form of the switching Kalman filter. In the DP-KF,
observations were assumed to be generated by a switching linear-
Gaussian diffusion process, and memory was modeled in terms of
inference over this process. SEM is, in many ways, a similar model
and can be seen as an extension of the DP-KF with learnable (as
opposed to random diffusion) dynamics defining each event.

Most notably, the models are similar in how the partitioning of
individual memory items into events (or clusters in the DP-KF)
influences how they are smoothed in memory. In SEM, scenes are
partitioned by event, and subsequent memory smoothing has the
effect that scenes from the same event will influence each other
more so than they will influence the smoothing of scenes in
different events. Assuming that events are meaningful units, this is
an efficient use of data corresponding to effectively pooling rele-
vant sources of information and isolating irrelevant ones. Norma-
tively, this can prevent memory interference by separating poten-
tially competing stimuli, and is very similar to previous accounts
of event boundaries in memory, in which boundaries prevent
irrelevant information from spreading in a type of fan-effect (Rad-
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vansky, 2012; Radvansky & Zacks, 2017). Importantly, this inter-
acts in the model with event dynamics, such that similar scenes
experienced in multiple events will be separated in memory by
their associated event models, and thus interference between the
two will be lessened. Behaviorally, slowly drifting sensory stimuli
are averaged together in memory tasks, whereas there is less
averaging of stimuli across punctate change-points even in the
absence of a context change, supporting a clustered organization of
items in memory (Gershman et al., 2014).

Where SEM differs from the DP-KF and other accounts of
memory is how the information from individual scenes is com-
bined. In SEM, scenes associated with an event are smoothed with
the regular trajectories of that event. This has the effect of regu-
larizing memory traces toward an average event trajectory, not an
average of all of the scenes, as a reduced model without dynamics
would do. This mechanism differentiates SEM from prior models
of memory. The degree to which memories are regularized toward
an average event trajectory interacts with the inference of individ-
ual events. For example, events with small variations of a similar
temporal structure will be more likely to be associated with the
same event schema than events with dramatic differences. As a
consequence, events with conserved structure are regularized to
their schema-typical trajectory and events with a distinct temporal
structure are not equivalently regularized. More concretely, famil-
iar scenes that are presented in a surprising order will tend to be
regularized less (and thus, closer to their original value but with
higher overall noise) as they are likely to be assigned to a novel
event with uncertain dynamics. Conversely, if an event is typical
both in terms of content and temporal dynamics, it will be remem-
bered better, but will also show more schema-consistent construc-
tive inferences. This produces a systematic memory error in which
schema-atypical scenes are regularized toward schema-consistent
scenes. These mechanistic differences form the basis of empiri-
cally testable behavioral predictions: regularization can be mea-
sured by the degree to which reported memory differs from the
original stimuli in the direction of the event dynamics.

In contrast to the latent structure modeled by both SEM and the
DP-KF, the Temporal Context Model (TCM; Howard & Kahana,
2002) and the related Context Maintenance and Retrieval model
(Polyn et al., 2009) have proposed that memory is encoded in an
evolving temporal context. In TCM, a context vector that encodes
an average of recently seen items is bound to each new memory
item. This context drifts over time as new percepts are used to
update it, and is bound in memory to individual items. The Context
Maintenance and Retrieval model adds to this the property that
task changes induce large context shifts, which partitions traces
from different contexts. These models capture the phenomenon
that when asked to recall lists of items, recall can be temporally
organized even when participants are not constrained to recall
items in order (Kahana, 1996), a property of behavior captured by
TCM (Howard & Kahana, 2002). In contrast to a constantly
drifting process, SEM models sequential dependencies as dynam-
ical systems, and uses a recurrent neural network to learn them.

Extant empirical evidence suggests that neither abrupt shifts nor
slowly drifting memory contexts are sufficient accounts of mem-
ory (DuBrow, Rouhani, Niv, & Norman, 2017). SEM offers a
potential solution by embodying both. Nonetheless, it is not always
clear whether an individual experiment requires either clustered
structure or event dynamics as they sometimes produce similar

results. To dissociate this experimentally, these two forms of
statistical structure need to be both present and decorrelated in a
task, ideally through direct manipulation. We have shown how
these two forms of structure produce different patterns of gener-
alization but demonstrating how the two forms of structure interact
to influence memory within a single task is a question for future
empirical research.

Our memory model shares several features with other memory
models. SEM is conceptually similar to the schema-copy plus tag
model, in which a memory trace is composed of a corrupted copy
of a schema and a set of schema a-typical features (Graesser &
Nakamura, 1982). The perspective of memory retrieval as infer-
ence over a noisy memory trace is shared with the REM model
(Shiffrin & Steyvers, 1997), and the regularizing effect of the
event dynamics is qualitatively similar to the category bias pro-
posed by Huttenlocher et al. (1991).

SEM offers a novel and complementary approach to reconstruc-
tive memory that is meaningfully different from prior memory
models. Broadly, reconstructive memory can be thought of as the
process by which we reconstruct the past from fragmentary recol-
lections. Neisser (1967) made a famous analogy about how
reconstructive memory is like a paleontologist assembling a
dinosaur from dug-up bones. Many existing models (e.g., Nor-
man & O’Reilly, 2003; Raaijmakers & Shiffrin, 1980; Shiffrin
& Steyvers, 1997) are concerned with which bones are found
(how a memory fragment is retrieved), whereas with SEM we
take the perspective of the paleontologist and ask how do we
put the pieces together.

The difference between the reconstruction process of SEM and
the generation of memory traces of prior models is similar, but not
equivalent, to the distinction between semantic knowledge and
episodic memory. The noisy memory trace SEM uses in the
reconstruction process can roughly be thought of as a form of
episodic memory, whereas the event dynamics are more akin to
semantic knowledge used to organize them during reconstruction.
This comparison breaks down when we consider that novel events
in the model have episodic-like qualities; event dynamics for a
newly learned event capture much more detail about the specific
event than would be expected for an event that has been experi-
enced multiple times. As an event is experienced multiple times,
the learned dynamics in SEM come to reflect the more generalized
dynamics, averaging away the specific features of an individual
event. This leads to a transition of an episodic-like event dynamic
to a semantic-like event over time.

Likewise, SEM does not explicitly differentiate between types
(a general class of symbol) and tokens (a specific instance of that
symbol) but does encode knowledge of both in memory. A bound
scene with fillers has both type and token information of
individual symbols. In SEM, an event model that has experi-
enced the same structure multiple times with different fillers
will average over the fillers, which can be interpreted as type
(i.e., semantic) knowledge of those symbols. Noisy memory
traces used in the reconstruction process have information about
both, albeit in corrupted form. For well-learned events, the
reconstruction process will tend to amplify the type informa-
tion, as that is what the event model has learned, but the final
trace will preserve both type and token information.
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Neural Correlates

A further open question is how our model of events is imple-
mented in the brain. A growing body of evidence has linked the
hippocampus and the posterior medial network to event segmen-
tation and memory (Ranganath & Ritchey, 2012). The hippocam-
pus plays a crucial role in binding features and contextual infor-
mation (Davachi, 2006; Diana, Yonelinas, & Ranganath, 2007;
Eacott & Gaffan, 2005; Eichenbaum, Yonelinas, & Ranganath,
2007; Knierim, Lee, & Hargreaves, 2006; Ranganath, 2010), and
could therefore play a role in binding features of an event. Con-
sistent with this hypothesis, recognizing objects across an event
boundary is associated with an increase of hippocampal activity
(Swallow et al., 2011), and event boundaries themselves are linked
to an increase in hippocampal signal (Baldassano et al., 2017). The
anterior hippocampus also appears to play a role in representing
events; its representation is sensitive to temporal community struc-
ture present in a segmentation task (Schapiro et al., 2016).

The posterior medial network (PMN), a component of the de-
fault network, has anatomical connections to the hippocampus
and encompasses the parahippocampal, posterior cingulate, retro-
splenial, ventromedial prefrontal cortex, precuneus, and the angu-
lar gyrus (Ranganath & Ritchey, 2012). Hippocampal and PMN
regions consistently coactivate during recall of experienced events,
recollection of context, retrieval of temporal sequences, imagina-
tion of future events, and spatial navigation (Ranganath & Ritchey,
2012; Rugg & Vilberg, 2013; Spreng & Grady, 2010). A linking
thread through these tasks is the need for a constructed event
representation. Consistent with this idea, fMRI and electrocortico-
graphy studies have shown that regions of the PMN network
integrate over long timescales (hundreds of seconds; Hasson,
Chen, & Honey, 2015), and PMN activity is modulated by event
boundaries (Kurby & Zacks, 2008). Furthermore, event boundaries
are identifiable in the angular gyrus and posterior medial cortex in
unsupervised fMRI analysis (Baldassano et al., 2017). In terms of
memory, medial prefrontal cortex brain activity has been associ-
ated with schema-consistent memory (van Kesteren et al., 2013),
further implicating the posterior medial network in event process-
ing.

Integrating across these findings, we propose that event dynam-
ics could be learned and represented by the PMN (see Figure 17).
We further propose that the ventromedial prefrontal cortex
(vmPFC) encodes the posterior probability distribution over event
models, as the vmPFC has been previously implicated in latent
cause inference (Chan, Niv, & Norman, 2016) and state represen-
tation (Schuck, Cai, Wilson, & Niv, 2016; Wilson, Takahashi,
Schoenbaum, & Niv, 2014), two similar computational problems.
Finally, we hypothesize that the PM-hippocampal interactions are
responsible for the reconstructive memory process, as this process
involved the reinstantiation of scene dynamics with memory
traces.

Hence, we would expect to see these regions modulated by
events in different ways as a function of the experimental para-
digm. For example, we would expect to see stronger modulation of
the vmPFC in tasks where the strength of evidence for each
individual event model varies dramatically. Likewise, we might ex-
pect to see modulation in the hippocampus and PMN in tasks that
manipulate event reconstruction but less modulation of vmPFC in
such a task. We also might expect the relationship between event

segmentation and subsequent memory measures to increase fol-
lowing sleep, reflecting prior research linking sleep and the in-
creased semanticization of memory (Dudai, Karni, & Born, 2015),
and we would expect this to be reflected by hippocampal replay.
Although all of these predictions are strongly motivated by the
existing literature, our neural predictions are an open empirical
question for future research.

A related issue is how the computational-level model relates to
a circuit-level implementation. We note that many key aspects of
our theoretical account are neurally plausible. Of primary interest
is how event dynamics are learned by the PMN. One component of
this problem is learning an effective representational space, which
can dramatically simplify the problem of learning event dynamics.
Although the exact representational format of scenes is an open
question, Richmond and Zacks (2017) argued that we should
expect these representations to be smooth over time, as event
dynamics are consequently easier to learn and generalize. This
mirrors techniques in statistics and machine learning, where the
transformation from a complex representational space to a simpler,
intermediate representation is a commonly used tool (Bishop,
2006).

To learn the dynamics over these representations, we have used
recurrent neural networks as a function approximator. Gating
mechanisms, the ability to selectively store the internal state of the
network, are a critical element of these networks and make them
well-suited to learning sequential dependencies (Hochreiter &
Schmidhuber, 1997; LeCun et al., 2015). Gating mechanisms are
common in biologically inspired models of human rule learning
and reinforcement learning (Collins & Frank, 2013; Kriete, Noelle,
Cohen, & O’Reilly, 2013; O’Reilly & Frank, 2006; Rougier,
Noelle, Braver, Cohen, & O’Reilly, 2005; Wang et al., 2018), and
are hypothesized to be supported by the midbrain dopamine sys-
tem (Collins & Frank, 2013; Frank & Badre, 2011; O’Reilly &
Frank, 2006). In line with these models, one possibility is that the

Figure 17. Neural correlates of SEM diagram of SEM architecture with
corresponding brain regions. Information about entities from the ventral
visual areas is fed into event models, which are instantiated in the posterior
medial network (PMN) as recurrent neural networks (RNNs). vmPFC is
hypothesized to select the currently relevant event schema/RNN. The
hippocampus is hypothesized to support storage and retrieval of event-
specific information (i.e., activity patterns in the currently selected RNN).
See the online article for the color version of this figure.
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midbrain dopamine system (including the ventral tegmental area
and substantia nigra) provides an error signal for learning event
dynamics through a gating mechanism similar to the ones found in
artificial neural networks. This fits with the generalized view of
dopamine prediction errors recently espoused by Gardner, Schoe-
nbaum, and Gershman (2018). As an alternative possibility, the
PMN may learn the event dynamics directly through local con-
nectivity and its own prediction errors. How this may occur is an
open question, but prior computational modeling work has sug-
gested that gating mechanisms are consistent with cortical micro-
circuits (Costa, Assael, Shillingford, Freitas, & Vogels, 2017), and
that neural oscillations may be sufficient to generate a training
signal (O’Reilly, Wyatte, & Rohrlich, 2014).

Language and Other Outstanding Questions

In the current work, we have not considered tasks that rely on
the comprehension of natural language texts. In the event cognition
literature, many of the effects that have been observed use narra-
tive texts in their experimental design and measure reading speeds
(for review, see Radvansky & Zacks, 2014). For example, subjects
show slower reading speeds following a change in goal (Suh &
Trabasso, 1993) or cause (Zwaan, Langston, & Graesser, 1995) in
narrative texts, an effect that has previously been interpreted as
reflecting an event boundary (Radvansky & Zacks, 2014). Mem-
ory for specific sentences read in a narrative declines across time
even as the memory of the events described remains stable
(Fletcher & Chrysler, 1990; Kintsch et al., 1990; Schmalhofer &
Glavanov, 1986). In principle, SEM could be applied to natural
language texts as long as these texts could be encoded into the
logical scene description language that we embed into vector space
using HRRs.

More broadly, although our model of events included the ability
to encode structured representations, the degree to which it en-
codes semantic information is a function of the embedding space.
This space is assumed as an input to the model, and when it is
semantically meaningful, the model can generalize this semantic
meaning to novel events through learned dynamics (see Figure 9).
However, when we only provide the model with an unstructured
embedding space, it cannot produce variable bindings through
event segmentation or with event dynamics alone. For example, in
our simulations on the video data, an unstructured embedding of
each of the videos was created using a variational auto-encoder.
Our purpose was to demonstrate that SEM could generate human-
like segmentation from pixel-level data via unsupervised training
alone and without access to hand-tuned representations of objects.
Nonetheless, these scenes contained objects in them, and a lack of
a structured representation of these scenes likely made the seg-
mentation problem more challenging. This is likely a larger prob-
lem in more complex environments. Each of the videos that we
examined was simple, concerning a single person completing an
everyday action. We suspect that, for example, a video in which
several actors cooperate on a task, or a video with background
motion (cars in the distance, birds moving around) would be much
more difficult for the computational model without a structured
representation. The question of how to develop structured repre-
sentations of scenes is an ongoing question of research in computer
science (see Herath, Harandi, & Porikli, 2017, for review), and

progress in this area will aid our ability to model naturalistic data
sets going forward.
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Appendix A

Variational Auto-Encoder

A variational auto-encoder (Doersch, 2016; Kingma & Welling,
2013) is a dimensionality reduction technique that employs two
networks, an encoder network to project the data into a lower-
dimensional embedding space and a decoder network to re-project
it into the original space. A Gaussian prior is defined over the
embedding space and the network is trained to minimize the
difference between the original image and its reconstruction, sub-
ject to the embedding prior. We used a variant of the Deep
Convolutional Generative Adversarial Networks (DCGAN) archi-
tecture (Radford et al., 2015) for our encoder and decoder net-
works and use a maximum mean discrepancy kernel as a prior over
our embedding space (Zhao, Song, & Ermon, 2017). Our encoder

network consisted of a five layers: three convolutional layers
(with 64 � 3, 128 � 3 and 256 � 3 channels, respectively) and
two fully connected layers. All of the layers used a leaky,
rectified linear activation function except the last layer, which
was linear and 100-dimensional. Our decoder network reversed
this process with a symmetrical network. Prior to training, each
frame was downsampled to a resolution of 64 � 64 using linear
interpolation. Randomly selected batches of frames were used
with the ADAM optimization algorithm (Kingma & Ba, 2014)
to train the autoencoder. A PyTorch implementation of our
neural network is available at https://github.com/ProjectSEM/
VAE-video.

Appendix B

Holographic Reduced Representation

Holographic reduced representations (HRR) leaves intact the
similarity structure of the composed vectors. HRRs consist of two
operations, vector addition and circular convolution. Vector addi-
tion preserves similarity, such that if a, b, and c are vectors, then
(a � c) and (b � c) are typically more similar to each other than
a and b are to each other. This is always true for zero-mean
orthogonal vectors and is true in the expectation for zero-mean
random vectors in high dimensional space (e.g., x � N(0,I)) To
demonstrate this, compare the orthogonal vectors a, b, and c with
dot product as our measure of vector similarity, then aTb � 0
while (a 	 c)T(b 	 c) � cT c. Likewise, if we assume the two
vectors x and y are similar to each other such that xT y � 0, then
adding orthogonal features to them does not change their similar-
ity. If x and y are also orthogonal to a and b, then (x 	 a)T(y 	
b) � xTy. Thus, adding orthogonal feature vectors does not change
the similarity between two vectors.

Using circular convolution as a binding operation also preserves
the similarity structure. That is, if two vectors are similar to each
other, then their convolution with a third vector will partially retain
that similarity. We can show this by approximating a circular
convolution with a tensor product (Doumas & Hummel, 2005;

Plate, 1995), and noting that tensor operations are distributive,
such that

(x � y) � z � x � z � y � z.

If two vectors a and b share a common factor c such that a � a0 	
c, and b � b0 	 c, where a0, b0 and c are orthogonal vectors, we
can decompose their tensor product with d into the sum of two
separate tensors

a � d � a0 � d � c � d

and

b � d � b0 � d � c � d

provided that d is orthogonal to a and b. Because both tensor
products share a common tensor as a linear factor, we can use the
arguments above to show that they are similar to each other. Thus,
taking the tensor product of two similar vectors and a third random
vector will result in a similar tensor product. Since circular con-
volution is a compressed tensor product operation (Doumas &
Hummel, 2005; Plate, 1995), this argument will hold approxi-
mately for HRRs as well.

(Appendices continue)
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Appendix C

Sampling Reconstruction Memory Model

To sample the reconstructive memory model, we define a Gibbs
sampling algorithm. The algorithm has three interlocking pieces:
(a) sampling reconstructed estimates of the scene features x̂ con-
ditioned on samples of ŷ and ê, (b) sampling estimates of ŷ from
conditioned on samples of x̂ and ê, and (c) sampling estimates of
ê conditioned on samples of x̂ and ŷ. As each component is
conditionally independent of the other, they can be iteratively
sampled until convergence.

To initialize, at each time n we either draw a sample of ŷn �
�x̂, ê, n� from either ŷ without replacement or assign it to be y0. The
features of the scenes x̂ are initialized from a normal distribution and
the sequence of events e is initialized from the sCRP prior.

Sampling Pr�xỹ, e�

In the first step of the sampling algorithm, we draw samples of the
scene features conditioned on the corrupted memory trace ŷ and the
event label e. The probability of the feature vector x= occurring at time
n can be recursively defined under the generative model as:

xn | x1:n�1, ỹn, en, 
  N(x�, �I) (18)

where the mean x�n is a precision-weighted linear combination of
the scene features of the memory trace x̃n from the corrupted
memory trace ỹn and the predicted location of the embedded scene
under the event model:

x�n � uf(x1:n�1, et, 
) � (1 � u)x̃n (19)

where u � b�1/(b�1 	 t�1) is the weight placed on the event
schema prior, and � � 1/(b�1 	 t�1) is the posterior variance.

Sampling Pr�ỹx, e�

The samples of the features vectors are then used to sample ỹ
and e. The corrupted memory traces ỹ are sampled to determine
both the time they occur as well as whether they are recalled at all.
Samples of ỹ are drawn from the conditional distribution of the
memory trace given the reconstructed features and event labels,
which is defined by inverting the corruption processes (Equations
11, 12, and 13):

Pr(ỹi | xn, en) ��0 if ẽ � � �en, e0�
� ⁄ Z if ỹi � y0

1|ñ�n|�bN(x̃ � ;xn, �I) ⁄ Z otherwise

(20)

where ỹi � �x̃�, ẽ�, ñ�, and where 1|ñ�n|�b is an indicator function
that returns 1 if | ñ � n| � b and 0 otherwise. Thus, the probability

the corrupted memory item occurs at time n is zero if the corrupted
event label is mismatched, or if the corrupted time index ñ is more
than b steps away from n.

It is important to note that the probability of sampling a null
event under this process is both a function of � and the estimate of
xn. This is because the normalizing constant

Z � � � 	
ỹi

1|ñ�n|�bN(x̃ �; xn, �I) (21)

will typically be larger as a function of ||x̂n � xn||, thus lowering the
probability of a null event. Consequently, the quality of the recon-
structed features will influence the degree to which a null token is
included. It is also worth noting that the use of a uniform prior over
a restricted range greatly simplifies the sampling problem when
compared with, for example, a discretized normal distribution.
Because we assume each memory token ỹi is sampled without
replacement, there are less than 2N2b	1 valid assignments of ŷ,
whereas an unbounded time corruption process leads to 2N! valid
permutations.

Sampling Pr�ex, ỹ�

To complete the inference process, the samples of x̂ and ŷ are
used to update the estimate of the sequence of events. Conditioned
on x, f and 
, the probability of events e1:n under the generative
process is recursively defined as:

Pr�e  x, e1:n�1� � Pr(xt | x1:n�1, e)Pr(e | e1:n�1). (22)

As previously noted, we store a corrupted memory of the event
label ẽi in the memory trace ỹi. Conditioning on this memory trace,
the reconstruction process is thus:

Pr(e | ỹi, x, en�1) � �Pr�e  x1:n�1, en�1,� if ẽ � � e0 or ỹi � y0

1 otherwise

(23)

If the associated event memory ẽ= is equal to the null token e0,
or if ỹi is the null memory item y0, then the generative process
(Equation 22) is sampled. Otherwise, the memory label is taken
from the estimated memory trace ŷn In the full Gibbs sampler, we
draw alternatively draw samples of x̂, ŷ ê until convergence. To
this sample, we can apply different scoring rules to simulate
different memory measures. For example, we model recall by
whether a trace ŷ is in the final sample. These measures are
specific to each simulation and we present each with the relevant
simulation.

(Appendices continue)
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Appendix D

Sensitivity Analysis of DuBrow and Davachi (2013, 2016)

To evaluate the sensitivity of the model simulations for the task
presented in DuBrow and Davachi (2013, 2016), we simulated a
single, constant run of the task with multiple values of memory
corruption noise t and b. Using the parameter values t � [0.001,
0.01, 0.1] and b � [1, 2, 3, 4], eight batches were simulated for
each parameter. All of the other parameters were held constant as
reported in Table 2. We assessed the effect of these parameters on
overall order memory (the probability each item was reconstructed
following the item that preceded it in the training data) and the
overall reconstruction accuracy (the probability that the memory
item was in the reconstruction sample). This was done using
Bayesian logistic regression:

P(Accuracy � 1) � s(b�b � ���) (24)

where s(x) � 1/1(1 	 e�x) and � is a regression weight. We also
assessed whether there is a difference in order accuracy in the
preboundary and postboundary trials as a function of b by fitting
separate regression weights for the two conditions with the fol-
lowing model and comparing the regression weights. We report the
95% highest density posterior interval (HDI; Kruschke, 2014) and
consider statistically significant effects as those not containing
zero in this interval.

Higher values of b were found to increase overall reconstruction
accuracy (�b: HDI � [0.14, 0.23]) and decrease order memory (�b:
HDI � [�1.53, �1.15]). Increased value of � did not lead to a
change in order memory (��: 95% HDI � [�2.41, 4.76]) but lead
to higher reconstruction accuracy (��: 95% HDI � [5.49, 12.11]).
Critically, the effect of the value of b did not vary for the pre-
boundary and postboundary conditions (�bpre

� �bpost
95% HDI �

[�0.58, 0.63]), suggesting the parameter values did not drive the
qualitative pattern we report.

We further verified this result by simulating 12 batches of the
full (DuBrow & Davachi, 2013, 2016) task for the values of b �
[1, 2, 5, 10] and with � � 0.01. For all of these values of b,
preboundary serial recall was higher than boundary serial recall
(Figure 16).
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Figure D1. Sensitivity analysis of memory parameters. Order memory
(left) and overall reconstruction accuracy (right) are shown for different
values of the temporal corruption noise (b) and feature corruption (�).
Higher values of b decrease order memory but aid overall reconstruction.
Increased values of � correspond to both improved order memory and
increased reconstruction accuracy. See the online article for the color
version of this figure.
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