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Trait somatic anxiety is associated 
with reduced directed exploration and 
underestimation of uncertainty

Haoxue Fan    1, Samuel J. Gershman    1,2,3 and Elizabeth A. Phelps    1,2 

Anxiety has been related to decreased physical exploration, but past 
findings on the interaction between anxiety and exploration during 
decision making were inconclusive. Here we examined how latent factors 
of trait anxiety relate to different exploration strategies when facing 
volatility-induced uncertainty. Across two studies (total N = 985), we 
demonstrated that people used a hybrid of directed, random and undirected 
exploration strategies, which were respectively sensitive to relative 
uncertainty, total uncertainty and value difference. Trait somatic anxiety, 
that is, the propensity to experience physical symptoms of anxiety, was 
inversely correlated with directed exploration and undirected exploration, 
manifesting as a lesser likelihood for choosing the uncertain option and 
reducing choice stochasticity regardless of uncertainty. Somatic anxiety 
is also associated with underestimation of relative uncertainty. Together, 
these results reveal the selective role of trait somatic anxiety in modulating 
both uncertainty-driven and value-driven exploration strategies.

From daily errands to life decisions, people constantly face the 
explore-exploit dilemma: should I stick with the current best option 
(exploit), or should I try something else that could potentially be bet-
ter (explore)? Because exploration entails inherent risk, it may evoke a 
heightened level of anxiety and may be avoided altogether by individu-
als with chronically high levels of anxiety. However, the multifaceted 
nature of both exploration and anxiety complicates the study of their 
relationship. In this paper, we use computational models of exploration 
in tandem with dimensionality reduction of anxiety measures to cleave 
the exploration-anxiety relationship into multiple distinct components.

An anticorrelation between anxiety and exploration has long been 
assumed in animal models1–3. In the open-field test, a paradigm used 
to measure exploratory behaviour, researchers put the animal in a 
square box and compare the time it spends in the centre and the outer 
edge of the box. A decrease in time spent in the exposed centre area 
is regarded as a core feature of an anxiety phenotype in non-human 
animals. Likewise, anxiolytic drugs restore exploratory behaviour4. 
With paradigms mimicking the open-field test and its variants, a few 

human studies have also shown that anxiety inversely correlates  
with exploration5,6.

Beyond the exploration of physical locations, exploration is a 
key component of human decision-making broadly. Specifically, 
it is a crucial element of tasks examining decision making under 
uncertainty7 in which, to maximize the long-term reward, people need 
to collect information about a range of options, sometimes at the 
expense of foregoing the current most rewarding one. In other words, 
exploration is a reward-information trade-off: the action of directly 
experiencing an alternative to gather information about its value 
sometimes comes at the opportunity cost of not benefitting from 
the current best option8. Although studies have shown that anxious 
individuals are more averse to uncertainty9, how anxiety influences 
exploration during decision making remains unclear. On one hand, 
people with anxiety symptoms tend to avoid uncertain options10, 
which reduces exploration. On the other hand, anxiety is associated 
with the elevated valuation of information11,12, which encourages 
exploration behaviour to reduce uncertainty. It is also possible that 

Received: 22 September 2021

Accepted: 26 August 2022

Published online: 3 October 2022

 Check for updates

1Department of Psychology, Harvard University, Cambridge, MA, USA. 2Center for Brain Science, Harvard University, Cambridge, MA, USA. 3Center for 
Brains, Minds and Machines, Cambridge, MA, USA.  e-mail: phelps@fas.harvard.edu

http://www.nature.com/nathumbehav
https://doi.org/10.1038/s41562-022-01455-y
http://orcid.org/0000-0003-3967-6457
http://orcid.org/0000-0002-6546-3298
http://orcid.org/0000-0002-6215-8159
http://crossmark.crossref.org/dialog/?doi=10.1038/s41562-022-01455-y&domain=pdf
mailto:phelps@fas.harvard.edu


Nature Human Behaviour | Volume 7 | January 2023 | 102–113 103

Article https://doi.org/10.1038/s41562-022-01455-y

holding aleatory uncertainty fixed. We do this by varying volatility26, 
that is, the change rate of an option’s true value (for example, the 
update speed of the pastry menus). Although the uncertainty-driven 
exploration framework predicts that the impact of uncertainty on 
exploration is independent of the way it is varied, this hypothesis is 
yet to be tested. Therefore, the current study examines whether the 
effects of volatility-induced uncertainty are comparable to those of 
riskiness-induced uncertainty. Focusing on volatility-related uncer-
tainty also helps link the current study with the broader literature on 
the relationship between anxiety and decision making, where anxiety 
is associated with impaired performance as well as biased estimation of 
uncertainty in environments with changing volatility27–33. To pursue this 
connection more directly, we report a second study in which we meas-
ure uncertainty estimates directly and link them to anxiety dimensions.

Similar to exploration, anxiety is a multifactorial construct. There is 
considerable variation among individuals in the symptom profiles when 
experiencing anxiety34–38, the majority of which can be sorted into cogni-
tive and somatic categories39,40. The cognitive dimension includes symp-
toms associated with thought processes, including rumination, worry 
and intrusive thoughts. In contrast, the somatic dimension includes 
physical manifestations of anxiety such as sweating, trembling and pal-
pitation. Recent work showed that cognitive and somatic anxiety have 
differential effects on aversive learning41. Therefore, it is possible that 
analogous individual differences could influence exploratory behav-
iour. Given the limited past research on the association between dif-
ferent anxiety components and learning, we do not have strong a priori 
hypotheses on the direction of the anxiety-exploration relationship.

Results
People use a hybrid of directed and random exploration 
strategies
In Experiment 1, participants (N = 501) performed a two-armed bandit 
task in which they were informed about the volatility of both options. 
During the task, participants repeatedly chose between two options 
(‘arms’) and received feedback (points delivered by the selected arm) 
(Fig. 1a). They were instructed to collect as many points as possible. 
Before making a decision, participants saw the labels of the arms, each 
of which could be either ‘Stable’ (S) or ‘Fluctuating’ (F). In other words, 
they knew whether an arm is stable or fluctuating before they interacted 
with it. Both types of arms delivered rewards drawn from a Gaussian 
distribution around its current generative mean. The generative mean 
of the fluctuating arm diffused in a Gaussian random walk within a 
block while the mean of the stable arm stayed the same (see Fig. 1c for 
an example). The trial type was denoted by the pair of option labels 
(for example, on SF trials, option 1 on the left is stable, and option 2 on 
the right is fluctuating), resulting in four trial types (SF, FS, SS and FF). 

the apparently increased exploration reflects an overall tendency to 
behave more randomly13.

The inconsistency in these results is due to at least two reasons. 
First, people engage in distinct forms of exploration given different 
task structures (for example, the kind of uncertainty manipulated), 
making it hard to compare findings across heterogeneous experiments. 
Second, most existing studies view anxiety as a single-dimension con-
struct and thus fail to investigate whether different anxiety dimensions 
(for example, cognitive and somatic anxiety) are linked to distinct 
exploration patterns. Therefore, the goal of the current study is to 
experimentally dissociate different exploration strategies to investi-
gate their mapping onto distinct anxiety dimensions.

Recent work has revealed that people could use both the value and 
the uncertainty in the environment to guide exploration. A standard 
value-driven strategy is softmax exploration14, which chooses an option 
with probability proportional to the exponential of its expected value. 
This strategy is closely related to other decision strategies such as 
probability matching and has received some empirical support (for a 
detailed review, see ref. 7). The uncertainty-guided strategies fall into 
two distinct categories: directed and random exploration15–18. Directed 
exploration explicitly favours the uncertain option by adding an uncer-
tainty bonus to each option’s estimated value. Therefore, choices are 
directed towards particular options to obtain more information about 
their value. For instance, when choosing between a new cafe and your 
go-to place for lunch, you may prefer the novel option to assess whether 
it is better than your usual choice. This strategy is sensitive to the 
relative uncertainty between options15,19 and can be captured by rein-
forcement learning algorithms such as Upper Confidence Bound20,21. In 
contrast, random exploration scales choice stochasticity in proportion 
to the total uncertainty aggregated across options. This kind of explo-
ration can be captured by an algorithm called Thompson sampling22. 
For instance, imagine two cafes that offer different pastries every week 
(that is, volatile cafes). Since the pastry menus are constantly updated, 
the total uncertainty is higher than in a scenario where both cafes offer 
a fixed set of bakery items (that is, stable cafes). According to random 
exploration, people should explore more when facing volatile cafes.

On the basis of the link between uncertainty and exploration, 
past work has dissociated directed and random exploration by inde-
pendently manipulating relative and total uncertainty15,23–25. This was 
achieved by changing riskiness, that is, the moment-to-moment out-
come variability of an option (for example, the flavour difference 
of the same pastry between batches). This leaves open the question 
of whether exploration is truly driven by epistemic uncertainty (as 
proposed in computational models) or by aleatory uncertainty (the 
inherent variability of outcomes). To provide data on this question, 
here we experimentally manipulate epistemic uncertainty while 
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Fig. 1 | Study designs. a, On each trial, participants chose between two slot 
machines and received feedback on their choices. The participants could see the 
labels of the slot machines before making a choice and were explicitly instructed 
about the differences between a stable and a fluctuating machine before the task. 
b, The prediction task was completed at the end of each block in Experiment 2,  

where participants reported their reward predictions for the options they 
encountered in this block and rated their confidence. c, An example reward 
structure for a stable and a fluctuating arm. In the experiment, the means of  
both options were resampled from the zero-mean Gaussian at the beginning of 
each block.
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The trial type remained the same within a block and varied randomly 
across blocks (that is, the types and locations of two arms were fixed 
within a block and participants encountered a new pair of arms in each 
block). Participants learned the statistics from instructions (that is, 
they were explicitly instructed on the difference between a stable and 
a fluctuating arm and did not need to learn it during the experiment) 
and had a chance to practice before the formal experiment.

This experimental design allows us to independently manipulate 
relative and total uncertainty to investigate their separate influences on 
different exploration strategies. Because the volatility of the fluctuating 

arm is higher than the stable arm, the fluctuating arm is more uncertain 
(Supplementary Fig. 8). If directed exploration is, as hypothesized, 
sensitive to relative uncertainty, people should prefer option 1 (the 
left arm) in condition FS and option 2 (the right arm) in condition SF, 
even the value difference suggests otherwise. This is equivalent to an 
increase in the intercept of the psychometric curve for condition FS vs 
SF, that is, the probability of choosing option 1 is higher in condition FS 
(Fig. 2a). It is worth noting that the comparison between condition FS 
and SF holds the total uncertainty constant because there is always one 
fluctuating arm and one stable arm (Supplementary Fig. 8).
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Fig. 2 | Predictions of choice probability function change across conditions 
and probit regression results. a, Directed exploration predicts a preference 
for the uncertain option, which manifests as a shift in intercept in opposite 
directions for SF and FS trials. P (choose option 1): probability of choosing the 
option on the left. b, Random exploration predicts more choice stochasticity 
when total uncertainty is high, equivalent to a steeper curve for FF trials than 
for SS trials. c–f, Across two experiments: Experiment 1, N = 501 (c,d) and 
Experiment 2, N = 484 (e,f), the intercept of FS trials was larger than that of SF 
trials (Experiment 1: F(1, 150,292) = 6.20, P = 0.013, ΔM = 0.061; Experiment 2: F(1, 
144,892) = 10.17, P = 0.001, ΔM = 0.062), while the intercepts of FF and SS trials did 

not differ (Experiment 1: F(1, 150,292) = 0.06, P = 0.814, ΔM = 0.004; Experiment 
2: F(1, 144,892) = 0.04, P = 0.834, ΔM = 0.003). The slope of FF trials was larger 
than that of SS trials (Experiment 1: F(1, 150,292) = 81.07, P < 0.001, ΔM = 0.423; 
Experiment 2: F(1, 144,892) = 31.23, P < 0.001, ΔM = 0.175), while the slopes 
of SF and FS trials did not differ (Experiment 1: F(1, 150,292) = 2.77, P = 0.096, 
ΔM = 0.067; Experiment 2: F(1, 144,892) = 0.03, P = 0.867, ΔM = 0.005). Points 
indicate the fixed effect coefficients of intercept and slope for each condition 
using maximum likelihood estimation. F-tests (two-sided) were used to compare 
intercepts and slopes across conditions. No multiple comparisons correction was 
applied. Error bars are 95% confidence intervals. *P < 0.05, **P < 0.01, ***P < 0.001.
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A comparison between conditions SS and FF reveals how people 
respond to a shift in total uncertainty (FF > SS) while holding the rela-
tive uncertainty. If random exploration is sensitive to total uncertainty, 
it should predict that people behave more randomly in condition FF. 
This can be reflected as an increase in slope in the psychometric curve 
for condition FF vs SS, that is, the probability of choosing option 1 is 
closer to random (P = 0.5) in condition FF (Fig. 2b).

Our data suggest that people performed well in the task, choos-
ing the most rewarding option 79.76% (s.e.m. = 5.22%) of the time on 
average (Supplementary Fig. 1a). In line with our predictions, there 
was a significant intercept shift between the psychometric curves 
for condition FS and SF (F(1, 150,292) = 6.20, P = 0.013, ΔM = 0.061, 
two-sided), showing that people directed their exploration towards 
the uncertain option (Fig. 2c and Supplementary Fig. 2a). Addition-
ally, the intercept of SF was significantly negative (t(150,292) = −2.82, 
P = 0.005, β = −0.045, 95% CI (−0.077, −0.014), two-sided; see Supple-
mentary Table 9 for the full regression result table), indicating that 
people formed a bias towards choosing option 2 when its relative 
uncertainty was high. The intercept of FS was not significantly differ-
ent from zero (t(150,292) = 1.01, P = 0.312, β = 0.016, 95% CI (−0.015, 
0.047)). There was no significant difference in intercept between 
conditions FF and SS (F(1, 150,292) = 0.06, P = 0.814, ΔM = 0.004), 
suggesting that people did not adjust directed exploration according 
to total uncertainty.

We also found evidence for random exploration, manifesting 
as a steeper curve for FF than for SS (F(1, 150292) = 81.07, P < 0.001, 
ΔM = 0.423; Fig. 2d and Supplementary Fig. 3b). This suggests that 
people chose more randomly when facing high total uncertainty, that 
is, random exploration is sensitive to total uncertainty. There was no 
significant difference in slope between SF and FS (F(1, 150,292) = 2.77, 
P = 0.096, ΔM = 0.067), corroborating that random exploration is 
not sensitive to relative uncertainty. These behavioural signatures of 
directed and random exploration are present irrespective of whether 
all trials were used, or only trials in the late stage of each block (that is, 
trials 4–10; Supplementary Fig. 14).

To examine the exploration strategies people used on a 
trial-by-trial basis, we pooled participants’ data across conditions 
and used the following probit regression model:

P (at = 1|w) = Φ (w1Vt +w2RUt +w3Vt/TUt) , (1)

where Vt = Qt (1) − Qt (2) is the value difference between two options, 
RUt = σt (1) − σt (2) denotes the relative uncertainty, TUt = √ (σt2 (1) + σt2 (2))  
denotes the total uncertainty, and Φ(·) is the standard Gaussian cumu-
lative distribution function. Qt (k) and σt (k) respectively denote the 
value estimate and estimate uncertainty of option k obtained using 
Kalman filtering (equations (2)–(5)). Past work15 demonstrated that 
this is the exact analytic form of a hybrid of Thompson Sampling and 
Upper Confidence Bound algorithms. A positive w2 means that people 
add an uncertainty bonus to an option’s value proportional to its rela-
tive uncertainty, which directs exploration towards the option they are 
more uncertain about. In contrast, a positive w3 indicates that as the 
total uncertainty in the environment goes up, people increase choice 
randomness accordingly. Specifically, if w2 = 0, the model is insensitive 
to relative uncertainty and is reduced to pure random exploration. 
If w3 = 0, the model is insensitive to total uncertainty and is reduced 
to pure directed exploration. Finally, if w2 = w3 = 0, the model is only 
influenced by the value of options. This value-driven strategy is similar 
to softmax exploration and we term it undirected exploration because 
it is not influenced by uncertainty in the environment.

As expected, we found that people were sensitive to RU, V/TU 
and V, with their fixed effect coefficients all significantly larger than 
zero (RU: t(150,297) = 5.89, P < 0.001, β = 0.137, 95% CI (0.092, 0.183); 
V/TU: t(150,297) = 15.98, P < 0.001, β = 1.060, 95% CI (0.930, 1.190); V: 
t(150,297) = 34.43, P < 0.001, β = 1.576, 95% CI (1.486, 1.666)). The model 
with three regressors (‘hybrid model’) outperformed model candidates 
that only allowed for one exploration strategy, other nested model 
candidates, and reinforcement learning models with constant learn-
ing rates (Supplementary Table 2). The hybrid model demonstrated 
good parameter recovery capability and did not introduce spurious 
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correlations between fitted parameters (correlation between fitted and 
simulated parameters: all rs > 0.99, all Ps < 0.001; correlation between 
fitted parameters: all Ps > 0.05; Supplementary Fig. 6). It could also 
produce behavioural signatures of uncertainty-driven exploration, 
that is, intercept and slope differences in condition-based analysis 
comparable to human data (Supplementary Figs. 2 and 3). Together, 
our data support the hypothesis that people use a hybrid of directed 
and random exploration strategies, which are respectively sensitive to 
relative and total uncertainty induced by volatility.

Trait somatic anxiety is associated with reduced directed 
exploration and choice stochasticity
We administered State-Trait Anxiety Inventory trait scale (STAI-T)42 
and State-Trait Inventory for Cognitive and Somatic Anxiety trait scale 
(STICSA-T)40 to capture the multidimensionality of trait anxiety. The 
questionnaires were filled out after the behavioural task (other scales 
administered are reported in Supplementary Methods). To extract 
latent factors of trait anxiety and reduce dimensionality, we con-
ducted an exploratory factor analysis (EFA) on all items from STAI-T 
and STICSA-T (N = 82). The EFA resulted in a four-factor structure, which 
was validated with the confirmatory factor analysis in an independent 
sample (N = 797, see Supplementary Methods and Results for details). 

On the basis of the item loadings (Fig. 3 and Supplementary Table 3), we 
labelled the four factors as ‘Somatic anxiety’ (subjective experience of 
physiological symptoms), ‘Cognitive anxiety’ (worrying thoughts and 
rumination), ‘Negative affect’ (lack of positive affective experience) 
and ‘Low self-esteem’ (negative self-image).

We included trait anxiety factor scores and their interactions 
with V, RU and V/TU in equation (1) to model the effects of trait anxi-
ety factors on exploration. We found that the Somatic anxiety factor 
had two distinct effects on exploration strategies. First, its interaction 
with relative uncertainty was significantly negative (t(150,273) = −2.12, 
P = 0.034, β = −0.070, 95% CI (−0.134, −0.006); Fig. 4a and Supple-
mentary Fig. 10b). In other words, given the same level of relative 
uncertainty, people high on trait somatic anxiety were less likely to 
engage in directed exploration. Second, the Somatic anxiety factor 
was associated with increased sensitivity to value difference between 
options (t(150,273) = 3.32, P < 0.001, β = 0.217, 95% CI (0.089, 0.345); 
Supplementary Fig. 10a), indicating reduced undirected exploration. 
These effects were robust to different ways of trait somatic anxiety 
measurement, remaining significant when trait somatic anxiety was 
quantified by raw STICSA-T somatic subscale score (Supplementary 
Table 10). We also found a positive relationship between the Negative 
affect factor and directed exploration (t(150,273) = 2.93, P = 0.003, 
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Fig. 4 | Effects of trait anxiety factors on exploration strategies. a, Data from 
Experiment 1 (N = 501). b, Data from Experiment 2 (N = 484). Factor scores were 
obtained using EFA results in Experiment 1. All factors were standardized and 
entered into the same model together with age and gender. Points indicate 
the fixed effect coefficients fit for each predictor using maximum likelihood 
estimation. Error bars represent 95% confidence intervals. A positive coefficient 
for RU:Factor (V/TU:Factor) indicates increased directed (random) exploration. 
A positive coefficient for V:Factor indicates decreased undirected exploration. 

Significance of the coefficients was assessed using t-test (two-sided). Multiple 
comparisons correction was not applied. Across the two experiments, Somatic 
anxiety factor negatively correlated with RU (Experiment 1: t(150,273) = −2.12, 
P = 0.034, β = −0.070, 95% CI (−0.134, −0.006); Experiment 2: t(145,173) = −2.14, 
P = 0.032, β = −0.050, 95% CI (−0.096, −0.004)) and V (Experiment 1: 
t(150,273) = 3.32, P < 0.001, β = 0.217, 95% CI (0.089, 0.345); Experiment 2: 
t(145,173) = 4.05, P < 0.001, β = 0.194, 95% CI (0.100, 0.289)). *P < 0.05, **P < 0.01, 
***P < 0.001.
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β = 0.077, 95% CI (0.026, 0.129); Fig. 4a and Supplementary Fig. 10e). 
However, this effect was not replicated in Experiment 2 (see below). No 
trait anxiety factor significantly influenced random exploration, and 
neither the Cognitive anxiety nor the Low self-esteem factor interacted 
with any exploration strategies (all Ps > 0.05, Table 1; see Supplementary 
Results and Table 11 for a similar analysis conducted using a regression 
model that does not include the random exploration component).

Replicating main results of Experiment 1 in Experiment 2
In Experiment 1, we documented an inverse relationship between trait 
somatic anxiety and directed and undirected exploration. However, it 
remained unclear whether the reduced exploration was attributed to a 
change in the process of learning (underestimated RU and/or overesti-
mated V) or decision making (accurate value and uncertainty estimates 
but reduced sensitivity towards RU and/or increased sensitivity towards 
V), or both. In Experiment 2 (N = 484), we directly investigated this ques-
tion by adding a reward prediction task at the end of each two-armed 
bandit task block (Fig. 1b). During the prediction task, participants 
guessed how many points one machine will generate in the next trial. 
They then rated their confidence in their reward prediction on a scale 
from 0 (guess randomly) to 10 (very confident).

We first repeated the analysis in Experiment 1 to make sure that 
adding the prediction task did not interfere with the exploration 
strategies people adopted in the two-armed bandit task. Indeed, the 
manipulation of relative and total uncertainty causally influenced 
uncertainty-driven exploration: people directed their exploration 
towards the relatively uncertain option (F(1, 144,892) = 10.17, P = 0.001, 
ΔM = 0.062; Fig. 2e and Supplementary Fig. 2c). In addition, peo-
ple chose more randomly when the total uncertainty was high (F(1, 
144,892) = 31.23, P < 0.001, ΔM = 0.175; Fig. 2f and Supplementary  
Fig. 2d). Examining participants’ behaviour on a trial-by-trial basis, the 
model including V, RU and V/TU fit participants’ behaviour better than 
models that nested within it, as well as reinforcement learning models 
with constant learning rates (Supplementary Table 2), again showing 
that people used a hybrid of undirected, directed and random explo-
ration (V: t(144,897) = 31.39, β = 1.153, P < 0.001, 95% CI (1.081, 1.225); 
RU: t(144,897) = 11.36, P < 0.001, β = 0.209, 95% CI (0.175, 0.247); V/TU: 
t(144,897) = 16.85, P < 0.001, β = 1.053, 95% CI (0.938,1.185)).

Second, we replicated the inverse relationship between trait 
somatic anxiety and exploration. On the one hand, people high 
on the Somatic anxiety factor were less likely to direct exploration 
towards the option with high relative uncertainty (t(145,173) = −2.14, 

P = 0.032, β = −0.050, 95% CI (−0.096, −0.004); Fig. 4b, Table 1 and 
Supplementary Fig. 10h). On the other hand, they demonstrated a 
lower level of choice stochasticity, choosing the option with a higher 
expected value more often (t(145,173) = 4.05, P < 0.001, β = 0.194, 95% 
CI (0.100, 0.289); Supplementary Fig. 10g). The effects of Negative 
affect factor on exploration are inconsistent between Experiment 1 
and Experiment 2: Experiment 2 data did not support a relationship 
between Negative affect and directed exploration (t(145,173) = 0.44, 
P = 0.662, β = 0.010, 95% CI (−0.033, 0.053)). Instead, there was a posi-
tive association between Negative affect and undirected exploration 
(t(145,173) = −2.32, P = 0.020, β = −0.102, 95% CI (−0.188, −0.016)).

Subjective value and uncertainty track the normative 
estimates
We treated participants’ reward prediction as their subjective value 
estimation and their confidence rating as the inverse of their uncer-
tainty estimation (that is, a high confidence level implies low estima-
tion uncertainty). As expected, self-report reward predictions and 
confidence ratings tracked the normative value and uncertainty esti-
mates well (reward prediction vs posterior mean: t(24,935) = 113.023, 
P < 0.001, rs (12,088) = 0.72, 95% CI (0.71, 0.73); confidence vs pos-
terior s.d.: t(24,935) = −39.45, P < 0.001, rs (12,088) = −0.24, 95% CI 
(−0.26, −0.24)). The inverse relationship between normative uncer-
tainty estimates and confidence is in line with past work showing 
that given Bayesian confidence hypothesis43,44, confidence for the 
Gaussian estimation problem is monotonically related to the inverse 
posterior s.d.45.

Because directed and undirected exploration strategies are sensi-
tive to RU and V, we focused on the subjective estimates of RU and V 
(see Supplementary Methods and Results for a discussion on TU). The 
subjective counterpart of V and RU were defined as:

SubjectiveV = option 1′s rewardprediction

−option 2′s rewardprediction,

SubjectiveRU = option 2′s confidence − option 1′s confidence.

The subjective V and RU also significantly correlated with their nor-
mative counterparts (V: t(24,935) = 123.297, P < 0.001, rs (12,088) = 0.78, 
95% CI (0.77, 0.79); RU: t(24,935) = 65.976, P < 0.001, rs (12,088) = 0.42, 
95% CI (0.40, 0.43)).

Table 1 | Interactions between trait anxiety factors and exploration strategies

Trait anxiety factor RU:Factor V/TU:Factor V:Factor

β(s.e.m.) t P β(s.e.m.) t P β(s.e.m.) t P

Experiment 1 (N = 501)

  Somatic anxiety −0.070(0.033) −2.12 0.034* 0.043(0.097) 0.45 0.657 0.217(0.065) 3.32 < 0.001***

  Cognitive anxiety −0.010(0.037) −0.28 0.782 −0.108(0.107) −1.01 0.313 −0.113(0.072) −1.57 0.117

  Negative affect 0.077(0.026) 2.93 0.003** 0.077(0.078) 0.99 0.322 −0.066(0.053) −1.26 0.208

  Low self-esteem −0.022(0.025) −0.86 0.387 −0.072(0.074) −0.98 0.328 0.033(0.05) 0.66 0.512

Experiment 2 (N = 484)

  Somatic anxiety −0.050(0.023) −2.14 0.032* 0.098(0.086) 1.14 0.254 0.194(0.048) 4.05 <0.001***

  Cognitive anxiety −0.005(0.027) −0.20 0.842 −0.093(0.096) −0.97 0.332 −0.052(0.054) −0.97 0.331

  Negative affect 0.010(0.022) 0.44 0.662 −0.035(0.079) −0.44 0.661 −0.102(0.044) −2.32 0.020*

  Low self-esteem −0.011(0.021) −0.52 0.602 0.075(0.073) 1.04 0.300 0.032(0.041) 0.79 0.428

Factor scores were obtained using EFA results in Experiment 1. All trait anxiety factors were standardized and entered into the same model together with age and gender. A positive coefficient 
for RU:Factor (V/TU:Factor) indicates increased directed (random) exploration. A positive coefficient for V:Factor indicates decreased undirected exploration. We used t-tests (two-sided) to 
assess the significance of the coefficients. Multiple comparisons correction was not applied. *P < 0.05, **P < 0.01, ***P < 0.001
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Trait somatic anxiety is associated with underestimation of 
relative uncertainty
To model the effects of trait anxiety on subjective V and RU, we examined 
how trait anxiety factors modulate the relationship between subjective 
and normative estimates of V and RU. The regression results revealed 
that the Somatic anxiety factor of trait anxiety interacted negatively 
with the normative estimate of relative uncertainty (t(12,076) = −4.85, 
P < 0.001, β = −0.293, 95% CI (−0.411, −0.174); see Table 2), suggesting 
that people high on trait somatic anxiety tend to underestimate rela-
tive uncertainty in the environment. The effect of underestimation 
remained significant when using the STICSA-T somatic subscale as 
trait somatic anxiety measure (t(12,082) = −4.20, P < 0.001, β = −0.211, 
95% CI (−0.309, −0.112); see Supplementary Table 5). This could be 
a potential explanation for the diminished directed exploration in 
individuals high on trait somatic anxiety. There was also a significantly 
negative interaction between Somatic anxiety and the normative esti-
mate of value difference (t(12,076) = −2.50, P = 0.012, β = −1.435, 95% CI 
(−2.035, −0.246)), implying a tendency to underestimate value differ-
ence among those scoring high on Somatic anxiety factor. We failed 
to detect this interaction when measuring trait somatic anxiety with 
the STICSA-T somatic subscale (t(12,082) = −1.41, P = 0.158, β = −0.532, 
95% CI (−1.270, 0.206)).

Discussion
The current study examined the association between trait anxiety com-
ponents and exploration during decision making under uncertainty. 
Across two large-scale online experiments, we found a selective role of 
trait somatic anxiety—the propensity to experience enduring physical 
symptoms of anxiety—in modulating exploration in two distinct ways: 
first, trait somatic anxious individuals showed diminished directed 
exploration, being less likely to direct exploration towards the more 
uncertain option. The reward prediction task data offered a poten-
tial mechanistic to account for this inverse relationship, showing that 
people high on trait somatic anxiety tended to underestimate relative 
uncertainty. Second, people high on trait somatic anxiety exhibited a 
low level of undirected exploration, choosing less randomly regardless 
of uncertainty. Interestingly, none of the other trait anxiety compo-
nents interact with any exploration strategy.

To dissociate and quantify exploration strategies, we manipulated 
different kinds of uncertainty in a two-armed bandit task. Dovetailing 
with previous work23–25, we found behavioural signatures for directed, 
random and undirected exploration, which were driven by relative 
uncertainty, total uncertainty and value difference, respectively. Spe-
cifically, the current study altered uncertainty by changing volatility 
(that is, the diffusion rate of an option’s generative mean), while holding 
the riskiness of both options fixed (that is, the variance of the outcome 
distribution). This design removed the potential interference effect of 
risk aversion. In other words, people may be reluctant to try an uncer-
tain option due to a desire to avoid risk, therefore offering a cleaner 
measure of directed and random exploration. More importantly, these 

findings extend the uncertainty-driven exploration framework by prov-
ing that people are sensitive to epistemic uncertainty in their posterior 
estimates of the choices instead of aleatoric uncertainty caused merely 
by outcome variability.

The negative association between trait somatic anxiety and 
directed exploration is consistent with previous work showing that anx-
ious individuals find uncertainty more aversive and tend to avoid it9,10. 
In a volatile environment, this avoidance behaviour is self-reinforcing. 
As time goes by, the unchosen option grows more uncertain because 
the information obtained from the last observation is less predictive 
of its current value, which further drives a somatic anxious individ-
ual away from it. In the long term, insufficient directed exploration 
impedes people from collecting information and updating the value 
of the uncertain options, which could lead to suboptimal decision 
strategies and give rise to real-life maladaptive avoidance behaviour. 
Therefore, reduced directed exploration can be seen as a cognitive 
risk factor for the later development of anxiety disorders. On the other 
hand, diminished undirected exploration suggests that people scor-
ing high on trait somatic anxiety made choices in line with the value 
difference. In tandem with other cognitive biases, reduced indirect 
exploration could also lead to avoidance behaviour. For example, 
suppose an anxious individual holds a pessimistic belief towards novel 
objects and assigns low initial values to them46, they may tend to avoid 
the unfamiliar options without a single interaction. Furthermore, if 
the anxious individual believes that interacting with the novel object 
will lead to negative outcomes, their degree of uncertainty avoidance 
could be exaggerated due to an elevated prepotent bias to withhold 
responding in the face of negativity47.

Complementary to avoiding the uncertain option, trait somatic 
anxiety was linked to a reduced ability to track relative uncertainty with 
self-report confidence. In other words, when holding the uncertainty 
level of one option unchanged, an increase in the uncertainty level of 
the other option transforms to a smaller change in confidence differ-
ence between two options in somatic anxious individuals. This altered 
representation of uncertainty converges with previous research show-
ing that state anxious individuals hold a more precise belief about the 
reward contingencies in the environment and update less30. Moreover, 
recent work uniquely linked the somatic component of anxiety to a 
smaller uncertainty estimate during aversive learning, while the direc-
tion of the relationship was reversed for cognitive anxiety41. Building 
upon these findings, the current study further showed that somatic 
anxious individuals were poor at sensing the uncertainty difference 
between options. The blunted response to uncertainty could serve as 
an explanation for the reduced directed exploration: an anxious per-
son may favour the uncertain option less due to a smaller uncertainty 
bonus, which is proportional to subjective relative uncertainty. How-
ever, the current data could not directly test this hypothesis because 
confidence ratings were only acquired at the end of each block instead 
of on a trial-by-trial basis. The task was designed this way due to the 
concern that eliciting reward prediction and confidence rating too 

Table 2 | The relationship between trait anxiety factors and subjective RU and V estimates

Trait anxiety factor RU:Factor V:Factor

β(s.e.m.) t P β(s.e.m.) t P

Somatic anxiety −0.293(0.06) −4.85 <0.001*** −1.141(0.456) −2.50 0.012*

Cognitive anxiety 0.087(0.076) 1.15 0.249 0.697(0.564) 1.24 0.217

Negative affect 0.186(0.065) 2.86 0.004** 0.575(0.488) 1.18 0.239

Low self-esteem −0.084(0.06) −1.41 0.159 0.06(0.444) 0.134 0.893

Factor scores were obtained using EFA results in Experiment 1. All trait anxiety factors were standardized and entered into the same model together with age and gender. The definition of 
subjective RU and V can be found in Experiment 2 Results section. A positive RU:Factor (V:Factor) indicates an overestimation of RU (V). We used t-tests (two-sided) to assess the significance of 
the coefficients. Multiple comparisons correction was not applied. *P < 0.05, **P < 0.01, ***P < 0.001.
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often would interfere with the exploration process. Because there is no 
clear link between directed exploration during the block and relative 
uncertainty at the end of the block, we could not directly tie subjective 
report in with exploration in the current prediction task. Future studies 
could use different paradigms to formally examine whether subjective 
relative uncertainty mediates the relationship between trait somatic 
anxiety and directed exploration. Besides underestimating uncer-
tainty difference, trait somatic anxious individuals underestimate 
value difference as well. The latter relationship is not as robust as the 
former since it depends on the way trait somatic anxiety is measured 
(that is, factor score or STICSA-T questionnaire). Nonetheless, it sug-
gests that reduced undirected exploration cannot be explained from 
the perspective of biased subjective estimation, which would predict 
overestimating value difference. In this case, we conjecture that trait 
somatic anxiety is associated with an increased sensitivity to the value 
difference between options. The current task design cannot directly 
test this hypothesis, which is one limitation of Experiment 2. Future 
studies interested in testing this hypothesis could explicitly instruct the 
participants about the value difference between options and examine 
the relationship between brain activity during the choice phase and 
trait somatic anxiety after controlling for the value difference.

The current study utilizes a dimensional approach to examine 
the interaction between anxiety and exploration. Among all latent 
factors of trait anxiety identified in the present study, only Somatic 
anxiety was associated with a change in exploration. In contrast, the 
others did not reliably modulate the exploration process. These differ-
ential effects are critical in understanding the inconsistencies in past 
work on the anxiety-exploration relationship. Most existing studies 
treated trait anxiety as a unitary construct, while their measurements 
might tap onto distinct components. According to our factor struc-
ture, STAI-T primarily reflects the Negative affect factor, which was 
associated with an increase in directed exploration in Experiment 1. 
This finding matches recent work11. However, this relationship disap-
peared in Experiment 2 when the reward prediction task was added, 
implying that the effect of Negative affect might not be robust to task 
modification. Supporting this argument, another recent study did 
not find a significant relationship between trait anxiety, measured 
by STAI-T, and uncertainty-driven exploration strategies48. Another 
recent study49 administered the Penn State Worry Questionnaire50, 
which primarily measures cognitive symptoms of anxiety51, and failed 
to detect a relationship between anxiety and directed exploration. This 
finding aligns well with our finding that trait cognitive anxiety did not 
interact with exploration. On the other hand, past literature on physi-
cal exploratory behaviour focused on patients diagnosed with panic 
disorder or agoraphobia6, both of which are anxiety disorders primarily 
characterized by elevated somatic symptoms52. Specifically, Kallai and 
colleagues53 found that compared to those diagnosed with generalized 
anxiety disorder, people who have panic disorder with agoraphobia 
demonstrated more disturbed exploratory behaviour, hinting at a 
unique contribution of somatic anxiety to suppressed spatial explora-
tion. Since physical exploration usually requires going through novel 
environments, it is possible that it shows a flavour of directed explo-
ration, which is decreased in trait somatic anxious individuals. More 
studies and analysis need to be done to understand the similarity and 
difference between spatial exploration and exploration during decision 
making. Nonetheless, our dimensional approach showed the promise 
of unifying past work on exploration across task domains.

An important question remains unanswered: why does trait 
somatic anxiety interact with exploration? Despite the prevalence of 
somatic symptoms in anxiety disorders, it is only recently that research-
ers have begun to examine its specific impact on learning and deci-
sion making in the general population41,54. Drawing inspirations from 
work on panic disorder, we conjecture that altered exploration in trait 
somatic anxiety could be attributed to enhanced interoception, that is, 
increased sensitivity to arousal signals55–57. These signals are important 

because arousal systems are involved in the processing of uncertainty 
and value, which could be used to guide decisions58–61. Past work on the 
concordance between trait somatic anxiety and physiological arousal 
has documented mixed findings, suggesting that high trait somatic 
anxiety is not necessarily accompanied by an increase in physiological 
indices of arousal62–64. Instead, we speculate that heightened interocep-
tion in somatic anxious individuals might amplify the impact of physi-
ological arousal on exploration65, which could account for the altered 
subjective computation of relative uncertainty in the same population. 
This would be in line with past work documenting a mediating role of 
trait anxiety on the relationship between physiological responses and 
risk decision-making60. It is left for future studies to provide a holistic 
picture of the dynamics between somatic anxiety, physiological and 
subjective arousal, and exploration.

This study has a few limitations. Although we demonstrated the 
specificity of the associations between trait somatic anxiety and explo-
ration strategies by controlling for other trait anxiety components in 
the same analysis, we do not know whether these effects are robust 
to including other psychiatric symptoms such as compulsivity. We 
believe that our results will still hold since no clear relationship between 
compulsive behaviour and exploration has been documented in the lit-
erature. However, given the high comorbidity of obsessive-compulsive 
disorder and anxiety66, it is important for future studies to take compul-
sivity into account to obtain cleaner measures of the effects of anxiety 
on decision-making components. Besides, the current study examined 
the anxiety-exploration relationship in an online general population 
where the distribution of trait somatic anxiety was positively skewed. 
Therefore, future work should test the generalizability of our findings 
in a clinically diagnosed population, such as panic disorder patients 
who usually demonstrate more somatic symptoms.

Methods
The study was approved by the Harvard University Committee on the 
Use of Human Subjects (IRB19-0789). We report how we determined 
our sample size, all data exclusions, all manipulations and all measures 
for both experiments in the study. All data and analysis code for both 
experiments are available online (see Data availability statement). 
The experiment design, sample size, exclusion criteria and primary 
data analysis plan for Experiment 1 were pre-registered at https://
aspredicted.org/vi8wg.pdf.

Participants
The study was approved by the Harvard University Committee on the 
Use of Human Subjects. Participants were recruited via the Prolific 
Platform. Informed consent was given before testing. Before Experi-
ment 1, we conducted a power analysis by simulating the pilot data, 
which revealed that a sample size of 500 (after exclusion) would be 
necessary to detect an effect with 80% power. The exclusion criteria 
were pre-registered and participants were excluded if they: reported 
an age outside the range 18–65, chose the more rewarding option in 
<60% of trials, or did not complete anxiety-related questionnaires. 
The accuracy criterion was set to make sure that participants paid 
attention to the task and have shown effective learning, which is in line 
with previous studies using a similar task setting67. We recruited 1,097 
participants in total (Experiment 1: N = 531; Experiment 2: N = 566) 
and 985 participants were included in the final analysis of the bandit 
task (Experiment 1: N = 501, 219 women, 277 men, 5 unreported; age 
M = 36.1 years, s.d. = 10.9; Experiment 2: N = 484, 197 women, 279 men, 
8 unreported; Age M = 35.3 years, s.d. = 10.5). As for the data analysis 
of the prediction task in Experiment 2, we excluded prediction trials 
in which the reward prediction was >50 or <−50 (the maximum and 
minimum possible experienced reward in the task were 47 and −44). 
This resulted in the exclusion of 10.52% of all trials. Participants who 
always selected the same trial-by-trial confidence rating were also 
excluded (29 participants, 4.03% of all trials). In the final analysis of the 
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prediction task, 446 participants were included (190 women, 248 men, 
8 unreported; age M = 34.6 years, s.d. = 10.4). Participants received 
monetary compensation (Experiment 1: US$7; Experiment 2: US$15) 
and could earn a bonus depending on their performance in the ban-
dit task (up to US$3; Experiment 1 and 2) and their reward prediction 
accuracy (up to US$1; Experiment 2).

Experiment design
Two-armed bandit task. In Experiment 1 and 2, participants performed 
30 blocks of a two-armed bandit task adapted from ref. 23. Each block 
consists of 10 trials. In each block, participants encountered a new pair 
of arms and chose between them. Both the fluctuating and the stable 
arms delivered rewards (rounded to the nearest integer) drawn from 
a Gaussian distribution (variance τ2 = 1) around its current generative 
mean. At the beginning of each block, the generative means of both 
arms were reset, drawing randomly from a Gaussian distribution (vari-
ance τ20 = 100) with mean 0. The generative mean of the fluctuating arm 
diffused in a Gaussian random walk, that is, its mean on trial t + 1 was 
drawn from a Gaussian distribution (variance τ2mean (F) = 4) centred on 
its mean on trial t. In contrast, the mean of the stable arm was fixed 
within a block, that is, the variance of the mean τ2mean (S) is 0. A demon-
stration of the bandit task can be found online: https://9kqpbf3ddo.
cognition.run.

Prediction task. In Experiment 2, participants played the two-armed 
bandit task for 30 blocks and completed a reward prediction task at the 
end of each block. During the prediction task, participants reported 
their estimate of the number of points that each machine will generate 
in the next trial by entering an integer (see Supplementary Methods for 
details). Feedback on their prediction was not provided. Participants 
were encouraged to use the full range of the scale (0-guess randomly; 
10-very confident). After the prediction task, participants encountered 
two new slot machines and started a new block of the bandit task. 
Whether they made a prediction for the left or the right arm first is 
randomized. At the end of the experiment, one prediction task trial was 
randomly chosen. If the prediction made on that trial was within one 
of the real generative mean value of the arm, the participant received 
a monetary bonus, which is in addition to the bonus depending on 
their performance.

Belief update process
In line with previous literature14,15,23,68, we assumed that participants 
approximate an ideal Bayesian observer and track both the expected 
value and uncertainty in the estimation. Given the Gaussian distribu-
tional structure underlying our task, the posterior over the value of 
arm k is Gaussian with mean Qt (k) and variance σ2t  (k). Both can be 
recursively updated on each trial t using the Kalman filtering 
equations:

Qt+1 (at) = Qt (at) + at (rt −Qt (at)) , (2)

σ2t+1 (k) = σ2t (k) − αtσ2t (k) + τ2mean (k) ifarmk is chosen, (3)

= σ2t (k) + τ2mean (k) if arm k is not chosen, (4)

where αt is the chosen arm (αt = 1 if the left arm is chosen, αt = 2 if the 
right arm is chosen), rt is the delivered reward, and the Kalman gain αt 
is given by:

αt = (σ2t (k) + τ2mean (k)) / (σ2t (k) + τ2mean (k) + τ2 (at)) (5)

Note that the posterior mean is updated only for the chosen arm 
regardless of its type, whereas the posterior variance for the fluctuating 
arm is updated every trial irrespective of the participant’s choice. The 

diffusion noise for the fluctuating arm τ2mean (F) and for the stable arm 
τ2mean (S) are set to 4 and 0, respectively. The posterior means are initial-
ized with the prior mean, Q1(k) = 0 for all k, and posterior variances are 
initialized with the prior variance, σ21 (k) = τ20 = 100. Kalman filtering is 
an idealization of learning from noisy observations, and past research 
has shown that it can account for human choices in bandit tasks well14,68.

Choice probability analysis
The parameters of the full hybrid model (equation (1)) were estimated 
using maximum likelihood estimation in MATLAB (function fitglme, 
version R2020a). In line with models used in previous work, the cur-
rent model included fixed and random effects for V, RU and V/TU. In 
Wilkinson notation, the model specification was Choice ~ V+RU+V/
TU+(V+RU+V/TU|SubjectID). All fixed effects were unbounded, and 
the random effects were restrained to be coming from a multivariate 
Gaussian distribution (see Supplementary Fig. 3 for the distributions 
of random effects). The residual plot of the model and the distribution 
of random effects (Supplementary Fig. 4) were visually inspected to 
confirm that the assumptions of generalized linear mixed models were 
met (same for all mixed probit regression models mentioned below) 
and was therefore not formally tested for normality or equal vari-
ance. To understand what exploration strategies participants used, we 
compared the full hybrid model (with regressors V, RU and V/TU) with 
models nested within it, resulting in a set of 7 models. Given that these 
models differed in their number of parameters, we used the Bayesian 
Information Criterion (BIC) to compare models; this metric penalizes 
models on the basis of the number of parameters (Supplementary 
Table 2). A model recovery analysis was carried out to confirm that 
BIC was a reliable model selection metric, accurately selecting the true 
generative model from the whole set of model candidates (Supplemen-
tary Fig. 11). A parameter recovery test was conducted on the winning 
model to confirm its ability to recover true parameters that were used 
to generate behaviour. Specifically, we sampled w1, w2 and w3 from 
N(0, 10 × I), simulated behaviour, fitted the model and compared the 
generative and fitted parameters (Supplementary Fig. 6). This process 
was repeated 1,000 times. Data simulated using the winning model 
were analysed using the condition-based choice probability analysis 
to examine whether the simulated data showed behavioural signatures 
of directed and random exploration and can be distinguished from 
data generated by other models (see Supplementary Methods and 
Results for details).

To obtain psychometric curves of choice behaviour across condi-
tions, we modelled choices as a function of experimental condition 
(SF, FS, SS, FF):

P (at = 1|w) = Φ (∑j
wj

4πtj +wj
5πtjVt) , (6)

where j is the experimental condition, and πtj = 1 if trial t belongs to con-
dition j,and = 0 otherwise. We refer to the w4 terms as intercepts and the 
w5 terms as slopes. w4 and w5 were estimated using a generalized linear 
mixed-effect model with a probit link function. In Wilkinson notation, 
the model specification was Choice ~ V + V:cond + (V+V:cond|Subject
ID). All t-tests and F-tests for fixed effect coefficients are two-sided.

Trait anxiety measure
STAI-T and STICSA-T were used to measure trait anxiety. STAI-T is the 
most widely used trait anxiety measure42 and has a high internal consist-
ency (Cronbach’s α = 0.90). Compared with STAI-T, STICSA-T includes 
more somatic items and has superior divergent validity69,70. To obtain 
latent factors of trait anxiety, we conducted an exploratory factor 
analysis on all items from STICSA-T and STAI-T (N = 82). The number of 
factors was selected on the basis of parallel analysis, which compared 
the eigenvalues generated from the data matrix to those generated 
from a simulated matrix created from random data of the same size 
and retained the eigenvalues that are above the 95% quantile of the 
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simulated ones71. Factor scores were then calculated using the Bartlett 
method72 implemented in the psych package73 in R (version 4.0.2). In 
Experiment 2, latent factors of trait anxiety were extracted using the 
factor loading structure obtained in Experiment 1.

Modelling the effects of trait anxiety factors on exploration 
strategies
We extended equation (1) to include trait anxiety factor scores and 
their interactions with V, RU and V/TU:

P (at = 1|w) = Φ (w1Vt +w2RUt +w3Vt/TUt +∑
n
w11

nV ∶ Anxn +w21
nRUt ∶

Anxn +w31
nVt/TUt ∶ Anxn +w6

nAnxn) ,

(7)

where n denotes the nth trait anxiety factor. The factor scores were 
standardized before entering in the model. Age and gender were 
also entered as covariates. A positive w21 indicates that people scor-
ing high on the trait anxiety factor are more sensitive to relative 
uncertainty and engage in more directed exploration. Similarly, a 
positive w31 implies elevated random exploration (that is, behaving 
more randomly when facing the same total uncertainty). On the 
other hand, a positive w11 is interpreted as a negative association 
between the trait anxiety factor and undirected exploration due to 
an increased sensitivity to the value difference between options. The 
parameters were estimated using generalized linear mixed-effect 
models with a probit link in MATLAB. In Wilkinson notation, the 
model specification was Choice ~ V + RU + V/TU + V:Anx + RU:Anx + V/
TU:Anx + Anx + (V + RU+V/TU|SubjectID).

Modelling the effects of trait anxiety factors on subjective 
value and uncertainty estimates
We used the following linear mixed-effect regressions to examine how 
trait anxiety factors modulate the relationship between subjective and 
normative estimates of V and RU:

SubjectiveVt = w7Vt +∑
n (w71

nVt ∶ Anxn +w8Anx
n), (8)

SubjectiveRUt = w9RUt +∑
n (w91

nRUt ∶ Anxn +w0Anx
n) (9)

The factor scores were standardized and age and gender were 
entered as covariates. Across two equations, a positive coefficient 
for the interaction term, that is, w71 in equation (8) and w91 in equa-
tion (9), means that given the same normative estimates of V (RU), 
participants high on the trait anxiety factor report higher subjec-
tive V (RU), which is equivalent to an overestimation. The parame-
ters were estimated using linear mixed-effect models in MATLAB. 
In Wilkinson notation, the model specification for equation (8) 
was Subjective V ~ V + V:Anx + Anx + (V | SubjectID), and Subjective 
RU ~ RU + RU:Anx + Anx + (RU | SubjectID) for equation (9).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
All de-identified data are publicly available at the Open Science Frame-
work website: https://osf.io/y6urc/.

Code availability
The code used to fit belief update model, generate regression models 
and generate figures are publicly available at the Open Science Frame-
work https://osf.io/y6urc/.
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Study description Quantitative experimental studies with cognitive modeling component

Research sample Two general population samples were recruited from Prolific platform (Experiment 1: N=531; Experiment 2: N=576). Participants 
were required to be based in the USA and to have completed at least 10 tasks but no more than 10000 tasks on the Prolific platform 
before. They were also required to have successfully completed most previous tasks on the Prolific platform (95% of previous tasks 
approved). After exclusion (for exclusion criteria, see the ‘data exclusion’ part below), five hundred and one participants were 
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Sampling strategy All experiments used random sampling. The sample size of experiment 1 was determined based on a power analysis. We conducted 
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Data collection The data were obtained via interactive games and questionnaires displayed in the participants’ web browsers on their laptops. The 
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Data exclusions Participants were excluded if they reported age outside the range of 18-65, chose the more rewarding option < 60% of trials in the 
two-armed bandit task, or did not complete anxiety-related questionnaires. The above exclusion criteria has been preregistered at 
https://aspredicted.org/vi8wg.pdf. Thirty participants (5.6%) were excluded in experiment 1 and seventy-two (12.9%) participants 
were excluded in experiment 2.

Non-participation No participants dropped out.
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